КОЛЕБАНИЯ ФЕРМИ-ЖИДКОСТИ

Л. Д. Ландау

Исследованы различные типы волн, которые могут распространяться в ферми-жидкости как при абсолютном нуле, так и при отличных от нуля температурах. Рассмотрен вопрос о поглощении этих волн.

Настоящая статья посвящена исследованию распространения волн в ферми-жидкости, исходя из развитой автором общей теории таких жидкостей [1]. Эти явления должны отличаться в ферми-жидкости большим своеобразием, связанным прежде всего с невозможностью распространения в ней при абсолютном нуле температуры обычных гидродинамических звуковых волн. Последнее обстоятельство очевидно уже из того, что длина пробега, а с ней и вязкость ферми-жидкости стремятся к бесконечности при $T \to 0$, в связи с чем неограниченно возрастает коэффициент поглощения звука.

Оказывается, однако, что в ферми-жидкости при абсолютном нуле могут распространяться другие волны, по своей природе существенно отличающиеся от обычного звука; мы будем называть их волнами «нулевого звука».

Впервые вопрос о колебаниях ферми-жидкости был рассмотрен Гольдманом [²] в применении к электронному газу с кулоновым взаимодействием между частицами. Задача же о газе незаряженных частиц, подобная рассматриваемой здесь для жидкости, впервые рассматривалась в работе Климонтовича и Силина [³] и затем в ряде работ Силина [⁴-6]. При этом газ предполагался слабо неидеальным с взаимодействием, удовлетворяющим условиям применимости теории возмущений.

1. Колебания ферми-жидкости при абсолютном нуле

Начнем с исследования тех колебаний при абсолютном нуле температуры, которые не затрагивают спиновых характеристик жидкости. Это значит, что от спиновых переменных не зависит не только равновесная функция распределения n_0 , но и «возмущенная» функция:

$$n = n_0 + \delta n \, (\mathbf{p}). \tag{1}$$

При абсолютном нуле n_0 представляет собой «ступенчатую» функцию, обрывающуюся у предельного импульса $p = p_0^{-1}$.

Энергия квазичастиц (элементарных возбуждений) является функционалом от n, т. е. вид функции $\epsilon(\mathbf{p})$ зависит от вида $n(\mathbf{p})$. Аналогично (1) напишем ее в виде

$$\varepsilon = \varepsilon_0(p) + \delta\varepsilon(p), \tag{2}$$

где функция $\varepsilon_0(p)$ соответствует распределению $n_0(p)$. Величина же $\delta\varepsilon$ связана с δn формулой вида (см. [1]):

$$\delta \varepsilon (\mathbf{p}) = \operatorname{Sp}_{\sigma'} \int f(\mathbf{p}, \mathbf{p}') \, \delta n' d\tau', \quad d\tau = d^3 \mathbf{p} / (2\pi \hbar)^3.$$
 (3)

 $^{^{1}}$ Во избежание излишнего усложнения исследования, мы ограничимся простым и наиболее важным случаем энергетического спектра с областью заполнения, представляющей собой одну сплошную сферу радиуса p_{0} .

Поскольку δn предполагается не зависящим от спиновой переменной, то операция Sp применяется только к амплитуде рассеяния f. Но скалярная функция $\mathrm{Sp}_{\sigma'}f$ может содержать оператор спина σ лишь в виде произведения ($\sigma[\mathrm{pp'}]$) двух аксиальных векторов: σ и $[\mathrm{pp'}]$ (выражения же, содержащие двойные произведения компонент σ , можно не рассматривать, так как для спина $^{1}/_{2}$ они, как известно, сводятся к выражениям, содержащим σ в нулевой или первой степени). Но это произведение не инвариантно по отношению к изменению знака времени и потому не может войти в инвариантную величину $\delta \varepsilon$. Таким образом, σ выпадает вовсе, и $\delta \varepsilon$ оказывается не зависящим от спиновой переменной.

