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We have evaluated the energy spectrum and ground state energy of a non-ideal Fermi gas with 
repulsive interactions, using an expansion in powers of the ratio of the range of the potential to 
the mean distance apart of the particles (gas approximation). We have obtained the first two 
terms of the expansion. 

INTRODUCTION 

IT is well known that in many cases one can con
sider the excited states of a system of interacting 
Fermi particles as a gas of elementary excitations 
- quasiparticles. The energy of a quasiparticle is 
determined by its momentum in such a way that the 
energy of the excitation of the system E s is equal 
to E ( pt) - E ( p2), where Pt > Po > P2 with Po the 
momentum at the Fermi surface. Such a spectrum 
is called a spectrum of the "Fermi type." A de
scription of a system by means of the method of 
quasiparticles is exact only in the case of an ideal 
gas. If there are interactions between the particles, 
the excited states of the "Fermi type" do not rep
resent the exact stationary states of the systems. 
This leads to the damping of the quasiparticles. 

It was shown in Ref. 1 that it is convenient to 
apply the methods of quantum field theory to deter
mine the energy spectrum of a system. The energy 
E ( p) and attenuation y ( p) of the quasiparticles 
can be found as the poles of the analytical continu
ation of the single-particle Green function G ( p). 
In the present paper we shall apply the methods of 

quantum field theory to the problem of a non-ideal 
Fermi gas in which the interaction between the par
ticles is short range na3 « 1 ( n is the density of 
the particles in the system and a the range of the 
potential), but not necessarily weak. We assume 
that the radially symmetrical potential V ( r) is 
positive and that the interaction between the parti
cles is not retarded. We expand in powers of the 
parameter p0f0, where f0 is the real part of the 
scattering amplitude for small momenta. We shall 
find the energy spectrum of the system and the 
ground state energy up to quadratic terms in this 
parameter. Terms corresponding to higher powers 
than the cubic can not be expressed by means of 
two-particle parameters which makes it difficult 
to obtain them in a general form.* This fact was 
first remarked on in Ref. 2 in connection with the 
evaluation of the ground state energy. 

1. SINGLE PARTICLE GREEN FUNCTION. 
THE METHOD OF GRAPHS 

It is well known that the single particle Green 

*The author is obliged to E. M. Lifshitz for this comment. 
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function of a system is given by the equation 

iG (x- x') = <T { ~ (x) ~+ (x') S}) I s00' (1) 

where 1/! and 1/J+ are taken in the interaction rep-

(we choose our units in such a way that 11 = m = 1). 
It is convenient to change this definition slightly by 
adding a dependence on a time t2 to the dependence 
on the variable r 2 and by introducing an extra in
tegration over time, 

S= T {exp [- f ~ dx1dx2U (x1 - x2) 

(2') 

where 

U (xi- x2) = V (r1- r2) a (t1 - t2). (3) 

In (2') the integration over the variables x1 and 
x2 is taken over the whole of the infinite four-· 
dimensional space. 

If we want to expand the S-matrix of (1) in 
powers of the interaction U, we must know the 
average value of the T product of the lf! opera
tors. According to Wick's theorem this T prod
uct can be written in the form of a sum of normal 
products and different connections between opera
tors. To apply the methods of quantum field theory 
it is necessary to put the average values of the nor
mal products equal to zero. This condition will be 
fulfilled, if we take 1/J in the form 

~ (r) = U (r) + v+ (r); U (r) = y-'f, ~ apeiPr, 

v+ (r) = v-'l• ~ apeipr 

P<Po 

P>P, (4) 

and if we define the normal products as those prod
ucts in which all operators u and v are on the 
right, and all operators u + and v + on the left. 
In this representation the operators u and v play 
the role of annihilation operators and the operators 

+ d + . u an v the role of creation operators for par-
ticles and holes. The average of the N products 
is equal to zero and the connection of two operators 
is equal to the Green function of non-interacting 
particles, 

~ (x) ~+ (x') = iG0 (x- x') = <T {~ (x) ~+ (x')}). (5) 

In the momentum representation the Green function 
of non-interacting particles is of the form 

