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Testing AdS/CFT duality [1, 2] is an important di-
rection of research leading to novel non-trivial results
on both gauge theory and dual string theory sides.
Most of the work so far was done for duality of 4d
super Yang-Mills theory and type IIB 10d string the-
ory in AdS5 × S5 background. The aim of this paper
is to review and extend some recent work [3,4] on test-
ing AdS/CFT correspondence between supersymmetric
U(N)k × U(N)−k Chern-Simons-matter 3d gauge the-
ory and M-theory in AdS4 × S7/Zk background [5, 6]
(ABJM theory).

Membrane theory with the bosonic action dating
back to Dirac [7] remains an enigma. While the exis-
tence of a consistent quantum theory of bosonic mem-
branes may be in doubt, it may happen to be well de-
fined for the 11d supermembrane or M2 brane theory
[8]. The large amount of supersymmetry and possibly
some unknown hidden symmetries may lead to its UV
finiteness despite formal power-counting nonrenormal-
izability. This may be true, in particular, for the super-
membrane in the maximally supersymmetric AdS4×S7

or AdS7 × S4 backgrounds [9, 10].
While the M2 brane action is highly non-linear, ex-

panded near a classical solution with non-degenerate
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induced 3d metric it can be quantized in a static gauge.
Then the leading 1-loop result for its partition function
is UV finite and thus unambiguous [3, 4, 11, 12].

The M2 brane action in 11d background is related
to the type IIA string in the corresponding 10d back-
ground by a double dimensional reduction [13]. Consid-
ering M2 brane world volume of topology Σ2 × S1 and
expanding 3d fields in Fourier modes in S1 coordinate
one gets an effective 2d string action on Σ2 coupled to
an infinite tower of massive 2d fields. Choosing a static
gauge in the M2 brane action one gets a static gauge
Nambu-Goto action for the massless transverse string
modes coupled to a tower of the massive “Kaluza-Klein”
2d modes. This “effective string” 2d action is essen-
tially equivalent to the original M2 brane action and
thus may inherit some of its hidden symmetries.

The work described below provides a remarkable
evidence that direct semiclassical quantization of the
M2 brane in AdS4×S7/Zk background reproduces the
results of large N localization computations [14–16] of
the 1/2-BPS Wilson loop and the instanton contribu-
tions to free energy in the ABJM gauge theory.

Our first example is the 1/2-BPS Wilson loop.
For fixed k, the large N expansion of the Wilson
loop operator in the ABJM theory corresponds to
the expansion in the large effective M2 brane tension
R3T2 ∼

√
Nk, where R is the curvature radius of

AdS4 × S7/Zk and T2 = 1/((2π)2ℓ3P ). The analytic
expression for the expectation value of the 1/2-BPS
circular Wilson loop in the ABJM theory was derived
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using supersymmetric localization in [15]. In order to
compare to the semiclassical expansion in the M2 brane
world-volume theory, one is to expand this expression
at large N with fixed k, which gives

〈W 1
2
〉 = 1

2 sin(2πk )
eπ
√

2N
k ×

×
[
1−

π
(
k2 + 32

)

24
√
2 k3/2

1√
N

+O(
1

N
)
]
. (1)

The Wilson loop has a dual description in terms of
an M2 brane wrapped on AdS2 × S1 [17] in the M-
theory background AdS4 × S7/Zk. One finds [3] that
the exponential factor in (1) is reproduced by the clas-
sical action of the M2 brane with AdS2 × S1 world-
volume, while the k-dependent prefactor (2 sin(2πk))−1

is matched precisely by the 1-loop correction coming
from the functional determinants of the quantum fluc-
tuations around this M2 brane solution.

The non-perturbative part of the ABJM theory free
energy found from localization is [16]

F np(N, k) = F inst
1 (N, k)×

×
[
1 +

π√
2k

k2 − 40

12k

1√
N

+ ...
]
,

(2)

F inst
1 (N, k) = − 1

sin2(2πk )
e−2π

√
2N
k .

Here F inst
1 is the leading largeN term in the 1-instanton

contribution. In the type IIA string theory regime
(i.e., for large N and k with = N/k=fixed) it may
be interpreted as the contribution of the string world-
sheet instanton (wrapping CP1 in CP3 [18]). In the
M-theory regime (i.e. for large N with fixed k), the
world-sheet instantons correspond to the M2 brane in-
stantons wrapping the 11d circle and a CP1 in CP3,
i.e., S3/Zk ⊂ S7/Zk. Computing the corresponding
classical M2 brane action and 1-loop fluctuation deter-
minants [4] one matches precisely the exponential and
its prefactor in (2).

As another example of the quantum M2 brane com-
putation in AdS4×S7/Zk one may consider the 1-loop
correction to the partition function expanded near the
classical M2 brane solution generalizing infinitely long
rotating folded string [19, 20] in AdS4. It determines
leading large λ corrections at each order in 1/N to
the cusp anomaly function in ABJM theory [21]. The
predicted generalization of the planar cusp anomaly in

ABJM theory [22–24] to include leading at large terms
at each order in 1/N reads

f̂(k) = c0 + f(k) = − 5

2π
log 2 +

2π

3k2
+

2π3

45k4
+ . . . =

= − 5

2π
log 2 +

2πλ2

3N2 +
2π3λ4

45N4 + . . .

From the point of view of the ’t Hooft limit of large
N and large k = N/λ these corrections are non-
planar corrections to the cusp anomaly. This result
is a non-trivial strong-coupling prediction about non-
planar correction to the anomalous dimension of a high-
spin operator in the ABJM theory. Being non-planar
it is unlikely to be captured by integrability meth-
ods. Also, as the cusp anomaly corresponds to a non-
supersymmetric observable (anomalous dimension of a
non-BPS operator) it is unlikely to be captured by a
localization computation.

The full text of this paper is published in the English

version of JETP.
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