(C) 2025

ТРИПЛЕТНЫЕ ОТРИЦАТЕЛЬНЫЕ ИОНЫ ВОДОРОДА В ЖИДКОМ ГЕЛИИ

А. М. Дюгаев^а, П. Д. Григорьев^{а,b,c*}, В. Д. Кочев^{b,d}, Е. В. Лебедева^е

^а Институт теоретической физики им. Л. Д. Ландау Российской академии наук 142432, Черноголовка, Московская обл., Россия

^b Национальный исследовательский технологический университет «МИСИС» 119049, Москва, Россия

^с Национальный исследовательский университет «Высшая школа экономики» 101000, Москва, Россия

^d Национальный исследовательский центр «Курчатовский институт» 123182, Москва, Россия

^е Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская обл., Россия

> Поступила в редакцию 18 ноября 2024 г., после переработки 5 мая 2025 г. Принята к публикации 9 мая 2025 г.

В природе существуют только синглетные отрицательные ионы водорода H_s^- с полным электронным спином S = 0. Мы предсказываем, что в жидком гелии можно наблюдать также и триплетные ионы H_t^- со спином S = 1. Эффект связан с локализацией электрона в гелии в пузырьке радиуса около 2 нм. Атом водорода H имеет положительный потенциал $\mu_{\rm H} \approx 34$ K в жидком гелии, а его энергия в электронном пузырьке меньше: $\varepsilon_{\rm H} \approx 9$ K. Поэтому поверхность электронного пузырька адсорбирует атом H даже в том случае, когда триплетная длина рассеяния электрона на атоме водорода положительны: $a_t \simeq 0.94$ Å, что отвечает отталкиванию электрона от атома. Волновая функция электрона сосредоточена в основном в центре пузырька, а атом H локализован на внутренней стороне его поверхности в слое шириной примерно 5 Å. Кроме колебательных атом водорода в электронном пузырьке имеет вращательные уровни с характерной энергией $E_{\rm Hl} \approx 0.07$ K. Триплетные ионы H_t^- можно наблюдать в каплях жидкого гелия после их допирования поляризованными электронами и атомами H. Рассмотрены также триплетные отрицательные ионы типа Na_t^-, для которых $\mu_{\rm Na} > 0$, а $a_t < 0$. В этом случае реализуется электронный пузырек с атомом Na в его центре.

DOI: 10.31857/S0044451025080073

1. ВВЕДЕНИЕ

Впервые отрицательные ионы водорода H^- в конденсированных средах наблюдались в молекулярном жидком водороде H_2 [1]. Было установлено, что в H_2 есть два типа отрицательных ионов, имеющих разную подвижность. Медленные ионы интерпретировались как обычные для инертных жидкостей (He, H₂, Ne) электронные пузырьки [2–5], а быстрые ионы рассматривались в модели твердых кластеров [6,7]. Косвенное наблюдение синглетных ионов H_s^- с электронным спином S = 0 в магнитном поле выполнено в работах [8–10]. На поверхности жидкого гелия создавалась смесь электронов и атомов H и наблюдалась реакция H+H+ $e \rightarrow$ H⁻+H по уменьшению со временем плотности поверхностных электронов. Ионы H⁻ уходили с поверхности в объем жидкости, так как энергия иона H⁻ в жидкости отрицательна: $\mu_{\rm H} < 0$.

Энергии μ_a атомов водорода H, дейтерия D и трития T положительны в объеме гелия и равны 34 K, 14.4 K и 6.2 K соответственно [11], что позволяет наблюдать поверхностные состояния этих атомов над жидким гелием и изучать явление сверхте-

ÉE-mail: grigorev@itp.ac.ru

кучести поляризованного водорода Н_↓ в магнитном поле [12, 13].

В вакууме существует только синглетный отрицательный ион H_s^- с электронным спином S = 0и энергией ионизации $E_0 = 0.754$ эВ [14]. В триплетном состоянии, когда S = 1, длина рассеяния a_t электрона на атоме Н положительная: $a_t = 0.935$ Å [15], что отвечает отталкиванию электрона от атома. Это соответствует общей физической картине, согласно которой между электронами в одинаковых спиновых состояниях существует обменное отталкивание [16], которое может быть сильнее поляризационного притяжения электрона и атома. Ниже мы покажем, что в жидком гелии существует триплетный отрицательный ион Н_t⁻ пузырькового происхождения. Этот эффект связан с локализацией электрона в жидком гелии, которая возникает уже в простейшей модели Феррела [17].