G-;;1 (p) = G-;/ (p, e)= e- e~ + io6(p), (6) 

resentation and where the averaging is performed 
over the ground state of the non -interacting parti
cles. The S-matrix of the system is in our case 
given by the equation 

where E0 = !p2 and p 

{ 1 I PI> Po 
B(p)= 1- 2np= -1 IPI<Po' 

(2) 

with ~ is the occupation number of the non-inter
acting particles in the ground state. We can use · 
the corresponding graphs to assign a definite ar
rangement of T products to an assembly of con
nections. The graphs consist of full drawn and 
dotted lines; each full drawn line corresponds to 
a particle propagation function iG0 ( x - x' ) , or 

in momentum representation iG0 ( p), and each 
dotted line to an interaction, iU ( x1 - x2 ) or in 
momentum representation iU ( q), and at each 
vertex the law of conservation of the four-dimen
sional momentum is obeyed, p1 - p2 + q = 0. Since 
the interaction does not enter into the normal prod
ucts, we can restrict ourselves in calculating them 
to the connections of operators which enter in the 
same H', that is, to simultaneous operators. To 
determine those connections we note that in the 
interaction H' the operators 1/J+ are to the left 
of the operators lf! so that G0 ( p, T) for T = 0 
must necessarily be taken to be G0 ( Pt> - 0) = inp. 

]-----( 
}----

FIG. 1 

For our further discussion it is very important 
that the interaction is not retarded [ Eq. ( 3)]. It is 
convenient to indicate this absence of retardation 
by drawing the dotted lines in the graphs horizon
tally. This representation makes it possible to 
judge from the graphs the number of particles and 
holes taking part in the process. The process cor
responding to the graph of Fig. 1, for instance, in
volves one particle and one hole since for each ar
rangement of vertices one of the lines of 1 or 2 is 
directed downwards on account of Eq. (3). 

2. ESTIMATE OF THE GRAPHS. 
GAS APPROXIMATION 

We introduce now the main part of the energy 
eigenvalue of the particle !: ( p), 
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G-1 (p) = G01 (p)- ~ (p) = e- e~- ~(p) . (7) 

In the first approximation of perturbation theory 
l: ( p) is determined by the two graphs of Fig. 2. 
Graph 2a corresponds to a non -exchange scattering 
by a particle of the Fermi sea (background particle ) 
and graph 2b to an exchange scattering. In the case 
in which we are interested where p0a « 1 both 
graphs are equal and are of the order n V ....., p~ • p0a • 
V0a2, where V is the Fourier component of the 
potential for small values of the momentum, and 
V0 is the value of the potential inside its range. 

FIG. 2 

We can consider now graphs which are more 
complicated in three different ways. 

1. We can increase the number of dotted lines 
which connect solid lines which are in the same 
direction (graphs a and b in Fig. 3). 

2. We can increase not only the dotted lines of 
the first kind, but also those which connect solld 
lines which are in opposite directions (graph c in 
Fig. 3 ). 

3. We can increase the number of closed loops 
which are connected by dotted lines to the basic 
graph [it is well known that unconnected closed 
loops are eliminated by the denominator in Eq. (1)]. 

f~~] ~ J~~~~ t~~~] 
a b c d 

FIG. 3 

Let us now estimate the value of these graphs. 
For graphs of the first kind each additional dotted 
line adds to l: a factor G~U ( q) and one integra
tion over the four-dimensional momentum q. As 
U ( q) only depends on q we get after integrating 
over the fourth component of q an integral of the 
form 

~ 1 V(q), (8) 

the convergence of which for large values of q is 
determined by the function V ( q). An estimate of 
this integral leads to Va-1 or Voa2, i.e., the 
parameter of the perturbation theory. The collec
tion of graphs of the first kind gives thus the per
turbation theory series. For graphs of the second 
kind, the additional part has the form pictured in 
Fig. 1. Since one of the two lines corresponds to 

the occurrence of a hole, the momentum of which 
does not exceed the momentum at the Fermi sur
face, p0, the integration over q in Eq. (8) will in 
that case be taken over a limited region of dimen
sions p0• We obtain as a result Po V or p0a • V0a2, 

