«ИДЕАЛЬНОСТЬ» «НЕИДЕАЛЬНОЙ» ПЛАЗМЫ

А. Л. Хомкин, А. С. Шумихин*

Объединённый институт высоких температур Российской академии наук 125412, Москва, Россия

> Поступила в редакцию 17 сентября 2022 г., после переработки 12 декабря 2022 г. Принята к публикации 26 декабря 2022 г.

На основе уравнения состояния «физической» модели плазмы, в которой рассматривается взаимодействующая смесь электронов и ядер (протонов), выведены путем тождественных преобразований две химические модели плазмы, описывающие смесь свободных электронов, ионов и атомов. Полученные химические модели удовлетворяют правилу «книжной закладки» Онзагера — уравнение состояния не зависит от положения закладки — границы, разделяющей свободные и связанные состояния. Выполнено исследование влияния возбужденных состояний атома на уравнение состояния и ионизационного равновесия. Сделан вывод о завышенном вкладе дебаевского притяжения в традиционных «химических» моделях. Полученные соотношения для снижения потенциала ионизации и уравнения состояния существенно отличаются от общепринятых выражений и качественно объясняют наблюдаемый в экспериментах эффект «идеальности» неидеальной плазмы.

DOI: 10.31857/S0044451023040181 **EDN: MZDYNW**

1. ВВЕДЕНИЕ

Исследованию уравнения состояния плотной плазмы в условиях, когда заметную роль играют межчастичные, особенно кулоновское, взаимодействия, в последнее время было уделено большое внимание [1]. Были исследованы плазма инертных газов и плазма щелочных металлов, в основном цезия. Уравнение состояния плазмы инертных газов исследовалось ударно-волновыми методами [2], уравнение состояния плазмы цезия — на подогреваемой ударной трубе [3, 4], на установке адиабатического сжатия [5], а также с использованием электровзрыва цезиевой проволочки в плотном инертном газе [6, 7].

Вместо ожидаемого плазменного фазового перехода [8] или каких-либо следов его существования был обнаружен неожиданный эффект — «идеальность» поведения «неидеальной» плазмы. Этот эффект был замечен и в плазме инертных газов [2], но особенно в плазме паров цезия [3–7]. При обработке результатов экспериментов [3–7] отмечалось, что расчеты уравнения состояния по «химической» модели идеальной плазмы весьма удовлетворительно описывают данные эксперимента в условиях развитой кулоновской неидеальности по сравнению с расчетами в рамках традиционных «химических» моделей, в которых использовалась дебаевская модель для энергии заряда, помещенного в плазму. По результатам работы [6] была даже высказана рекомендация использовать «химическую» модель идеальной смеси для практических расчетов уравнения состояния плотных паров цезия, включая область двукратной ионизации.

В то время мало кто решался посягнуть на авторитет Дебая и его модель, использованную к тому же для предсказания плазменного фазового перехода. В такой ситуации, применительно к плазме инертных газов, были предложены подходы, которые не затрагивали результатов дебаевской модели, но вносили дополнительное отталкивание в расчеты и тем самым компенсировали влияние поправки Дебая, носящей характер притяжения. Среди таких моделей отметим модель «ограниченного атома», предложенную в работе [9]. В этой модели для нахождения спектра связанных состояний атома вместо традиционного граничного условия обращения волновой функции в нуль на бесконечности, предлагалось использовать иное — обраще-

^{*} E-mail: shum_ac@mail.ru

ние волновой функции в нуль на некотором конечном расстоянии. Такое граничное условие, по мнению авторов работы [9], качественно моделировало влияние среды на атом. Действительно, взаимодействие электронов с атомами инертных газов носит характер отталкивания, поэтому «эффект твердой стенки» в принципе возможен, но все зависит от того, как эта стенка возникает и где она находится. А вот применительно к парам щелочных металлов, где взаимодействие электронов с атомами носит характер притяжения и приводит к образованию отрицательных ионов, модель «ограниченного атома» совершенно не применима, хотя эффект «идеальности» там был зафиксирован [3-7] даже с большей определенностью, чем в плазме инертных газов. В итоге модель «ограниченного атома» в большинстве «химических» моделей не закрепилась, а обнаруженный эффект «идеальности» в плазме паров цезия, да и в плазме инертных газов так и остался без объяснения. Неплохое согласие давала дебаевская модель в большом каноническом ансамбле. Ниже мы ее рассмотрим более подробно.

