РЕЗОНАНСНЫЙ МЕТОД ИЗМЕРЕНИЯ ПАРАМЕТРОВ СПИНОВОГО ТРАНСПОРТА В СПИН-ВЕНТИЛЬНОЙ СТРУКТУРЕ

Н. В. Стрелков^{*}, А. В. Ведяев

Московский государственный университет им. М. В. Ломоносова, Физический факультет 119991, Москва, Россия

> Поступила в редакцию 4 декабря 2022 г., после переработки 4 декабря 2022 г. Принята к публикации 5 декабря 2022 г.

Известные методы измерения параметров спинового транспорта в спин-вентильных структурах основываются на эффекте Ханле — прецессии спинов электронов во внешнем магнитном поле и уменьшении магниторезистивного сигнала. Они позволяют определить время спиновой релаксации в парамагнитном слое и константу относительной поляризации тока. Мы описываем альтернативный метод измерения без приложения внешнего магнитного поля, основанный на резонансном увеличении магнитной восприимчивости парамагнитного слоя в результате парамагнитного резонанса, вызванного неравновесной намагниченностью в результате эффекта спиновой аккумуляции. Предложенный метод позволяет определить абсолютное значение спиновой аккумуляции в парамагнетике, которое может использоваться как параметр для численного решения трехмерных диффузионных уравнений спинового транспорта.

DOI: 10.31857/S0044451023040168 **EDN: MLUABT**

1. ВВЕДЕНИЕ

Спин-вентильные структуры (рис. 1) являются элементарным элементом современных спин-транспортных устройств и состоят из двух ферромагнитных электродов, L₁ и L₃, разделенных слоем парамагнитного металла L₂. Устройства, построенные на базе таких структур, могут выполнять функции элементов магнитной памяти [1, 2] и датчиков магнитного поля [3] благодаря эффекту гигантского магнитосопротивления (ГМС) [4]. Задачи оптимизации и управления спиновым транспортом в спин-вентильных структурах произвольной геометрии сводятся к численным расчетам диффузных уравнений [5] методом конечных элементов [6].

Спин-транспортные параметры для численных расчетов, такие как относительная спиновая поляризация тока P и спин-диффузионная длина l_{sf} измеряются методами, в основе которых лежит эффект Ханле [7]. Данный эффект заключается в прецессии спинов электронов во внешнем магнитном поле H и, как следствие, уменьшении магнитосопротивления R системы. Измеряя зависимость сопротивления спин-вентильной структуры от H, можно построить кривую Ханле R(H). Спин-транспортные параметры подбираются так, чтобы точнее аппроксимировать построенную кривую с помощью аналитической модели [8]. Этот метод легко реализовать технически, так как в нем применяются только электрические измерения. Однако внешнее магнитное поле отклоняет намагниченности ферромагнит-

Рис. 1. Модель рассматриваемой спин-вентильной структуры. Слои L_1 и L_3 — ферромагнитные, а L_2 — металлический парамагнитный. Намагничености \mathbf{M}_1 и \mathbf{M}_3 зафиксированы в противоположных направлениях, чтобы обеспечить постоянство знака спиновой аккумуляции вдоль слоя L_2 . Ток \mathbf{J}_e протекает вдоль оси x. Напяжение V измеряется на электродах L_1 и L_3

^{*} E-mail: nik@magn.phys.msu.ru

ных электродов, что приводит к неточностям при аппроксимации аналитической функцией.

В данной работе мы описываем альтернативный метод измерения спин-транспортных параметров, основанный на эффекте парамагнитного резонанса в слое L_2 , вызванного неравновесной намагниченностью в результате эффекта спиновой аккумуляции. Измерение восприимчивости необходимо проводить с помощью высокочастотных методов, например, с использованием векторного анализатора цепей (ВАЦ) [9].

Для возбуждения неравновесной намагниченности в парамагнитном слое L_2 через спинвентильную структуру пропускается электрический ток \mathbf{J}_e . Намагниченность ферромагнитных электродов зафиксирована в противоположных направлениях, чтобы знак спиновой аккумуляции оставался постоянным. Если длина спиновой диффузии l_{sf} в слое L_2 больше, чем длина этого слоя, то спиновая аккумуляция в нем может рассматриваться как однородная. Неравновесное обменное расщепление, возникающее из-за этого в слое L_2 , будет создавать условия для парамагнитного резонанса. Наличие резонанса, в свою очередь, приведет к увеличению магнитной восприимчивости.