i.e., graphs of the second kind contain apart from 
the perturbation theory parameter also an addi
tional "gaseousness" parameter p0a. The differ
ence between the magnitudes of graphs of the first 
and of the second kind can be given a simple physi
cal interpretation. Indeed, graphs of the first kind 
correspond to a further approximation of the per
turbation theory in terms of the interaction between 
two particles, while graphs of the second kind cor
respond to a further approximation in terms of an 
interaction between a particle and a hole. The in
teraction with a hole, however, is essentially an 
interaction with a background particle so that in 
t3e processes corresponding to the graphs 3a and 
3b one background particle is taking place, but in 
the process 3c two background particles. This re
sult can also be extended to graphs of the third 
kind (3d). Graphs 3c and 3d will be discarded. An 
exact estimate of these graphs which is not b~sed 
upon perturbation theory is given in Sec. 5. The 
result of this estimate shows that graphs of the 
kind 3c and 3d can necessarily only be considered 
in the third approximation in terms of the small 
parameter p0f. 

The graphs of the kind 3a and 3b which deter
mine the energy eigenvalues of the particles in the 
first and second gas approximation can be given in 
the form of block diagrams as given in Fig. 4. The 

OED 
a b 

FIG. 4 

If 1 t1 = }~~~-( + }::::(+ 

"" FIG. 5 

square denotes as usual the Feynman diagram as
sembly describing the interaction of two particles 
in the "ladder" approximation (Fig. 5). This quan
tity we shall denote by 

and we shall call it the effective interaction poten-
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tial. Graphs 4a and 4b have the same structure as 
the graphs 2a and 2b corresponding to the first ap
proximation of perturbation theory with one differ
ence, however, namely that the dotted lines corre
sponding to the Born approximation have been taken 
into account in our effective potential. The values 
of the particle energy eigenvalues determined by 
these graphs is of the form 

by the absence of initial outside lines with momenta 
Pa and P4· We can thus obtain the equation for Q 
from the corresponding equation for the function K 
by dividing by the product iG0 ( p3 ) iG0 ( P4). We 
have thus finally for Q' = 6 ( Pt + P2 - Pa - P4) Q, 

Q' (PIP2• PaP4) = o (Pr - Pa) o (P2 - P4) 

+ iG0 (PI) Go (pz) ~ dqU (q) Q' (PI- q, P2 + q, PaP4). 
(11) 

l:: (p) =- i ~ dp'G 0 (p') I' (pp', pp') 

+ i ~ dp'G0 (p') f (pp', p'p). 

If we go over to the relative momenta p and p' 
(9) and the moment of the center of mass g, 

Here and henceforth we shall use the following 
notation 

dp = dpds I 2>t, dp = dpxdpydpz I (2>t)3 ; 

o (p) = 2no (p) o (s), o (p) = (27t)3 o (Px) o (py) o (Pz). 

Equation (9) does not take the presence of par
ticle spin into account. To do that we note first of 
all that 1;he Green function G0 ( p) contains the 
delta function 6s s' (where s and s' are the pro-

' jections of the spin at the points x and x' ) which 
we have omitted, and this means that the particles 
propagate without change in spin. This result is 
also still valid in the case where the particles in
teract during their propagation with other particles, 
since the potential does not depend on the spin vari
able. The presence of spin leads thus to the ap
pearance of a factor 6 s1 s26 s3s4 in r ( PtP2• PaP4). 
The result of summing over the spin variable s' 
in Eq. (9) is a factor 2s + 1 for the first term and 
a factor 1 for the second one. This result has a 
simple physical meaning. The graph 4b corresponds 
to an exchange scattering in which one must take 
into account only those background particles which 
have a spin the projection of which coincides with 
the projection of the spin of the impinging particle. 
In contradistinction to this, graph 4a corresponds 
a non-exchange scattering process in which all par
ticles in the Fermi sea must be taken into account. 
If we restrict ourselves to the case of particles of 
spin A- we get finally 

l:: (p) =- 2i ~ dp'G 0 (p') f (pp', pp') 

+ i ~dp'G0 (p') f (pp', p'p). 
(9') 