Кинетическое уравнение для ферми-жидкости имеет вид:

$$\frac{\partial n}{\partial t} + \frac{\partial n}{\partial r} \frac{\partial \varepsilon}{\partial p} - \frac{\partial n}{\partial p} \frac{\partial \varepsilon}{\partial r} = I(n), \tag{4}$$

где I(n) — интеграл столкновений между квазичастицами. Число столкновений пропорционально квадрату ширины зоны размытости распределения, так что при абсолютном нуле I(n)=0. Подставляя (1) и (2) в (4) и учитывая, что n_0 и ε_0 от \mathbf{r} не зависят, получим

$$\frac{\partial \delta n}{\partial t} + \frac{\partial \delta n}{\partial \mathbf{r}} \frac{\partial \varepsilon_0}{\partial \mathbf{p}} - \frac{\partial \delta \varepsilon}{\partial \mathbf{r}} \frac{\partial n_0}{\partial \mathbf{p}} = 0,$$

а предполагая δn и $\delta \varepsilon$ пропорциональными $e^{-i\omega t + i\mathbf{k}\mathbf{r}}$:

$$(\mathbf{k}\mathbf{v} - \mathbf{\omega}) \, \delta n = \mathbf{k}\mathbf{v} \, \frac{\partial n_0}{\partial \varepsilon} \, \delta \varepsilon, \tag{5}$$

где введена скорость квазичастиц $\mathbf{v} = \partial \epsilon_0 / \partial \mathbf{p}$. Ввиду наличия в правой стороне этого уравнения δ -образной функции $\partial n_0 / \partial \epsilon$, фактически в нем фигурируют лишь значения всех величин, взятые у границы $p = p_0$ (невозмущенного) фермиевского распределения. Введем удобное для дальнейшего новое обозначение

$$F = \operatorname{Sp}_{\sigma'} f(\mathbf{p}, \mathbf{p}') \, 4\pi p^2 dp \, / \, (2\pi \hbar)^3 \, d\varepsilon. \tag{6}$$

Тогда (3) напишется в виде:

$$\delta \varepsilon = \iint F \, \delta n' d\varepsilon' do' \, / \, 4\pi.$$

Быстро меняющейся с є' функцией является здесь лишь $\delta n'$. Поэтому можно переписать это выражение в виде:

$$\delta \varepsilon = \int F \nu' do' / 4\pi, \tag{7}$$

где введена согласно

$$\gamma(\mathbf{n}) = \int \delta n(\mathbf{p}) d\mathbf{s} \tag{8}$$

функция ν , зависящая только от направления \mathbf{n} вектора \mathbf{p} , а функция $\hat{F}(\mathbf{p},\mathbf{p}')$ берется на границе (невозмущенного) фермиевского распределения; при этом F зависит только от угла χ между \mathbf{p} и \mathbf{p}' .

Заметим для дальнейшего, что полученное в [1] соотношение, связывающее истинную массу частиц m с эффективной массой квазичастиц m^* , при помощи функции $F(\chi)$ напишется в виде

$$\overline{F\cos\chi} = (m^*/m) - 1,$$
 (9)

где черта означает усреднение по направлениям (при выводе этого соотношения полагаем в (6) $\epsilon = p^2/2m^*$). Уравнение же для скорости «обычного звука» c можно привести к виду:

$$\overline{F} = 3 \, mm^* c^2 / \, p_0^2 - 1. \tag{10}$$

Подставим (7) в уравнение (5) и проинтегрируем последнее по d \circ . Это дает

$$(\mathbf{k}\mathbf{v} - \mathbf{\omega}) \, \mathbf{v} = -\mathbf{k}\mathbf{v} \int F \mathbf{v}' do' / 4\pi.$$

Выберем направление ${\bf k}$ в качестве полярной оси и пусть углы ${\bf \theta}$, ${\bf \phi}$ определяют направление импульса ${\bf p}$ (и совпадающее ${\bf c}$ ним направление ${\bf v}$) относительно этой оси. Введя также скорость $u=\omega/k$ распространения волны и обозначение. $\eta=u/v$, напишем окончательно полученное уравнение в виде:

$$(\eta - \cos \theta) \nu(\theta, \varphi) = \cos \theta \int F(\chi) \nu(\theta', \varphi') d\sigma' / 4\pi. \tag{11}$$