2. МОДЕЛЬ ФЕРРЕЛА

Энергия E_e электронного пузырька как функция его радиуса R дается выражением

$$E_e(R) = \frac{\pi^2 \hbar^2}{2m_e R^2} + 4\pi\sigma R^2,$$
 (1)

где m_e — масса электрона, а $\sigma \approx 0.27 \text{ K/Å}^2$ — поверхностное натяжение жидкого гелия. Минимизируя энергию $E_e(R)$, находим из уравнения (1) равновесные значения R_0 и $E_e(R_0) = E_{0e}$ [17,18]:

$$R_{0} = \left(\frac{\pi\hbar^{2}}{8m_{e}\sigma}\right)^{1/4} = 18.9 \text{ Å},$$

$$E_{0e} = \frac{\pi^{2}\hbar^{2}}{m_{e}R_{0}^{2}} = 2450 \text{ K}.$$
(2)

Если поместить атом H в точку r внутри электронного пузырька, то можно найти потенциал взаимодействия V_{ea} электрона с атомом в приближении Ферми [18, 19]:

$$V_{ea}(r) = \frac{2\pi\hbar^2 a_t}{m_e} \Psi_e^2(r),$$
 (3)

где a_t — триплетная длина рассеяния электрона на атоме H, а $\Psi_e(r)$ — волновая функция электрона в пузырьке радиуса R_0 [18]:

$$\Psi_e^2(r) = \frac{1}{2\pi R_0} \frac{\sin^2(\pi r/R_0)}{r^2}.$$
 (4)

В уравнении (4) мы пренебрегаем обратным действием атома Н на электрон в пузырьке. Это оправдано, поскольку энергия электрона в пузырьке в уравнении (2) значительно больше характерной энергии взаимодействия (3) между электроном в пузырьке и атомом Н по параметру $R_0/a_t \approx 20 \gg 1$. Взаимодействие атома Н с гелием имеет вид [18,20]

$$V_{a\mathrm{He}}(r) = -\frac{4\pi}{3} n_{\mathrm{He}} \frac{C_6 e^2 r_B^3}{R_0^3} \frac{1}{\left(1 - r^2/R_0^2\right)^3},\qquad(5)$$

где $C_6 = 2.83$ для Н [21], $n_{\text{He}} \approx 0.0218 \text{ Å}^{-3}$ — плотность жидкого гелия, r_B — боровский радиус, e заряд электрона. Полный потенциал $V_+(r)$ взаимодействия атома водорода с электроном и гелием дается суммой двух слагаемых, выписанных в уравнениях (3) и (5). Его можно представить в приведенном виде после введения безразмерных координаты $x = r/R_0$ и потенциала $V_*(x)$:

$$V_{+}(r) = V_{ea}(r) + V_{aHe}(r),$$

$$V_{+}(r) = V_{0}V_{*}(x), V_{0} = \frac{\pi^{2}\hbar^{2}a_{t}}{m_{e}R_{0}^{3}},$$

$$V_{*}(x) = \left(\frac{\sin(\pi x)}{\pi x}\right)^{2} - \frac{\nu}{(1-x^{2})^{3}}, x < 1,$$
(6)

где ν — некий параметр, определенный в уравнении (8) работы [18]. Выражения типа (6) получены ранее для атомов Ar, Kr, Xe [18], когда длина рассеяния электрона имеет другой знак. Для атома водорода численные значения параметров $a_t = 0.935$ Å в уравнении (3) и $V_0 = 121$ K, $\nu = 2.34 \cdot 10^{-3}$ в уравнении (6). При x > 1 (в объеме гелия) для атома H имеем $\mu_{\rm H} = 34$ K, $V_*(x) = 0.28$.