3. THE EFFECTIVE INTERACTION POTENTIAL 

To determine the effective interaction potential 
we introduce a function Q which is connected with 
r by the following equation 

f (PIPz, PaP4) = ~ dqU (q) Q (PI- q, P2 + q, PaP4). (10) 

The function Q differs from the two-particle 
Green function K in the "ladder" approximation 

P = (PI- P2) I 2, p' = (Pa- P4) I 2, 

g = PI + P2 = Pa + P4• 

we get the equation 

Q(p,p',g)=Q(f+p. -f-p; f+p',f-p') 

(12) 

= 0 (p - p') (13) 

.+ iG0 ( f + p) G0 ( f- p) ~ dqU (q) Q (p- q, p', g). 

The potential U ( q) in Eq. (10) does not depend 
on the fourth component of q so that it is suffi
cient to know the function Q integrated over the 
fourth component of the relative momentum p, €, 

in order to determine the effective potential. If 
we denote that function by x ( p, p', g) and inte
grate Eq. (13) over € we find 

X (p, p', g) 

- E _ p•N~~~N (p)·~ dqV (q)x (p- q, p', g)= o (p- p'). 
(14) 

In Eq. (14) we have E = g0 - !g2 (where g0 is the 
fourth component of g) and the factor N ( p) takes 
the Pauli exclusion principle into account inasfar as 
it applies to the initial background, 

N (p) = 1 -- ngiHP- ng12-p· (15) 

For further calculations it is convenient to con
sider the effective potential as a function of the 
relative and total momenta which are defined by 
Eqs. (12). If we write 

r( , )-r(g+ g . g+, g ') p,p ,g == 2 p, 2-p, 2 p ·2-p ' 

we obtain from (10) the following connection be
tween the effective potential and the function x, 

f (p, p', g)=~ dqV (q) X (P- q, p', g). (16) 

Equation (14) can not be solved in its general 
form; our problem is to express the solution of 
this equation in terms of the scattering amplitudes' 
of the particles. We consider first of all the prob
lem of the scattering in vacuo. In that case N ( p) 
= 1 and Eq. (14) is of the form 
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Xo (p, p', g)- E- :2 + i8 ~ dqV (q)xo (p, p', g)= a (p- p'). 

(14') 

Equation (14'), multiplied by E - p2 + io, is the 
same as the inhomogeneous Schrodinger equation 
for the relative motion of two particles. It is there
fore easy to express its solution in terms of 1/Jk ( p), 
the wave function of the relative motion of particles 
which are scattered ( k is the relative momentum 
at infinity), 

'2 . \' <Jik (p) <).: (p') 
Xo(p,p',g)=(E-p +ta)~dk E-k2+i8 • (17) 

Let us introduce the scattering amplitude f ( p, k) 
of the particles, by the equation 

f (p, k) = -~ dqV (q) ~k (p- q). (18) 

This amplitude differs from the usual one by a 
factor - 47T, that is, the usual amplitude is equal 
to -f(p,k)/47T. The wave function lflk(p) is con
nected with the amplitude by the relation 

f (p, k) (19) 
~k (p) =a (P- k) + k2-p2+ia · 

Using this relation for 1/Jk(p') and substituting it 
into (17) we get 

Xo (p, p', g)= h' (p) 

1 (17') 
+ ~ dkh (p) r (p', k) { E _ ;2 + ia + k2 _ p'2 _ ia} , 

and we get for the effective interaction potential of 
particles in vacuo* which is defined by an equation 
which is analogous to equation (16) 

ro (p, p', g)= f (p, p') 

1 (20) 
+ ~dkf(p,_k)f*(p',k>{ E-;z+il> + k2-p'"-i1>}. 

If we use Eq. (II) of the Appendix, we can express 
r 0 also in a slightly different, equivalent form, 

ro (p, p', g)= r (p', p) 

+~dkf(p,k)f(p',k){£_;2+i1> + k2-!2+i8}. 

(20') 

The effective interaction potential of particles in 
vacuo is thus equal in first approximation to the 
scattering amplitude f ( p, p' ) or to f ( p, p' ) . 

Going on to the solution of (14), we write it in 
the form 

*The problems connected with ro were solved jointly with 
S. T. Beliaev, who was working simultaneously on the analo
gous problem of a Bose gas. 