Это интегральное уравнение определяет принципиально скорость распространения волн и вид функции $\nu(\theta,\phi)$ в них. Последняя имеет следующий наглядный смысл. Тот факт, что δn пропорционально [как это видно из (5)] производной $\partial n_0/\partial \epsilon$, означает, что изменение функции распределения при колебаниях сводится к деформации граничной фермиевской поверхности (сферы в невозмущенном распределении). Интеграл же (8) представляет собой величину смещения (в единицах энергии) этой поверхности в заданном направлении \mathbf{n} .

Отметим сразу же, что из вида уравнения (11) следует, что вещественная (нас интересуют лишь незатухающие колебания) величина η должна превышать 1, т. е. скорость распространения волн удовлетворяет неравенству

$$u > v$$
. (12)

Исследуем в качестве примера случай, когда функция $F(\chi)$ сводится ж постоянной (обозначим ее F_0). Интеграл в правой стороне уравнения (11) не зависит при этом от углов θ , φ . Поэтому искомая функция у имеет вид (экспоненциальный множитель опускаем):

$$v = \operatorname{const} \cdot \cos \theta / (\eta - \cos \theta). \tag{13}$$

Граничная фермиевская поверхность приобретает форму поверхности вращения, вытянутой в направлении вперед по направлению распространения волны и сплюснутой в обратном направлении. Укажем для сравнения, что обычной звуковой волне соответствует функция у вида у = const $\cos \theta$, представляющая собой смещение фермиевской сферы как целого, без изменения ее формы.

Для определения скорости и подставляем (13) в (11) и получаем

$$\frac{F_0}{4\pi} \int_0^{\pi} \frac{\cos \theta}{\eta - \cos \theta} 2\pi \sin \theta \, d\theta = 1.$$

Произведя интегрирование, найдем следующее уравнение, определяющее в неявном виде скорость волны по заданной величине F_0 :

$$\dot{\varphi}(\eta) = \frac{\eta}{2} \ln \frac{\eta + 1}{\eta - 1} - 1 = \frac{1}{F_0}. \tag{14}$$

Функция $\varphi(\eta)$ монотонно убывает от $+\infty$ до 0 при изменении η от 1 до ∞ , оставаясь всегда положительной. Отсюда следует, что рассматриваемые волны могут существовать лишь при $F_0>0$. Поскольку функция F пропорциональна взятой с обратным знаком амплитуде рассеяния (на угол 0°) квазичастиц друг на друге (см. [¹]), то последняя должна быть отрицательной, что соответствует взаимному отталкиванию квазичастиц. Следует, однако, подчеркнуть, что этот вывод относится именно к случаю F= const. Если функция $F(\chi)$ не сводится к постоянной (и в то же время не мала по сравнению с 1; см. ниже), то распространение нулевого звука, вообще говоря, возможно как при отталкивательном, так и при притягательном взаимодействии квазичастиц.

При $\eta \to \infty$: $\varphi(\eta) \approx 1/3\eta^2$. Поэтому большим F_0 соответствует $\eta = \sqrt{F_0/3}$. В обратном же случае $F_0 \to 0$ мы найдем, что η стремится к 1 по закону

$$\eta - 1 \sim e^{-2|F_0|}$$
 (15)

Последний случай имеет более общее значение: он соответствует нулевому звуку в почти идеальном ферми-газе при произвольном виде функции $F(\chi)$. Действительно, почти идеальному газу соответствует малая по абсолютной величине функция F. Из уравнения (11) видно, что при этом η будет близким к 1, а функция ν будет заметно отлична от нуля лишь при малых углах ν . На этом основании, интересуясь лишь этой областью углов, можно заменить в интеграле в правой стороне уравнения (11) функцию ν ее значением при ν = 0 (при ν ν 0 и ν ν 0 также и ν ν 0). В результате мы снова вернемся к формулам (13) и (15) с заменой константы ν 1 на ν 6 (этот результат совпадает с полученным ранее Силиным ν 1.