Главный эффект «неидеальности» в плазме возникает при внесении в нее пробного заряда, который поляризует ее, отталкивая одноименные заряды и притягивая разноименные. В результате возникает эффект притяжения пробного заряда к плазме. Энергию, которую приобретает заряд, помещенный в классическую плазму за счет ее поляризации, будем называть дебаевской. Впервые эта энергия была рассчитана Дебаем и Хюккелем [10] применительно к растворам электролитов. Вклад дебаевской энергии в уравнение состояния плазмы и снижение потенциала ионизации атома традиционно считались главными проявлениями взаимодействия между зарядами; иногда говорят об эффектах неидеальности в плазме [11].

Параллельно с поляризацией кулоновское взаимодействие ведет к образованию связанных состояний — атомов. Это чисто квантовый эффект, по крайней мере для низколежащих уровней. Для изолированного атома число связанных состояний бесконечно велико, и формально вычисленная статистическая сумма атома расходится. Необходимо обрезание статистической суммы на том или ином уровне, что приводит к зависимости результатов расчета от положения границы обрезания. Наличие такой зависимости противоречит правилу «книжной закладки» Онзагера, сформулированному им устно на конференции [12] (в дальнейшем правило Онзагера): как итоговый результат бухгалтерской книги не зависит от положения закладки, так и рас-

чет уравнения состояния плазмы не должен зависеть от места расположения границы, разделяющей связанные и свободные состояния. Правилу Онзагера полностью соответствуют результаты расчета уравнения состояния атомарной плазмы в большом каноническом ансамбле для ее «физической» модели — модели, в которой рассматривается взаимодействующая смесь электронов и ядер (протонов). В работах [13-16] строго получены первые члены разложения большого термодинамического потенциала (давления) по степеням активности. Учтены коллективные эффекты поляризации и парные эффекты во взаимодействии зарядов обоих знаков, в том числе приводящие к образованию атомов. Понятие «закладки» в физической модели просто отсутствует, и в этом смысле ее результаты полностью удовлетворяют правилу Онзагера. Именно такую реализацию правила Онзагера мы и используем в данной работе. К сожалению, область применимости «физической» модели ограничена только атомарной плазмой и не допускает строгого учета молекулярных ионов, молекул и так далее.

В практических расчетах доминируют «химические» модели плазмы, в которых для атомарной плазмы рассматривается смесь свободных электронов, ионов и атомов (возможно рассмотрение и более сложной номенклатуры частиц). Для конкретных расчетов, учитывающих кулоновское взаимодействие, необходимо задать две величины: статистическую сумму Σ_a атома и поправку к свободной энергии Гельмгольца Δf идеальной смеси, описывающую эффект взаимодействия между свободными электронами и ионами. Выбором этих величин и отличаются «химические» модели. В работе [17] рассмотрены более десятка вариантов «химических» моделей, используемых для расчета термодинамических функций и состава плазмы паров цезия. Вопрос о соблюдении правила Онзагера в то время вообще не ставился. И статистическая сумма, и поправка на взаимодействие свободных зарядов выбирались достаточно произвольно, исходя из вариантов, предложенных в литературе и пристрастий авторов. Естественно, результаты расчетов различались довольно существенно, а ведь ответ, в соответствии с правилом Онзагера, должен быть единственным.

В серии работ Эбелинга с сотрудниками [18, 19] впервые проанализированы некоторые «химические» модели плазмы и электролитов с использованием правила Онзагера, который рассматривается в виде принципа «стационарности». Решения для варьируемых параметров выбираются в области минимума свободной энергии Гельмгольца.

В настоящей работе сделана попытка объяснить эффект «идеальности» в «неидеальной» плазме с использованием результатов разложения уравнения состояния по степеням активностей в большом каноническом ансамбле — «физической» модели плазмы [13-16]. «Химические» модели плазмы строго выводятся из этих разложений и, следовательно, удовлетворяют правилу Онзагера, т.е. приводят к уравнению состояния, не зависящему от положения «закладки». Задавая то или иное выражение для статистической суммы атома (положение «закладки»), мы получаем «химические» модели, которые, хотя и различаются поправками к давлению, снижению потенциала ионизации, приводят к единому уравнению состояния (например, зависимости давления от плотности ядер), от положения «закладки» не зависящего. Статистическая сумма атома от положения «закладки» зависит. Передвигаясь по шкале энергий, она («закладка») меняет число связанных и свободных частиц в плазме, не меняя суммарного количества ядер. Меняются статистическая сумма атома (незначительно) и идеальный вклад в давление (существенно): если электрон-ионная пара связанная, то ее вклад в давление соответствует вкладу одной частицы, а если это пара не связанных частиц, то этот вклад соответствует вкладу двух частиц. Доля таких частиц невелика, но разность вклада в давление — это температура, умноженная на их концентрацию. Показано, что эти новые поправки в давление оказываются порядка дебаевской поправки, но с обратным знаком. На возможность такого эффекта было обращено внимание в работах [20,21]. При этом зависимость давления от полной плотности не меняется, меняется соответствующая модель смеси — «химическая» модель. Если коротко, то цель работы состоит в том, чтобы продемонстрировать, что максимально «идеальная химическая» модель, удовлетворяющая правилу Онзагера, может быть выведена из точных разложений «физической» модели неидеальной плазмы.