3. КОЛЕБАТЕЛЬНЫЕ И ВРАЩАТЕЛЬНЫЕ УРОВНИ

Потенциал $V_*(x)$ максимален в центре электронного пузырька при $x \equiv r/R_0 = 0$ и минимален на его границе при x = 1. Поэтому введем новую переменную $y \equiv 1 - x = 1 - r/R_0$ и представим $V_*(x)$ из уравнения (6) в упрощенном виде:

$$V_*(y) = y^2 - \frac{\nu}{8y^3}, \ 0 < y \ll 1.$$
 (7)

Существенное упрощение уравнения (7) связано с малостью параметра ν , что отвечает слабости притяжения атома Н к границе жидкого гелия [12]. При $\nu \to 0$ и $\mu_a \to \infty$ получаем

$$V_*(y) = y^2, \quad 0 < y \ll 1,$$

 $V_*(y) = \infty, \quad y < 0.$
(8)

Волновая функция $\Psi_a(r)$ атома H теперь может быть представлена в виде

Параметр ε_0 содержит массу атома $M_{\rm H} = 1836 m_e$:

$$\varepsilon_0 = \frac{\hbar^2}{2M_{\rm H}R_0^2} = 0.068 \,{\rm K}.$$
 (10)

При y < 0 имеем u(y) = 0, поэтому нужно найти решение уравнения (9) с граничным условием u(0) = 0.

Решение уравнения (9) осцилляторного типа приведено в учебнике [16]. Спектр $E_{\mathrm{H}n}$ атома водорода имеет вид

$$E_{\rm Hn} = (\varepsilon_0 V_0)^{1/2} (2n+1), \ n = 1, 3, 5, \dots$$
 (11)

Энергия первого колебательного уровня $E_{\rm H1} = 3(\varepsilon_0 V_0)^{1/2} = 8.6$ К, второго $E_{\rm H2} = 7(\varepsilon_0 V_0)^{1/2} = 20.1$ К. Эти значения меньше $\mu_{\rm H} = 34$ К, что оправдывает приближение непроницаемой поверхности электронного пузырька для атома Н хотя бы для двух колебательных уровней. Энергиям $E_{\rm H1}, E_{\rm H2}$ отвечают функции u_1, u_2 [16], удовлетворяющие уравнению (9):

$$\begin{aligned} & u_1 \propto \xi e^{-\xi^2/2}, \\ & u_2 \propto \xi (\xi^2 - 3/2) e^{-\xi^2/2}, \end{aligned}$$
 (12)

где $\xi \equiv y/y_0, y_0 = (\varepsilon_0/V_0)^{1/4} = 0.154.$

Максимум функции $u_1^2(\xi)$ достигается при $\xi = 1$ в точке r_M , что отвечает $R_0 - r_M = R_0 y_0 \approx 2.9$ Å. Точка поворота r_n , для которой $V_0 y_n^2 = E_{\rm H1}$ близка к поверхности пузырька: $R_0 - r_n \approx 5$ Å.

Вращательные уровни атома Н можно найти, добавив к осцилляторному потенциалу центробежную энергию [16]

$$V_l = \frac{l(l+1)\hbar^2}{2M_{\rm H}r^2}, \quad r = R_0(1-y).$$
 (13)

Характерные значения y в уравнении (13) малы, как и y_0 из уравнения (12), поэтому вращательные $E_{\rm H1}$ и колебательные $E_{\rm Hn}$ уровни энергии слабо связаны и

$$E_{\mathrm{H}l} \approx l(l+1)\varepsilon_0, \quad \varepsilon_0 = \frac{\hbar^2}{2M_{\mathrm{H}}R_0^2}.$$
 (14)

Малую связь между E_{HI} и $E_{\text{H}n}$ можно учесть как поправку, добавив в (14) множитель $1 + 2\bar{y}_n$, где \bar{y}_n среднее значение y для функций типа (12).

Таблица. Энергия ионизации E_0^- синглетного отрицательного иона A_s^- [21], α — поляризуемость атомов A в атомных единицах [21,22], $\mu_{\rm A}$ — потенциал атома A в жидком гелии [11, 23], a_t — триплетная длина рассеяния электрона на атоме A [15]

А	Н	Li	Na	Κ	Cs
E_0^- (\mathfrak{sB})	0.754	0.618	0.548	0.501	0.472
$\alpha \ (r_B^3)$	4.5	164	163	293	401
$\mu_{\rm A}~({\rm K})$	34		44	82	110
a_t (Å)	0.935	-2.99	-3.13	-7.94	-13.4