Отметим, что в слабо неидеальном ферми-газе скорость нулевого звука превышает скорость обычного звука в $\sqrt{3}$ раз. Действительно, для первой имеем $\eta \approx 1$, т. е. $u \approx v$. Для скорости же обычного звука из формулы (10), пренебрегая в ней членом \overline{F} и положив $m^* \approx m$: $c^2 \approx p_0^2/3m^2 = v^2/3$.

В общем случае произвольной зависимости $F(\chi)$ решение уравнения (11) неоднозначно. Оно в принципе допускает существование различных типов нулевого звука, отличающихся друг от друга угловой зависимостью их амплитуды $\nu(\theta, \varphi)$ и распространяющихся с различными скоростями. При этом наряду с аксиально-симметрическими решениями $\nu(\theta)$ могут существовать и асимметрические решения, в которых ν содержит азимутальные множители $e^{\pm im\varphi}$ (m — целое число).

Tак, при функции $F(\gamma)$ вида

$$F = F_0 + F_1 \cos \chi = F_0 + F_1 (\cos \theta \cos \theta' + \sin \theta \sin \theta' \cos (\varphi - \varphi')) \quad (16)$$

могут существовать решения с $\nu \sim e^{\pm i\varphi}$. Действительно, подставляя (16) в (11) и произведя интегрирование по $d\varphi'$ (предполагая при этом, что $\nu = f(\theta) e^{i\varphi}$), получим:

$$(\eta - \cos \theta) f = \frac{F_1}{4} \cos \theta \sin \theta \int_0^{\pi} \sin^2 \theta' f' d\theta'.$$

Отсюда

$$\gamma = \text{const} \cdot \frac{\sin \theta \cos \theta}{\eta - \cos \theta} e^{i\varphi}. \tag{17}$$

Подставляя же это выражение обратно в уравнение, получим соотношение

$$\int_{0}^{\pi} \frac{\sin^{3}\theta \cos\theta}{\eta - \cos\theta} d\theta = \frac{4}{F_{1}}, \qquad (18)$$

определяющее зависимость скорости распространения от F_1 . Интеграл в левой стороне равенства является монотонно убывающей положительной функцией η . Поэтому его наибольшее возможное значение достигается при $\eta=1$. Вычислив интеграл, мы найдем, что соответствующее (наименьшее допустимое) значение F_1 есть 6. Таким образом, распространение асимметричной волны вида (17) возможно лишь при $F_1 > 6$.

Обращаясь к реально существующей ферми-жидкости — жидкому ${\rm He^3}$ — имеет смысл попытаться аппроксимировать неизвестную нам его функцию $F\left(\chi\right)$ двухчленной формулой (16). Входящие в нее коэффициенты F_0 и F_1 можно определить при помощи формул

$$F_0 = 3 \, mm^*c^2 / p_0^2 - 1, \quad F_1/3 = m^*/m - 1$$

[см. (9) и (10)], зная значения эффективной массы m^* и скорости обычного звука c. Первую можно извлечь из экспериментальных данных о температурной зависимости энтропии (в наиболее низкотемпературной области); из

имеющихся в настоящее время данных [7] получается $m^* = 1.43~m~(m-масса атома He^3)$. Для скорости же c, согласно данным Вальтерса и Фербанка [8] о сжимаемости жидкого He³, имеем 195 $m/ce\kappa$. Наконец, p_0 получается непосредственно из плотности жидкости: $p_0/\hbar = 0.76 \cdot 10^8~cm^{-1}$.