X (p, p', g)- E-;2+ i8 ~dqV (q)x (p- q, p', q) 
(21) 

= i3(p-p') -t- {E-p~t~ilN(p)- E-p~+i8} f (p, p', g), 

where Xo is the Green function of the left hand 
side of this equation. Equation (21) admits thus of 
the following formal solution, 

X (p, p', g)= Xo (p, p', g) 

+~ dkxo (p, k, g) {E-k~~klaN(k)- E- ~2+ia}r(k, p', g)· 

If we apply (16) we can go over to an integral equa
tion for the effective potential r, 

r (p, p', g)== ro (p, p', g)+ 

+ \ dkro (p, k, g) h~- k~~k)8N(k)- E- ; 2 + i8} r (k, p',g). 
.) l (22) 

Equation (22) can be solved by iteration methods 
since the term involving the integral is small. In
deed, the difference within the braces is different 
from zero only if N >" 1, i.e., if the variation of 
k is of the order of p0• To a first approximation 
we can substitute the scattering amplitude f for 
r 0• We then get, for E "' pij, the following order
of-magnitude estimate for the term involving the 
integral in (22): 

p~f·v;2r = Pot-r~r. 

If we now take second-order terms « r into ac
count we can substitute in the integral in .(22) f ( p, k) 
for r 0 (p,k,g) and r 0 (k,p',g) ~ f(p',k) for 
r ( k, p', g). We get the following result, 

f(p, p', g)= ro (p, p', g) 

+ ~ dkf (p, k) f* (p', k) {£ _ k~ ~~8N(k)- E k~+i8} 
. - (2~ 

= f (p, p') + ~dkf (p, k) f*(p',k) {E-k~~k:I>N(k) + k2-p:z+i8}' 

As can be seen from Eq. (23), the effective in
teraction potential r, like ro. is equal in first 
approximation to the scattering amplitude f ( p, p'). 
In the second part, the integral converges for val
ues of k2 of the order of the larger of the quanti
ties E or p' 2• For the energy eigenvalues of the 
particles 1: ( p, E) in which we are interested, and 
for values of E near !p2, both quantities E and 
p' 2 are of the order of magnitude pij. The second 
term in (23) is thus p0f times smaller than the 
first one. 

If the momenta p and p' have the same abso
lute magnitude we can write the effective potential 
in a slightly different form. Using the equation 

k2 '12 + ·a= P -kz 1 2 - id3 (k2 -- p'2) -p l -p 
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and Eq. (IV) of the Appendix, we get 

r (p, p', g) = Ref (p, p') + ~ dkf (p, k)f (p', k) P k2~ p'2 

+ ~ dkf (p, k) f (p', k) E _ k~ !~aN(k), (23') 

where the symbol P indicates the principal part 
of the integral. 

4. THE ENERGY SPECTRUM OF THE SYSTEM. 
GROUND STATE ENERGY 

The main part of the energy eigenvalues of the 
particles can be written in the form 

E (p)=-2i ~ ~~ dp'G0 (p') r (q, q, g) 

+i~ ~~ dp'G0 (p')f(q,-q,g), 

where q = (p -p' )/2, g = p + p'. The first two 
terms for r in (23') do not depend on the fourth 
component of the momentum so that integrating 
them over €' reduces to calculating 

This integral is equal to G0 ( p' , r ) with r = 0, 
i.e., to G0 ( p', - 0) = inp', according to the con
siderations of Sec. 1. The integral over €' of the 
last term of (23') is elementary. We get the fol
lowing results 

E (p) = E1 (p) + E2 (p), (24) 

E1 (p) = 2 ~ dp'np' Ref (q, q)- ~ dp'np•Re f (q,- q), (25) 

Edp}= ~dp'dk {21 f (q, k) 12 - f(q, k) f* (- q, k)} 

-- N (k) 