2. ТРАДИЦИОННАЯ «ХИМИЧЕСКАЯ» МОДЕЛЬ АТОМАРНОЙ ПЛАЗМЫ. КАНОНИЧЕСКИЙ АНСАМБЛЬ

Рассмотрим в каноническом ансамбле реагирующую смесь, состоящую из N_e электронов, N_i ионов и N_a атомов (в дальнейшем атомарная плазма), находящуюся в объеме V при температуре $k_BT \equiv 1/\beta$. Свободная энергия Гельмгольца F в предположении, что газ атомов является идеальным, а свободные заряды слабо взаимодействуют друг с другом, имеет следующий вид [22]:

$$\beta F = -N_e \ln\left(\frac{2eV}{N_e \lambda_e^3}\right) - N_i \ln\left(\frac{eV}{N_i \lambda_i^3}\right) - N_a \ln\left(\frac{eV\Sigma_a}{N_a \lambda_a^3}\right) - (N_e + N_i)\Delta f, \qquad (1)$$

где $\lambda_l = (2\pi\hbar^2\beta/m_l)^{1/2}$ и m_l — тепловая длина волны и масса частицы сорта $l = e, i, a; \Sigma_a$ — внутренняя статистическая сумма атома; e — основание натурального логарифма; Δf — поправка к свободной энергии идеальногазовой смеси в температурных единицах на одну частицу, обусловленная взаимодействием свободных электронов и ионов между собой. Соотношение (1) описывает систему зарядов в достаточно широкой области давлений и температур от идеального газа атомов до полностью ионизованной слабонеидеальной плазмы.

Для поправки Δf , учитывающей взаимодействие свободных зарядов, воспользуемся результатом дебаевской теории для энергии заряда в плазме:

$$E_D = \frac{q^2}{2R_D},\tag{2}$$

где $R_D = 1/\sqrt{4\pi\beta q^2(n_e+n_i)}$ — дебаевский радиус, через который определяется плазменный параметр

$$\Gamma = \frac{\beta q^2}{R_D}.$$
(3)

Используя соотношение, связывающее Δf и E_D , получим

$$\Delta f = \int_{T}^{\infty} \frac{\Gamma/2}{T} dT = \frac{\Gamma}{3}.$$
 (4)

В результате из определения $P = -\partial F / \partial V$ имеем

$$\beta P = (n_e + n_i) \left(1 - \frac{\Gamma}{6} \right) + n_a. \tag{5}$$

Концентрации электронов n_e , ионов n_i и атомов n_a связаны между собой формулой Саха, учитывающей снижение потенциала ионизации $\beta \Delta I = -\Gamma$:

$$n_a = n_i n_e \frac{\lambda_e^3}{2} \Sigma_a e^{-\Gamma}.$$
 (6)

Соотношения (5), (6) соответствуют широко распространенной в литературе и учебниках [11] простейшей модели неидеальной плазмы. Мы назовем ее традиционной химической моделью (TXM).

Проблему расходимости статистической суммы атома мы обсудим ниже.

3. ОБРАЗОВАНИЕ АТОМОВ В БОЛЬШОМ КАНОНИЧЕСКОМ АНСАМБЛЕ. «ФИЗИЧЕСКАЯ» МОДЕЛЬ ПЛАЗМЫ

В большом каноническом ансамбле рассматривается система электронов и ядер (протонов), для которых заданы химические потенциалы μ_e , μ_i или активности $z_e = \exp(\beta\mu_e)/\lambda_e^3$, $z_i = \exp(\beta\mu_i)/\lambda_i^3$. Иногда говорят о «физической» модели плазмы, в которой предположение о наличии атомов не делается. Атомы и поправки на взаимодействие в непрерывном спектре возникают из квантовых групповых разложений для большого термодинамического потенциала (давления) в большом каноническом ансамбле. Разложение идет по степеням активностей $z_{e,i}$ — эффективных плотностей, которые затем находятся из уравнений материального баланса.