На основании приведенных данных получаем

$$F_0 = 5.4; \quad F_1 = 1.3.$$
 (19)

Из этих значений можно сделать ориентировочное заключение о том, что в жидком He^3 распространение асимметричного нулевого звука невозможно. Для симметричного же нулевого звука решение уравнения с функцией $F(\chi)$ из (16) и (19)² приводит к значению $\eta=1,83$, откуда для скорости волны: u=1,83 v=1,83 $p_0/m^*=206$ м/сек.

Возможность распространения волн в ферми-жидкости при абсолютном нуле означает, что ее энергетический спектр может автоматически содержать «бозевскую ветвь» в виде фононов с энергией $\varepsilon = up$. Следует, однако, оговорить, что было бы неправильным вводить соответствующие этой ветви поправки в термодинамические величины ферми-жидкости, поскольку они содержат более высокие степени температуры (T^3 в теплоемкости), чем отклонения от развитой в [1] приближенной теории.

2. Колебания ферми-жидкости при температурах выше нуля

При низких, но отличных от нуля температурах в ферми-жидкости происходят взаимные столкновения квазичастиц, причем число столкновений пропорционально T^2 . Соответствующее же время релаксации (время свободного пробега) $\tau \sim 1/T^2$. Характер распространяющихся в жидкости волн, естественно, существенно зависит от соотношения между их частотой и обратным временем релаксации.

При $\omega \tau \ll 1$ (что фактически эквивалентно условию малости длины пробега квазичастиц по сравнению с длиной волны λ) столкновения успевают установить термодинамическое равновесие в каждом (малом по сравнению с λ) элементе объема жидкости. Это значит, что мы имеем дело с обычными гидродинамическими звуковыми волнами, распространяющимися со скоростью c.

Если же $\omega \tau \gg 1$, то, напротив, столкновения не играют существенной роли в процессе распространения колебания, и мы будем иметь рассмотренные в предыдущем разделе волны нулевого звука.

В обоих этих предельных случаях распространение волн сопровождается сравнительно слабым их поглощением. В промежуточной же области, $\omega \tau \sim 1$, поглощение весьма сильно и выделение различных типов волн, как незатухающих процессов, здесь невозможно.

Частотную и температурную зависимости коэффициента поглощения γ в области обычного звука легко получить при помощи известной формулы для поглощения звука (см., например, [9]), согласно которой γ пропорциональна квадрату частоты и коэффициенту вязкости 3 . Поскольку вязкость ферми-жидкости пропорциональна $1/T^2$ [10], то мы находим, что

$$\gamma \sim \omega^2 / T^2$$
 при $\omega \ll 1/\tau$. (20)

Поглощение в области нулевого звука существенно отличается по своему характеру от поглощения обычного звука. В последнем столкновения не могут привести к диссипации энергии «на фоне» распределения, измененного лишь звуковыми колебаниями как таковыми; это связано с упоминавшимся уже обстоятельством, что измененное таким образом распределение остается в каждом элементе объема жидкости термодинамически равновесным. Поэтому поглощение обычного звука связано с влиянием столкновений на самую функцию распределения.

 $^{^2}$ Эти вычисления произведены А. А. Абрикосовым и И. М. Халатниковым. 3 Вклад же в γ со стороны второй вязкости и теплопроводности оказывается пропорциональным более высоким степеням T и потому не существенен.

В области же нулевого звука столкновения приводят к поглощению уже «на фоне» распределения измененного лишь самими колебаниями, не являющегося в этом случае термодинамически равновесным (поскольку деформируется форма граничной фермиевской поверхности). Это изменение функции распределения не зависит от частоты, а потому не будет зависеть от частоты и коэффициент поглощения. Зависимость же ү от температуры определяется его пропорциональностью числу столкновений, т. е.

$$\gamma \sim T^2$$
 при $\varkappa T/\hbar \gg \omega \gg 1/\tau$. (21)

Верхний предел указанной здесь области применимости этой формулы определяется неравенством $\hbar\omega \ll \varkappa T$ (\varkappa — постоянная Больцмана), допускающим классическое рассмотрение столкновений. Напомним, что предполагающееся здесь неравенство $\varkappa T/\hbar \gg 1/\tau$, т. е. $\hbar/\tau \ll \varkappa T$ (малость квантовой неопределенности энергии квазичастиц по сравнению с $\varkappa T$), заведомо должно иметь место, так как оно является условием применимости всей вообще развитой в [¹] теории ферми-жидкости.