X { np'P k2-=- q2 

N (k) -6 (p') 
2 

(26) 
1 \ 

For wavelengths that are considerably longer 
than the range a of the potential, the real part of 
the amplitude will not depend on the momenta. If 
we therefore restrict our considerations to excita
tions with momenta p which satisfy the condition 

pf~ 1, (27) 

we can calculate the real part of the constant am
plitude. Assuming that 

Ref= 4rrf0 , (28) 

where f0 is the real part of the usual scattering 
amplitude with the opposite sign, and taking fo 
outside the integral sign in (25), we get for the first 
approximation to the energy eigenvalue 

(29) 

To the first approximation in the gas parameter 
1: is thus a real constant quantity. The Green func
tion has in the first approximation the following 
form, 

G1 (p, c:) = lf[e- e~- 2rrnf 0 + io6 (p)]. (30) 

If we introduce instead of € a new variable E', 

e' = E ;- 2rrnf0 , (31) 

we can verify that Gt(p, E') is the same as the 
Green function of non-interacting particles. We 
can thus make our calculation more precise by 
assuming that everywhere instead of G0 ( p, €) 

the Green function of the first approximation 
G1 ( p, €) was used. If we make our considera
tions more precise in this way we must in all 
equations replace € by E' so that the Green 
function of the second approximation has the form 

G;;-1 (p, s) = e- E~- 2rrnf 0 - E2 (p, c:') = c:'- e~- E2 (p, e'), 

(32) 

where 1:2 ( p, E' ) is obtained from (26) by replac
ing € by € 1 • 

We shall now calculate the energy eigenvalues 
of the second approximation, 1:2• In the integral 
over the variable k in (26), the only appreciable 
contributions to the integral come from values of 
k in a region of the order of magnitude q. For 
excitations wJth momenta that satisfy condition (27), 
both arguments of the amplitude are small. The 
imaginary part of the amplitude can thus be neg
lected and the real part can be considered to be 
constant and can be taken outside the integral sign. 
Using the notation of Eq. (28), we get 

Rel: 2 = I6rr2n\dp'dk{np,p k 2 -=_q2 

-N(k)N(k)-6(p')p 1 }• 
2 k2 - q2 - ~~ + €~ 

Im E2 =- 4rr3f~ ~ dp'dkN (k) [N (k) 

- e (p')j2o (k2 - q2 - e' + e~). 

(26') 

(26") 

The energy spectrum of the system is deter
mined by the poles of the analytical continuation of 
the Green function (1), or, in our approximation, by 
the equation 

ep- E~- 2-.mf0 -1:2 (p, e~) = 0. (33) 

After some simple calculations we get for the en
ergy Ep and the damping y of the quasiparticles 
the following expressions 
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where x = p/p0• The expansion (34) in a series in 
the m,omenta has for momenta near the Fermi sur
face the form 

ep - 1 2 2 f + 2 2f2 (11 2I 2) P~ - 2 X + 37t Po o 157t• Po o - n 

- 1:1t2 P~nc1 In2-1)(~-J) + ... 
(34') 

From Eq. (34') we can obtain the effective mass, 
m*, of particles on the Fermi surface, 

: = I + i;1t2 (7In 2 - 1) p~f~ (36) 

and the chemical potential of the system which, as 
is well known1 is equal to the energy of the quasi
particles for p = Po. 

fL = 4--p~{ 1 + 3~ Pofo + 1 ~. (11-2 ln2) p~f~}. (37) 

These expressions are the same as the ones ob
tained by Abrikosov and Khaiatnikov. 3 Using the 
formula J1. = ( aE0/aN >v, we find for the ground 
state energy of the system, 4 

Eo _ 3 2} 1 10 f 4 ( 11 I 2 2J2} 
N- -1iT Po\ + lhC Po o + 211t• -2 n ) Po o • (38) 

The damping of the quasiparticles y for mo
menta p which are nearly equal to Po is of the 
form 

1 2f2 ( - )2 < y =-~Po o Po-P • P Po• (35') 

1 2f2 ( )2 > 1 = ~Po o P - Po , P Po• 

i.e., proportional to the square of the deviation 
from the Fermi surface .• 

Let us now consider excitations with large 
momenta, 

Po<!?;' P <:;;; 1 /f o· 

The quadratic correction term of the quasiparticle 
energy Ep is small for such momenta .• The im
aginary part has the form 

1 3f2 1 
'(=3~Po oP= Tnpcr. 