Усилиями многих авторов [13–16] были получены первые члены разложения по степеням активностей электронов z_e и ионов z_i для давления P и полной концентрации частиц n. Для классической в непрерывном спектре плазмы с точностью до членов z^2 для P и n имеем

$$\beta P = (z_e + z_i) \left(1 + \frac{\alpha}{3} \right) + z_e z_i \frac{\lambda_e^3}{2} \Sigma_{PL}, \tag{7}$$

$$n = z_e \left(1 + \frac{\alpha}{2} \right) + z_e z_i \frac{\lambda_e^3}{2} \Sigma_{PL}, \tag{8}$$

где $\alpha = \beta q^2 \sqrt{4\pi\beta q^2(z_e+z_i)}$ — плазменный параметр, выраженный через активности $z_{e,i}$ (это важно), а

$$\Sigma_{PL} = \sum_{k=1}^{\infty} 2k^2 \left(\exp\left(\frac{\beta \mathrm{Ry}}{k^2}\right) - 1 - \frac{\beta \mathrm{Ry}}{k^2} \right), \quad (9)$$

где *k* — главное квантовое число. Возникающая в разложениях сходящаяся величина Σ_{PL} хорошо известна и носит название (не совсем корректное) статистической суммы Планка–Ларкина (PL). Она отличается от действительной статистической суммы атома наличием двух последних слагаемых в скобках. Эти слагаемые нарушают требование о больцмановском характере заселенностей связанных уровней в атомах. Такая структура Σ_{PL} возникла как результат взаимной компенсации вкладов от электрон-электронных, электрон-ионных и ионионных взаимодействий во второй групповой коэффициент. Как будет показано ниже, наличие именно этих двух слагаемых в конечных результатах (7), (8) и приводит к необычным, даже парадоксальным результатам для атомарной плазмы.

Соотношения (7), (8) носят название «физическая» модель плазмы и описывают состояния плазмы от полностью ионизованной неидеальной плазмы до атомарного газа, т. е. фактически те же состояния, что и «химическая» модель (1). В «физической» модели при расчете уравнения состояния не требуется решать вопросы об ограничении статистической суммы и о снижении потенциала ионизации, поскольку не требуется решать задачу о расчете состава. Это обстоятельство и позволяет утверждать,

4. «ХИМИЧЕСКАЯ» МОДЕЛЬ ЭБЕЛИНГА – ЛИКАЛЬТЕРА (EL)

что «физическая» модель (7), (8) полностью удовле-

творяет правилу Онзагера.

Выполним простейший переход к «химической» модели плазмы, исходя из соотношений (7), (8) и действуя аналогично работам [23–25].

Начнем с определения концентрации связанных состояний атомов n_a :

$$n_a = z_e z_i \frac{\lambda_e^3}{2} \Sigma_{PL}.$$
 (10)

Из выражения (8) находим концентрацию свободных зарядов n_e и n_i :

$$n_{e,i} = n - n_a = z_{e,i} \left(1 + \frac{\alpha}{2} \right).$$
 (11)

Подставляя $z_{e,i} = n_{e,i}/(1 + \alpha/2)$ в (7), (8), получим

$$\beta P = (n_e + n_i) \frac{1 + \alpha/3}{1 + \alpha/2} + n_a =$$

= $(n_e + n_i)(1 - \Delta p_{PL}) + n_a,$ (12)

$$n_a = n_e n_i \frac{\lambda_e^3}{2\left(1 + \alpha/2\right)^2} \Sigma_{PL} =$$
$$= n_e n_i \frac{\lambda_e^3}{2} \Sigma_{PL} \exp(-\beta \Delta I_{PL}), \qquad (13)$$

где

r

$$\Delta p_{PL} = \frac{\alpha/6}{1 + \alpha/2},\tag{14}$$

$$\beta \Delta I_{PL} = 2\ln\left(1 + \alpha/2\right). \tag{15}$$

Полученная нами связь давления с полной концентрацией (уравнение состояния) является параметрическим. Чтобы завершить переход к «химической» модели, необходимо дополнить уравнения (12)–(15) соотношением, связывающим концентрации свободных частиц n_e , n_i с активностями z_e , z_i . Эту связь можно определить из уравнения (11). Сложим эти уравнения для электронных и ионных концентраций и умножим полученную сумму на величину $4\pi (\beta q^2)^3$. В результате получим уравнение, предложенное Ликальтером [26]:

$$\Gamma^2 = \alpha^2 \left(1 + \frac{\alpha}{2} \right). \tag{16}$$

Будучи дополнена уравнениями электронейтральности $n_e = n_i$ и баланса $n = n_e + n_a$, «химическая» модель EL, определяемая соотношениями (12)–(16), полностью соответствует результатам «физической» модели (7), (8) и тем самым удовлетворяет правилу Онзагера.