Полученные выше результаты согласуются с общими представлениями о молекулярных спектрах, которые разделяются на электронные, колебательные и вращательные по зависимости от масс атома $M_{\rm H}$ и электрона m_e [16]. В этом можно убедиться на основе формул (2), (11) и (14), определив отношения $E_{\rm H1}/E_{0e}$ и $\varepsilon_0/E_{\rm H1}$, не содержащие постоянную Планка \hbar :

$$\frac{E_{\rm H1}}{E_{0e}} = 3.5 \cdot 10^{-3} \sim \left(\frac{m_e}{M_{\rm H}}\right)^{1/2},\tag{15}$$

$$\frac{\varepsilon_0}{E_{\rm H1}} = 8 \cdot 10^{-3} \sim \left(\frac{m_e}{M_{\rm H}}\right)^{1/2}.$$
 (16)

Таким образом, в системе имеются малые параметры $a_t/R_0 \approx 0.05$ и $\sqrt{m_e/M_{\rm H}} \approx 0.02$, разложение по которым позволяет получить простые и наглядные аналитические формулы для уровней энергии отрицательных ионов ${\rm H}_t^-$ в жидком гелии.

4. ТРИПЛЕТНЫЕ ОТРИЦАТЕЛЬНЫЕ ИОНЫ $\operatorname{Li}_t^-, \operatorname{Na}_t^-, \operatorname{K}_t^-, \operatorname{Cs}_t^-$

Кроме ионов H_s^- в вакууме существуют синглетные отрицательные ионы A_s^- одновалентных атомов А первой группы таблицы Менделеева с энергией сродства к электрону E_0^- , которая слабо зависит от поляризуемости атома α (см. таблицу). При изменении α на два порядка E_0^- меняется меньше чем в два раза, причем рост α приводит к уменьшению E_0^- . Иначе зависит триплетная длина рассеяния a_t от α : с ростом α она меняет знак, а $|a_t|$ увеличивается. Для Li и Na поляризуемости α почти одинаковые, а длины рассеяния a_t отличаются на 5%.

Указанные эффекты являются следствием обменного отталкивания электронов с одинаковым спином, что приводит к сходству взаимодействия электрона с инертными атомами типа He, Ne, Ar и в триплетных ионах атомов первой группы H, Li, Na,... с полным спином 1. Для триплетных ионов типа Na_t⁻, когда $a_t < 0$ и $\mu_A > 0$, в жидком гелии реализуется связанное состояние электрона с атомом Na в центре пузырька. Теория похожих объектов построена для ионов Ar⁻, Kr⁻, Xe⁻ [18]. Энергия триплетного связанного состояния Na с электроном в жидком гелии для S = 1 приближенно равна 400 K. Она мало отличается от энергии иона Xe⁻, так как длина рассеяния электрона на Xe, $a_{Xe} = -3$ Å [18], мало отличается от $a_t = -3.13$ для Na.

5. ИОНЫ В КАПЛЯХ ЖИДКОГО ГЕЛИЯ. ВОЗМОЖНОСТИ ЭКСПЕРИМЕНТАЛЬНОГО НАБЛЮДЕНИЯ

Триплетные отрицательные ионы H_t^- можно наблюдать в каплях жидкого гелия после их последовательного допирования поляризованными электронами и атомами H, когда синглетный ион $H_s^$ не реализуется. Даже в отсутствие поляризации в каплях могут существовать как синглетные, так и триплетные ионы H_t^- . Это видно на примере молекулы Na₂, которая наблюдалась в каплях жидкого гелия в двух разных спиновых состояниях [24, 25]. Диагностика иона H_t^- может быть проведена методами молекулярной спектроскопии [24]. При вращении атома H внутри пузырька (14) жидкость не возмущается, поэтому не важно, сверхтекучая она или нет. Следовательно, ион H_t^- при S = 1 не различает жидкий ⁴He и ³He.

Влияние атомов и молекул на время жизни пузырька в больших каплях гелия исследовалось в [26]. Рассматривались молекулы O₂, H₂O, и атомы Ne, Ar, Kr, Xe. Этим же методом можно изучать одновалентные атомы типа H, Na для разных значений электронного спина.

6. ЗАКЛЮЧЕНИЕ

В работе предложен новый объект, доступный экспериментальному исследованию. Триплетные отрицательные ионы одновалентных атомов не существуют в вакууме, но их можно наблюдать в жидком гелии. Исследованы свойства этих отрицательных ионов в жидком гелии, получены оценки их энергии и спектра возбуждений из-за колебательных и вращательных степеней свободы. Обсуждаются возможные методы их экспериментального изучения.