Определение же коэффициента поглощения нулевого звука в области частот $\hbar\omega \gg \varkappa T$ требует квантового рассмотрения. Соответствующие вычисления могут быть упрощены, если производить их таким образом, чтобы выразить искомый «квантовый» коэффициент поглощения через «классический» из (21).

Поглощение звуковых квантов $\hbar\omega$ происходит при столкновениях квазичастиц. Если обозначить посредством ε_1 и ε_2 энергии квазичастиц до и после столкновения, то при заданной частоте ω они связаны законом сохранения энергии $\varepsilon_1 + \varepsilon_2 + \hbar\omega = \varepsilon_1^{'} + \varepsilon_2^{'}$. Наряду с такими столкновениями надо учесть также и обратные столкновения, сопровождающиеся испусканием звуковых квантов. Учитывая известные свойства вероятности столкновения ферми-частиц, мы найдем, что полная скорость убывания числа звуковых квантов в результате столкновений дается выражением вида:

$$\iiint w (\mathbf{p}_{1}, \mathbf{p}_{2}; \mathbf{p}_{1}', \mathbf{p}_{2}') \{n_{1}n_{2} (1 - n_{1}') (1 - n_{2}) - n_{1}'n_{2}' (1 - n_{1}) (1 - n_{2})\} \times \\ \times \delta (\mathbf{p}_{1}' + \mathbf{p}_{2}' - \mathbf{p}_{1}' - \mathbf{p}_{2} - \hbar \mathbf{k}) \delta (\varepsilon_{1}' + \varepsilon_{2}' - \varepsilon_{1} - \varepsilon_{2} - \hbar \omega) d\tau_{1} d\tau_{2} d\tau_{1}' d\tau_{2}'.$$
(22)

6-Функции в подынтегральном выражении обеспечивают выполнение законов сохранения импульса и энергии.

В интеграле (22) существенны значения энергии лишь в области размытости распределения Ферми. В этой области сильно меняются в подинтегральном выражении лишь те множители, которые содержат $n(\varepsilon)$. Кроме того, следует учесть, что угловые интегралы в (22) практически не меняются при переходе от «классической» области $\hbar\omega \ll \varkappa T$ к «квантовой» $\hbar\omega \gg \varkappa T$. Ввиду этого, нам будет достаточно вычислить интеграл

$$J = \iiint \{n_{1}n_{2}(1 - n'_{1})(1 - n'_{2}) - n'_{1}n'_{2}(1 - n_{1}) \times (1 - n_{2}) \delta(\epsilon'_{1} + \epsilon'_{2} - \epsilon_{1} - \epsilon_{2} - \hbar\omega) d\epsilon_{1}d\epsilon_{2}d\epsilon'_{1}d\epsilon'_{2},$$

взятый только по энергиям. Подставив сюда

$$n(\varepsilon) = [e^{(\varepsilon - \mu)/\kappa T} + 1]^{-1}$$

и введя обозначения

$$x = (\varepsilon - \mu) / \varkappa T$$
, $\xi = \hbar \omega / \varkappa T$,

получим (опуская множитель T^3)

$$J = \iiint_{-\infty}^{+\infty} \frac{(1 - e^{-\xi}) \, \delta \, (x_1^{'} + x_2^{'} - x_1 - x_2 - \xi) \, dx_1 dx_2 dx_1^{'} dx_2^{'}}{(e^{x_1} + 1) \, (e^{x_2} + 1) \, (1 + e^{-x_1^{'}}) \, (1 + e^{-x_2^{'}})}$$

Ввиду быстрой сходимости интеграла область интегрирования может, очевидно, быть распространена от $-\infty$ до $+\infty$.