If we use the connection between the imaginary part 
of the scattering amplitude and the total cross sec-· 

tion a we find 

Ep - i"[ ~ s~- 2rmf (p/2, p/2), (39) 

where f is the usual scattering amplitude. 
The evaluation of ~2 as a function of the vari

abies p and e: leads to a very cumbersome ex
pression. The expansion of its real part for the 
case when I x - 1 I « 1 and I y I « 1, where 

y = (s'- e~)jp~. 

is of the form 

Re I:2.(p, e)=-:. p~f~{~ (11- 2 In 2) 

- ~ (7 In 2- 1) (x--1)-4 In2·y}. 
(40) 

From Eq. (40) we can get the renormalization con
stant of the Green function Z which is connected, 
as is well known, 5 with the discontinuity of the mo..:. 
mentum distribution function of the particles, 

1 
Z = n (p0 - 0)- n (p0 + 0) = 1 - 2pU~1c'i 4ln2 (41) 

As far as the imaginary part of ~2 as a func
tion of the variables p and e: is concerned, there 
are a number of regions in which Im ~ has a dif
ferent analytical form. We shall show that this 
function tends to zero at the value E' = p~, inde
pendent of the value of the momentum. We write 
Eq. (26") in the foUowing form 

Im r, (p, e) = - 47t3n ~ np' dp1dp2 { np'( 1 - np.) ( 1 - np,) 

- ( 1 - np') np,np,} 

' ( 1 2 1 2 1 12 1\ > ( I ) X o - 2- P1 + -2- P•- -2- P - s ) u P1 + P2 - P - P . 

The first term within the braces determines the 
attenuation of the quasiparticles, and the second 
one the attenuation of the holes. For e:' = !P~ each 
of those terms tends to zero since from the first 
one it follows that p' 2 < p~, !P~ + !P~ > p~, and 
from the second one that p' 2 > p~, !P~ + !P~ < p~, 
both in violation of the equation pj + p~ = p' 2 + p~. 
According to the general theory of Green functions 
of many-body systems, the value for which the im
aginary part of the energy eigenvalue tends to zero 
determines the chemical potential of the system J1. 
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(Ref. 1). The equation 

Im E (p, p2j2) = 0 

shows that the expression which we have found for 
Im 1: makes it possible to determine the chemical 
potential only to a first approximation. We can 
make the result more accurate by including in E' 
besides 27!'Ilfo also the second-order energy cor
rection on the Fermi surface. This method of cal
culation is used by Beliaev. 6 

We shall now discuss the connection between 
the results obtained by us and the general theory 
of a Fermi liquid developed by Landau. 7 

Owing to the monotonic dependence of the quasi
particle energy Ep on the momentum, the quasi
particles fill the Fermi sea up to a limiting mo
mentum p0• The occupation numbers of the quasi
particles are thus the same as the occupation num
bers np of the non-interacting particles. This 
equality is also maintained for states near the 
ground state. It is easily seen that expressions 
(25), (26), and (26') for the extra energy of the par
ticles are correct for any distribution of non-in
teracting particles. To see this it is sufficient to 
define the operators u and v + in Eq. (4) by 

U = v-'J, 2}(1- np)a.,eipr, v+ = v-'J, ~npapeiPr, (4') 
p p 

where np is the occupation number of the non
interacting particles. In the particular case of the 
ground state, Eq. (4') is the same as Eq. (4). The 
sum of expressions (25) and (26') at E' = E~ gives 
the energy of the quasiparticles as a functional of 
the distribution function np of the quasiparticles. 
The variational derivative OEp/Onp' determines 
the function fL (p, p') which was introduced by 
Landau ( after a summation over the spins s and 
s' ), 

f L(p, p') = 41Cf o + 32TC2f~ ~ dknk { p k2 + pp' _ik (p + p') 

1 1 } 
+P (p'-k)(p'-p) -P (p-k)(p'-p) . (42) 

Using Eq. (11) of Ref. 7 we obtain an expression 
for the effective mass of the particles at the Fermi 
.surface which is the same as expression (36). 