5. «ХИМИЧЕСКАЯ» МОДЕЛЬ ВОРОБЬЕВА – ХОМКИНА – ШУМИХИНА (VKS). РОЛЬ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ АТОМА В ПЛАЗМЕ

В литературе [1] обсуждаются десятки вариантов расчета статистической суммы атома, связанных с различными моделями реализации последнего уровня. Отметим характерные: последний уровень в дебаевском потенциале; штарковское слияние уровней; оценки предельных размеров орбиты связанного электрона (от длины Ландау до радиуса ячейки Вигнера-Зейтца) и т. д. Мы не будем обсуждать достоинства и недостатки этих моделей, а ограничимся в своих выкладках рассмотрением двух из них: статистической суммой Планка-Ларкина, в которой эффективно учитывается минимальное количество связанных состояний, и статистической суммой в приближении ближайшего соседа (nearest neighbor approximation, NNA), в которой их число предельно возможное:

$$\Sigma_a = \Sigma_{NNA} = \sum_{k=1}^{\infty} 2k^2 \exp\left(\frac{\beta \mathrm{Ry}}{k^2}\right) \omega_k(z_{e,i}). \quad (17)$$

В литературе, особенно астрофизической, это выражение для Σ_{NNA} весьма популярно [27]. Предполагается, что связанные состояния атома реализуются с вероятностью $\omega_k(z_{e,i})$, т.е. до тех пор, пока размер их орбиты не превосходит размера ячейки Вигнера-Зейтца для зарядов $R_i = (3/4\pi(z_e + z_i))^{1/3}$.

Формально нет никаких запретов повторить выкладки (12)–(16), но при этом использовать иное выражение для определения концентрации атомов:

$$n_a = z_e z_i \frac{\lambda_e^3}{2} \Sigma_{NNA}.$$
 (18)

Заметим, что при таком подходе можно использовать и иные приближения для статистической суммы атома, меняя выражение для $\omega_k(z_{e,i})$.

Из (8) однозначно следует выражение для $n_e = n - n_a$, так что соотношение (8) выполняется:

$$n_e = n_i = z_e \left(1 + \frac{\alpha}{2} + z_i \frac{\lambda_e^3}{2} \Sigma_{PL} - z_i \frac{\lambda_e^3}{2} \Sigma_{NNA} \right).$$
(19)

Необходимо вычислить разность двух величин: статистических сумм в приближениях PL и NNA.

Способ расчета этой разности предложен в работе [28]. Рассмотрим статистическую сумму атома в приближении ближайшего соседа:

$$\Sigma_{NNA} = \sum_{k=1}^{\infty} 2k^2 \exp\left(\frac{\beta \mathrm{Ry}}{k^2}\right) \omega_k, \qquad (20)$$

где

$$\omega_k = \exp\left(-\frac{4\pi}{3}r_k^3(z_e + z_i)\right). \tag{21}$$

В (21) $r_k = \delta a_0 k^2$ — радиус орбиты связанного электрона с главным квантовым числом k. Величина $\delta = 1, 2$ соответствует квантовому и классическому определению размера орбиты. Нам представляется разумным использовать для возбужденных состояний классическое определение радиуса орбиты (по Ликальтеру [29]). Экспонента в (21) описывает пуассоновскую вероятность отсутствия свободных зарядов с концентрациями z_e, z_i внутри сферы радиуса r_k . Мы не акцентируем внимание на некоторых различиях концентраций свободных зарядов и активностей, поскольку, как будет видно из дальнейшего, для слабонеидеальной плазмы они практически совпадают. Выполним тождественное преобразование:

$$\Sigma_{NNA} = \sum_{k=1}^{\infty} 2k^2 \left[\left(\exp\left(\frac{\beta Ry}{k^2}\right) - 1 - \frac{\beta Ry}{k^2} \right) \omega_k + \left(1 + \frac{\beta Ry}{k^2} \right) \omega_k \right].$$
(22)

В первом слагаемом в квадратных скобках действуют два обрезающих фактора. В круглых скобках первый соответствует радиусу орбиты $r \sim \beta q^2 -$ длине Ландау, а второй определяется величиной ω_k и соответствует радиусу орбиты $r \sim (z_e + z_i)^{-1/3}$. Поскольку длина Ландау в слабонеидеальной плазме всегда меньше среднего межчастичного расстояния, то первый фактор ($r \sim \beta q^2$) «сработает» раньше, и мы можем положить $\omega_k = 1$. Таким образом, первое слагаемое в (22) превращается в статистическую сумму PL (9). Во втором слагаемом в (22) мы можем выполнить суммирование непосредственно, а можем перейти от суммирования к интегрированию по k, поскольку главный вклад в эту сумму дают вы-