Для проведения интегрирования переходим к переменным x_1 , x_2 , y_1 , y_2 . где y=x-x'. Интегрирование по x_1 и x_2 производится элементарно и дает:

$$J = (1 - e^{-\xi}) \iiint_{-\infty}^{+\infty} \frac{\delta(y_1 + y_2 + \xi) dx_1 dx_2 dy_1 dy_2}{(e^{x_1} + 1) (e^{x_2} + 1) (1 + e^{-x_1 + y_1}) (1 + e^{-x_2 + y_2})} =$$

$$= (1 - e^{-\xi}) \iint_{-\infty}^{+\infty} \frac{y_1 y_2 \delta(y_1 + y_2 + \xi) dy_1 dy_2}{(1 - e^{y_1}) (1 - e^{y_2})} =$$

$$= -(1 - e^{-\xi}) \int_{-\infty}^{+\infty} \frac{y(\xi + y) dy}{(e^y - 1) (e^{-y - \xi} - 1)} = \int_{-\infty}^{+\infty} y(\xi + y) \left\{ \frac{1}{e^y - 1} - \frac{1}{e^{y + \xi} - 1} \right\} dx.$$

Для вычисления получившейся разности двух расходящихся интегралов вводим предварительно конечный нижний предел — Λ и пишем:

$$J = \int_{-\Lambda}^{+\infty} \frac{y(\xi + y)}{e^{y} - 1} dy - \int_{-\Lambda + \xi}^{+\infty} \frac{y(y - \xi) dy}{e^{y} - 1} = 2\xi \int_{-\Lambda}^{\infty} \frac{y dy}{e^{y} - 1} - \int_{-\Lambda + \xi}^{-\Lambda} \frac{y(y - \xi) dy}{e^{y} - 1}.$$

Имея в виду перейти к пределу $\Lambda \to \infty$, во втором из стоящих здесь интегралов пренебрегаем e^y в знаменателе. Первый же переписываем следующим образом:

$$\int_{-\Lambda}^{\infty} \frac{y dy}{e^{y} - 1} = \int_{0}^{\infty} \frac{y dy}{e^{y} - 1} + \int_{-\Lambda}^{0} \frac{y dy}{e^{y} - 1} = \frac{\pi^{2}}{6} + \int_{-\Lambda}^{0} \left(\frac{y}{1 - e^{-y}} - y\right) dy =$$

$$= \frac{\pi^{2}}{6} + \int_{0}^{\Lambda} \frac{y dy}{e^{y} - 1} + \frac{\Lambda^{2}}{2}.$$

Произведя сокращения и переходя после этого к $\Lambda {
ightarrow} \infty$, получим окончательно

$$J = (2\xi \pi^2 / 3) (1 + \xi^2 / 4\pi^2).$$

Искомый коэффициент поглощения γ пропорционален J. Коэффициент пропорциональности между ними определяется тем, что при $\xi \ll 1$ должно быть $\gamma = \gamma_{\kappa n}$. Поэтому получаем окончательно:

$$\gamma = \gamma_{\kappa_{\pi}} [1 + (\hbar\omega/2\pi\varkappa T)^2] \text{ при } \hbar\omega \gg \varkappa T.$$
 (23)

Учитывая, что $\gamma_{\kappa\pi} \sim T^2$, найдем что в пределе больших частот:

$$\gamma \sim \omega^2$$
 при $\hbar \omega \gg \kappa T$, (24)

т. е. коэффициент поглощения снова становится пропорциональным квадрату частоты, но не зависит от температуры. Отметим, что переход от формулы для «малых» к формуле для «высоких» частот происходит при $\hbar\omega \sim 2\pi \times T$ (а не $\hbar\omega \sim xT$)⁴. Результат (24) относится, в частности, к нулевому звуку всех частот при абсолютном нуле температуры.