5. ESTIMATE OF THE GRAPHS OMITTED. 
HIGHER APPROXIMATIONS 

When we estimated in Sec. 2 the importance of 
the omitted graphs, we considered an additional in
teraction with the background particles, corre
sponding to a single action of the potential V ( q) 
(one additional dotted line). In the case where per
turbation theory can not be used this estimate is 

incorrect. The Born approximation is the first 
term, which is large, of a series, the sum of which 
( the scattering amplitude ) is small. To obtain a 
correct estimate it is necessary to sum the graphs 
corresponding to all orders of interaction of real 
gas particles, that is, all ladders of dotted lines 
connecting two full drawn lines going in the same 
direction. This sum is equal to the effective inter
action potential r. To construct the graphs it is 
thus convenient to use the effective potential r 
( square ) , and not the potential U (dotted line ) . 

Figure 6 illustrates a construction consisting 
of graphs omitted by us. To estimate the value of 

FIG. 6 

1:3 defined by those graphs it is sufficient to con-
• sider r in the first gas approximation, r :::::1 f. 
We get then 

E3 = if3 ~ dpldp2dp4Go(Pl)Go (p2) Go (p + P1- P2l 

X G0 (p4) Go (p + P4- P2) (43) 

It is important for us to show that the integral 
.in (43) converges since in that case its value can 
only depend on the momentum Po (we assume that 
the momentum of the particles is in the neighbor
hood of Po ) and from dimensional considerations 
it follows that 1:3 must be of the order p~f3 • After 
integrating over the fourth momentum component, 
there are only two energy denominators left in (43). 
If we then integrate over the momentum P2 we get 
a final quantity which is of the ord0r of a recipro
cal momentum. It is essential that the two re
maining integrals over Pi and p4 be taken over a 
domain that is bounded by the Fermi surface. In
deed, in our approximation r does not depend on 
the fourth momentum component, that is, the inter
action takes place instantaneously. The lines cor
responding to the momenta Pt and Pa = P +Pi - P2 
thus form a closed loop and one of these lines must 
correspond to the propagation of a hole ( compare 
the graph of Fig. 1 ) . Since the momentum of a hole 
is less than the Fermi momentum p0, one or other 
of the two conditions, Pi < Po. or I P + Pi - P2 I 
< p0, must be fulfilled. In each of these cases Pi 
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varies only in a bounded region. The same argu
ment applied to the lines with the momenta p4 and 
P5 = P + P4 - P2 shows that the domain of integra
tion of p4 is bounded. We have thus proved the 
convergence of the integral, and ~3 is of the order 
of magnitude 

(44) 

In conclusion the author wants to express his 
sincere thanks to A. B. Migdal and S. T. Beliaev 
for fruitful discussions and to A. F. Goriunov for 
help with the calculations. 

APPENDIX 

We shall derive certain relations to be satisfied 
by the scattering amplitude f. If we multiply Eq. 
(18) of the main text by 1/ik ( p') and integrate over 
k we find if we take into account that the 1/J form 
a complete set of functions, that 

v (p- p') = ~ dkf (p, k) ~= (p'). 

or, if we substitute (19) for 1/Jk ( p'), 

V (p- p') = f (p, p') + ~ dk I~;'}:__):: ~·i~) . (I) 

If we use the condition that the potential be Hermi
tian we can obtain from (I) the following formula, 

t (p, p')- r (p', p) 

= ~ dkf (p, k) f* (p', k) { k• _ :. + ia - k• _ P~" _ u;}- (II) 

In the case where the two vectors p and p' have 
the same absolute magnitude, the principal values 

of the integral cancel each other and (II) becomes 

f (p, p')- r (p'' p) = - 2rri ~ dkf (p, k) r (p'' k) a (p 2 - k2). 

(III) 

It' we consider scattering in a central field of force, 
f ( p, p') can depend only on p2 and ( p. p'), if 
p = p', so that f ( p, p') = f ( p', p) and we get from 
(III) 

Im f (p, p') = - 1 ~"" p ~ dnf (p, pn) f" (p', pn) (IV) 

where I n I = 1. Equation (IV) contains as a special 
case the well known relation between the imaginary 
part of the scattering amplitude at sero angle and 
the total cross section. 
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