соковозбужденные уровни с большими квантовыми числами $k \ (dk \sim 1 \ll k)$:

$$\Sigma_{NNA} = \Sigma_{PL} + \int_{0}^{\infty} dk \, 2k^2 \left(1 + \frac{\beta R y}{k^2}\right) \omega_k = \Sigma_{PL} + \Delta \Sigma_a.$$
(23)

Второе слагаемое в (23) рассчитывается аналитически [22, 28]:

$$\Delta \Sigma_a = \frac{1}{\sqrt{3\delta^3}} \left(\frac{1}{4\pi (z_e + z_i)a_0^3} \right)^{1/2} \Gamma\left(\frac{1}{2}\right) + \frac{\beta \text{Ry}}{3\sqrt{\delta}} \left(\frac{3}{4\pi (z_e + z_i)a_0^3} \right)^{1/6} \Gamma\left(\frac{1}{6}\right), \quad (24)$$

где $\Gamma(x)$ — гамма-функция.

6. УРАВНЕНИЕ СОСТОЯНИЯ И ИОНИЗАЦИОННОГО РАВНОВЕСИЯ В МОДЕЛИ VKS. ФОРМУЛА САХА

Возвращаясь к (19), из (7), (8) получим соотношения для концентрации свободных электронов и атомов, а также для уравнения состояния:

$$n_e = z_e \left(1 + \frac{\alpha}{2} - z_i \frac{\lambda_e^3}{2} \Delta \Sigma_a \right), \qquad (25)$$

$$n_a = z_e z_i \frac{\lambda_e^3}{2} \Sigma_{NNA}, \qquad (26)$$

$$\beta P = (z_e + z_i) \left(1 + \frac{\alpha}{3} - \frac{z_e z_i}{z_e + z_i} \frac{\lambda_e^3}{2} \Delta \Sigma_a \right) + z_e z_i \frac{\lambda_e^3}{2} \Sigma_{NNA}.$$
(27)

Заметим, что формулы (25)–(27) можно использовать и для других вариантов расчета статистической суммы. При этом точные асимптотические соотношения (7), (8) выполняются, следовательно, выполняется и правило Онзагера. Вводя обозначение $K(\alpha) = z_i (\lambda_e^3/2) \Delta \Sigma_a$ и учитывая, что $z_e = z_i$, получим

$$n_a = n_e n_i \frac{\lambda_e^3}{2} \Sigma_{NNA} e^{-\Delta I},$$
 (28)

где $\Delta I = 2 \ln (1 + \alpha/2 - K(\alpha)),$

$$\beta P = (n_e + n_i)(1 - \Delta p) + n_a,$$
 (29)

где

$$\Delta p = \frac{\alpha/6 - K(\alpha)/2}{1 + \alpha/2 - K(\alpha)}.$$
(30)

Величина $K(\alpha)$ вычислена в работе [22] и равна

$$K(\alpha) = \alpha \frac{\pi\sqrt{6}}{24\sqrt{\delta^3}} + \alpha^{5/3} \frac{\sqrt{2\pi}3^{1/6}}{48\sqrt{\delta}} \Gamma\left(\frac{1}{6}\right).$$
(31)

Рис. 1. Решение уравнения Ликальтера $\alpha(\Gamma)$ для $\delta = 2$: $1 - \Gamma$; 2 - EL-модель, уравнение (16); 3 - VKS-модель, уравнение (32)

Рис. 2. Снижение потенциала ионизации $\beta \Delta I$ в зависимости от Γ для $\delta = 2$: 1 — модель ТХМ, уравнение (6); 2 — модель EL, уравнение (15); 3 — модель VKS, уравнение (28).

Уравнение Ликальтера (16) немного модифицируется:

$$\Gamma^2 = \alpha^2 \left(1 + \frac{\alpha}{2} - K(\alpha) \right). \tag{32}$$

«Химическая» модель VKS определяется соотношениями (28)–(32).

На рис. 1 сравниваются решения уравнения Ликальтера для EL- и VKS-моделей атомарной плазмы с величиной Г. Близость решений $\alpha(\Gamma)$ к величине Г означает близость концентраций свободных зарядов и активностей. Сразу заметим, что максимальную близость демонстрирует модель VKS.