3. Спиновые волны в ферми-жидкости

Наряду с рассмотренными в разделе 1 волнами нулевого звука, не затрагивающими распределение спинов, в ферми-жидкости при абсолютном

⁴ Рассматривая частоты $\omega\gg \kappa T/\hbar$, мы в то же время предполагаем выполненным неравенство $\hbar\omega\ll \kappa T_0$ (T_0 — температура вырождения распределения Ферми). В противном случае в поглощении участвовали бы частицы из «глубины» распределения Ферми, и вся развиваемам теория стала бы неприменимой.

нуле могут распространяться также и волны других типов, которые можно назвать спиновыми⁵.

Будем обозначать в этом разделе посредством K функцию

$$K = f(\mathbf{p}, \mathbf{p}') 4\pi p^2 dp / (2\pi \hbar)^3 d\varepsilon, \qquad (25)$$

в которой не применяется операция Sp. При учете обменного взаимодействия между квазичастицами эта функция содержит член, пропорциональный произведению $\sigma\sigma'$, т. е. имеет вид [¹]:

$$K = \frac{1}{2}F(\chi) + \frac{1}{2}G(\chi)\,\sigma\sigma' \tag{26}$$

[F совпадает с использованной выше функцией (6)]. Вместо уравнения (11) теперь будем иметь:

$$(\eta - \cos \theta) \nu = \cos \theta \operatorname{Sp}_{\sigma'} \int F \nu' \, d\sigma' / 4\pi. \tag{27}$$

Наряду с рассмотренными ранее решениями ν (n), не зависящими от спина, это уравнение имеет также решение вида:

$$y = \mu (\mathbf{n}) \sigma. \tag{28}$$

Подставив (26) и (28) в (27), выполнив операцию Sp и сократив обе стороны уравнения на σ, получим:

$$(\eta - \cos \theta) \, \boldsymbol{\mu} = \cos \theta \int G \boldsymbol{\mu}' \, do' / 16\pi. \tag{29}$$

Мы видим, что для каждой из компонент вектора μ получается уравнение, отличающееся от (11) лишь заменой F на G/4. Поэтому все дальнейшие вычисления раздела 1 могут быть непосредственно применены и к спиновым волнам.

У реального жидкого He^3 из имеющихся экспериментальных данных по его магнитной восприимчивости можно определить лишь среднее значение \overline{G} , оказывающееся равным —1,9. Поскольку эта величина отрицательна, то (ввиду результатов раздела 2) вероятнее всего, что распространение спиновых волн в жидком He^3 невозможно. Такой вывод, однако, ни в какой степени не является категорическим.

В заключение выражаю благодарность А. А. Абрикосову, Е. М. Лифшицу и И. М. Халатникову за полезную дискуссию.

Институт физических проблем Академии наук СССР

Поступила в редакцию 15 сентября 1956 г.

Литература

[1] Л. Д. Ландау. ЖЭТФ, 30, 1058, 1956.— [2] И. И. Гольдман. ЖЭТФ, 17, 681, 1947.— [3] Ю. Л. Климонтович, В. П. Силин. ЖЭТФ, 23, 151, 1952.— [4] В. П. Силин. ЖЭТФ, 23, 641, 1952.— [5] В. П. Силин. ЖЭТФ, 27, 269, 1954.— [6] В. П. Силин. ЖЭТФ, 28, 749, 1955.— [7] В. Авганат, D. Osborne, В. Weinstock. Phys. Rev., 98, 551, 1955.— [8] G. K. Walters, W. M. Fairbank. Phys. Rev., 103, 263, 1956.— [9] Л. Д. Ландау, Е. М. Лифшиц. Механика сплошных сред, 2-е изд., М., 1954, § 77.— [10] И. Я. Померанчук. ЖЭТФ, 20, 919, 1950.

OSCILLATIONS OF A FERMI LIQUID

L. D. Landau

Various types of waves which can be propagated in a Fermi-liquid at absolute zero temperature and at non-zero temperatures are investigated. Absorption of the waves is also considered.

⁵ Уравнение для спиновых воли в слабо неидеальном ферми-газе рассматривалось Силиным[⁶].