Благодарности. Авторы благодарят Л. П. Межова-Деглина за полезные обсуждения свойств ионов в конденсированном жидком водороде.

ЛИТЕРАТУРА

- A. A. Levchenko and L. P. Mezhov-Deglin, J. Low Temp. Phys. 89, 457 (1992).
- 2. В. Б. Шикин, Ю. П. Монарха, Двумерные заряженые системы в гелии, Москва, Наука (1989).
- А. Г. Храпак, И. Т. Якубов, Электроны в плотных газах и плазме, Москва, Наука (1981).
- Б. Н. Есельсон, В. Н. Григорьев, В. Г. Иванцов,
 Э. Я. Рудавский, Д. Г. Саникидзе, И. А. Сербин, *Растворы квантовых экидкостей* He³–He⁴, Москва, Наука (1973).
- Е. В. Лебедева, А. М. Дюгаев, П. Д. Григорьев, ЖЭТФ 137, 789 (2010) [Е. V. Lebedeva, А. М. Dyugaev, and P. D. Grigoriev, JETP 110, 694 (2010)].
- 6. K. R. Atkins, Phys. Rev. 116, 1139 (1959).
- M. W. Cole and R. A. Bachman, Phys. Rev. B 15, 1388 (1977).
- T. Arai, H. Yayama, and K. Kono, L. Temp. Phys. 34, 397 (2008).
- 9. T. Arai, T. Shiino, and K. Kono, Physica E 6, 880 (2000).
- 10. T. Arai and K. Kono, Physica B 329, 415 (2003).
- M. Saarela and E. Krotscheck, J. Low Temp. Phys. 90, 415 (1993).
- A. I. Safonov, S. A. Vasilyev, I. S. Yasnikov et al., Phys. Rev. Lett. 81, 4548 (1998).
- А. И. Сафонов, С. А. Васильев, И. С. Ясников и др., Письма в ЖЭТФ 61, 1004 (1995) [А. І. Safonov, S. A. Vasilyev, I. S. Yasnikov et al., JETP Lett. 61, 1039 (1995)].
- 14. Г. Бете, Э. Салпитер, Квантовая механика атомов с одним и двумя электронами, Москва, ГИФМЛ (1960).
- Г. Ф. Друкарев, Столкновения электронов с атомами и молекулами, Москва, Наука (1978).
- **16**. Л. Д. Ландау, Е. М. Лифшиц, *Квантовая механика*, Москва, Наука (1989).
- 17. R. A. Ferrel, Phys. Rev. 108, 167 (1957).
- А. М. Дюгаев, П. Д. Григорьев, Е. В. Лебедева, Письма в ЖЭТФ 94, 774 (2011) [А. М. Dyugaev, P. D. Grigor'ev, and E. V. Lebedeva, JETP Lett. 94, 714 (2011)].
- 19. E. Fermi, Nuovo Cim. 11, 157 (1934).

- 20. А. М. Дюгаев, П. Д. Григорьев, Е. В. Лебедева, Письма в ЖЭТФ 91, 324 (2010) [А. М. Dyugaev, P. D. Grigor'ev, and E. V. Lebedeva, JETP Lett. 91, 303 (2010)].
- **21**. А. А. Радцич, Б. М. Смирнов, Справочник по атомной и молекулярной физике, Москва, Атомиздат (1980).
- 22. А. М. Дюгаев, Е. В. Лебедева, Письма в ЖЭТФ
 104, 629 (2016) [А. М. Dyugaev and E. V. Lebedeva, JETP Lett. 104, 639 (2016)].
- 23. A. M. Дюгаев, Ε. В. Лебедева, ΦΗΤ 44, 1380 (2018)
 [A. M. Dyugaev and E. V. Lebedeva, Low Temp. Phys. 44, 1085 (2018)].
- 24. Г. Н. Макаров, УФН 174, 225 (2004).
- 25. F. Stienkemeier, W. E. Ernst, J. Higgins, and G. Scoles, J. Chem. Phys. 102, 615 (1995).
- 26. M. Farnik and J. P. Toennies, J. Chem. Phys. 118, 4176 (2003).