На рис. 2, 3 показаны снижение потенциала ионизации и поправки к давлению как функции плазмен-

Рис. 3. Безразмерная поправка к давлению Δp в зависимости от Γ для $\delta = 2$: 1 — модель ТХМ, уравнение (6); 2 — модель EL, уравнение (14); 3 — модель VKS, уравнение (30)

ного параметра Г.

В пределе $\alpha \to 0$ и для $\delta = 2$ получаем

$$\alpha \to \Gamma, \tag{33}$$

$$K(\alpha) \to \alpha \frac{\pi\sqrt{6}}{24 \cdot 2\sqrt{2}} \to \Gamma \frac{\pi\sqrt{6}}{48\sqrt{2}},$$
 (34)

$$\Delta I \to \alpha - 2K(\alpha) = \Gamma\left(1 - \frac{\pi\sqrt{6}}{12 \cdot 2\sqrt{2}}\right) =$$
$$= 0.773 \ (0.359)\Gamma, \quad (35)$$

$$\Delta p = \frac{\alpha}{6} - \frac{K(\alpha)}{2} = \frac{\Gamma}{6} \left(1 - \frac{\pi\sqrt{6}}{8 \cdot 2\sqrt{2}} \right) = 0.66 \ (0.038) \frac{\Gamma}{6}.$$
 (36)

Величина $K(\alpha)$ описывает влияние возбужденных атомов. Сравнивая выражения (35), (36) с (5), (6), видим, что возбужденные атомы играют существенную роль при переходе от «физической» к «химической» модели, меняя численный коэффициент при параметре неидеальности. В скобках в (35) и (36) указаны величины поправок для $\delta = 1$.

«Химическая» модель VKS, определяемая соотношениями (28)–(32), полностью соответствует результатам «физической» модели (7), (8) и тем самым удовлетворяет правилу Онзагера, как и «химическая» модель EL (12)–(16). Уравнения состояния для моделей EL и VKS будут совпадать, но составы будут разные.

«Идеальность» «неидеальной» плазмы

7. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Формулы (35), (36) описывают необычный результат «химической» модели VKS: дебаевское снижение потенциала ионизации $\Delta I_D = \Gamma$ и поправка к давлению $\Delta p_D = \Gamma/6$ существенно уменьшаются.

Какую же «химическую» модель выбрать. Если речь идет о расчете уравнения состояния, то модели EL и VKS идентичны и дают одинаковые результаты. При обработке экспериментов использовалась традиционная «химическая» модель (TXM) идеальной плазмы ($\delta f = 0$) Эксперименты, особенно для плазмы паров цезия, показали явное преимущество «химической» модели идеальной плазмы. Проведенный нами анализ показывает, что максимальную «степень идеальности» демонстрирует модель VKS, что позволяет говорить о согласии с данными экспериментов [2–7] и о найденном объяснении эффекта «идеальности» неидеальной плазмы.

Рассмотрим слабонеидеальную плазму, «почти» полностью ионизованную ($\beta Ry < 1$), в которой присутствуют только возбужденные атомы n_a^* , их доля невелика и описывается вторым слагаемым статистической суммы (23):

$$n_a^* = n_e n_i \frac{\lambda_e^3}{2} \Delta \Sigma_a. \tag{37}$$

Считая $n_a^* \ll n$, ищем решение (37) в виде

$$n_e = n(1 - \theta), \tag{38}$$

$$n_a^* = n - n_e = n\theta, \tag{39}$$

$$\theta = (1 - \theta)^2 n \frac{\lambda_e^3}{2} \Delta \Sigma_a.$$
(40)

Для $\theta \ll 1$ получаем

$$\theta = n \frac{\lambda_e^3}{2} \Delta \Sigma_a = \Gamma \frac{\pi \sqrt{6}}{24\sqrt{\delta^3}} + \Gamma^{5/3} \frac{\sqrt{2\pi} 3^{1/6}}{48\sqrt{\delta}} \Gamma\left(\frac{1}{6}\right) = K(\Gamma). \quad (41)$$

Запишем выражение для давления смеси свободных электронов, ионов и возбужденных атомов, используя соотношение (30) для поправки к давлению $\beta \Delta p = \Gamma/6 - K(\Gamma)/2.$

Учитывая, что $\alpha \to \Gamma$ при $\alpha \to 0$, получим

$$\beta P = (n_e + n_i) \left(1 - \frac{\Gamma}{6} + \frac{K(\Gamma)}{2} \right) + n_a.$$
(42)

Подставляя (38), (39) в (42), в линейном по Γ приближении ($\theta \sim \Gamma$) получим

$$\beta P = 2n(1-\theta)\left(1-\frac{\Gamma}{6}+\frac{\theta}{2}\right)+n\theta \cong 2n\left(1-\frac{\Gamma}{6}\right).$$
(43)

А. Л. Хомкин, А. С. Шумихин

Оказывается, что уравнение состояния полностью ионизованной однокомпонентной неидеальной плазмы полностью соответствует результатам модели VKS для смеси свободных зарядов и возбужденных атомов. Так что, формально, в полностью ионизованной неидеальной плазме присутствует вклад возбужденных атомов и, следовательно, полностью ионизованной ее считать не вполне корректно.

8. ЗАКЛЮЧЕНИЕ

На основе уравнения состояния «физической» модели плазмы выполнено исследование влияния возбужденных состояний атома на уравнение состояния и ионизационного равновесия. Сделан вывод о завышенном вкладе дебаевского притяжения в традиционной «химической» модели. Для модели VKS полученные соотношения для снижения потенциала ионизации и уравнения состояния существенно отличаются от общепринятых выражений. Полученные результаты качественно объясняют наблюдаемый в экспериментах [2–7] эффект «идеальности» без привлечения дополнительных эффектов отталкивания.

ЛИТЕРАТУРА

- 1. В. Е. Фортов, А. Г. Храпак, И. Т. Якубов, Физика неидеальной плазмы, Физматлит, Москва (2010).
- В. Е. Фортов, А. А. Леонтьев, А. Н. Дремин, В. К. Грязнов, ЖЭТФ 71, 225 (1976).
- В. А. Сеченов, Э. Е. Сон, О. Е. Щекотов, ТВТ 15, 411 (1977).
- А. В. Бушман, Б. А. Ломакин, А. В. Сеченов, В. Е. Фортов, О. Е. Щекотов, И. И. Шарипджанов, ЖЭТФ 69, 1624 (1975).
- А. Т. Кунавин, А. В. Кириллин, Ю. С. Коршунов, ТВТ 12, 1302 (1974).
- 6. И. Я. Дихтер, В. А. Зейгарник, ТВТ 15, 471 (1977).
- 7. И. Я. Дихтер, В. А. Зейгарник, ТВТ 15, 196 (1977).
- 8. Г.Э. Норман, А.Н. Старостин, ТВТ 8, 413 (1970).
- 9. В. К. Грязнов, М. В. Жерноклетов, В. Н. Зубарев, И. Л. Иосилевский, В. Е. Фортов, ЖЭТФ 78, 573 (1980).

- 10. P. Debye and E. Hückel, Phys. Z. 24, 185 (1923).
- Л. П. Кудрин, Статистическая физика плазмы, Атомиздат, Москва (1974).
- 12. L. Onsager, in *Proc. of the Conference on Electrochemistry*, Montpellier, France (1998).
- 13. А. А. Веденов, А. И. Ларкин, ЖЭТФ 36, 1139 (1959).
- 14. W. Ebeling, W. D. Kraeft, and D. Kremp, *Theory of Bound States and Ionization Equilibrium in Plasmas and Solids*, Akademie-Verlag, Berlin (1976).
- 15. Ю.Г. Красников, ЖЭТФ 33, 516 (1977).
- **16**. А. Н. Старостин, В. К. Рерих, ЖЭТФ **127**, 186 (2005).
- **17**. В. Е. Фортов, Б. Н. Ломакин, Ю. Г. Красников, ТВТ **9**, 869 (1971).
- 18. W. Ebeling and S. Hilbert, Eur. Phys. J. D 20, 93 (2002).
- 19. W. Ebeling, S. Hilbert, and H. Krienke, J. Mol. Liq. 96–97, 409 (2002).
- 20. O. Theimer and T. Wright, Phys. Rev. 180, 308 (1969).
- В. С. Воробьев, А. Л. Хомкин, Физика плазмы 3, 885 (1977).
- 22. А. Л. Хомкин, И. А. Муленко, ТВТ 41, 327 (2003).
- W. Ebeling and G. P. Bartsch, Beitr. Plasmaphys. 5, 393 (1971).
- 24. W. Ebeling and R. Sändig, Ann. der Phys. 28, 269 (1973).
- 25. W. Ebeling, H. Reinholz, and G. Röpke, Contrib. Plasma Phys. 61, e202100085 (2021).
- **26**. А. А. Ликальтер, ЖЭТФ **56**, 240 (1969).
- 27. W. Dappen, D. Mihalas, D. G. Hummer, and B. W. Mihalas, Astrophys. J. 332, 261 (1988).
- **28**. И. А. Муленко, А. Л. Хомкин, А. С. Шумихин, ТВТ **42**, 835 (2004).
- 29. А.А. Ликальтер, УФН 170, 831 (2000).