В следующих разделах мы вычислим парамагнитную восприимчивость с учетом примесей и наличия неравновесного обменного расщепления. Далее, мы численно рассчитаем величину спиновой аккумуляции и связанную с ней величину обменного расщепления в парамагнитном слое предложенной спин-вентильной структуры. Для полученного значения мы построим резонансные кривые парамагнитной восприимчивости, которые определяются спин-транспортными параметрами системы.

2. ВОСПРИИМЧИВОСТЬ

В электронном газе различают две компоненты магнитной восприимчивости: продольную χ_{\perp} и поперечную χ_{\parallel} . Инвариантность по отношению к вращению устанавливает связь между ними: $\chi_{\parallel} = 2\chi_{\perp}$, поэтому мы рассмотрим только поперечную компоненту.

Восприимчивость χ_{\perp} невзаимодействующего электронного газа с учетом рассеяния на примесях с малой концентрацией была рассмотрена ранее в равновесном случае [10, 11]. Мы расширили эту теорию и учли вклад от неравновесной намагниченности, вызванный эффектом спиновой аккумуляции. Гамильтониан системы в этом случае будет записываться как $\mathcal{H} = \mathcal{H}_0 + V(\mathbf{r})$,

Рис. 2. Поляризационный пропагатор Π_{sc} , усредненный по примесям и определяющий восприимчивость электронного газа с рассеянием на случайном потенциале примесей V_0 . Вершинная часть Γ_{sc} — диффузионный полюс («диффузон»), рассчитанный из уравнения Бете – Солпитера в лестничном приближении

где $\mathcal{H}_0 = \varepsilon_{\sigma}(\mathbf{k}) a^{\dagger}_{\mathbf{k}\sigma} a_{\mathbf{k}\sigma}$ — гамильтониан свободных электронов, $a^{\dagger}_{\mathbf{k}\sigma}$ и $a_{\mathbf{k}\sigma}$ — операторы рождения и уничтожения электрона со спином σ и волновым вектором \mathbf{k} , $V(\mathbf{r})$ — случайный потенциал примесей. Энергию электронов можно выразить как $\varepsilon_{\sigma}(\mathbf{k}) = \varepsilon_k - \mu^{\sigma}$, где μ^{σ} — неравновесный спин-зависящий химический потенциал [12].

Для расчета восприимчивости необходимо вычислить вершинную часть Γ_{sc} (или «диффузон»). Величина Γ_{sc} может быть получена из уравнения Бете – Солпитера, которое упрощается в лестничном приближении суммированием диаграмм на рис. 2 с использованием примесной диаграммной техники [13]. Его можно записать в виде [11]

$$\Gamma_{sc}(\mathbf{q},\omega) = \frac{nV_0^2}{\hbar - nV_0^2 \Pi_{sc}(\mathbf{q},\omega)} = \frac{nV_0^2 \hbar^{-1}}{-i(\omega - \Delta \mu/\hbar)\tau + D_0 \mathbf{q}^2 \tau + \tau/\tau_{sf}}, \quad (1)$$

где **q** и ω — волновой вектор и частота внешней электромагнитной волны соответственно, $nV_0^2 = n(\int V(r) dr)^2$, n — концентрация примесей, V(r) — потенциал одной примеси, τ — время релаксации упругого рассеяния, $\Delta \mu = \mu^{\uparrow} - \mu^{\downarrow}$ — неравновесное расщепление по спину, $\tau_{sf}^{-1} = (4/3)(\tau_s^{-1} + \tau_{so}^{-1})$ — время релаксации с переворотом спина, τ_s и τ_{so} — спин-спиновая и спинорбитальная части соответственно, $D_0 = v_F^2 \tau/3$ константа диффузии Друде и v_F — скорость электронов на уровне Ферми. Невозмущенный поляризационный пропагатор Π_{sc} может быть вычислен как интеграл в трехмерном пространстве, учитывая золотое правило Ферми $\tau^{-1} = \pi N_F n V_0^2$:

$$\Pi_{sc}(\mathbf{q},\omega) = \sum_{\mathbf{k}} G^{R}_{\uparrow}(\mathbf{k}+\mathbf{q},\varepsilon+\hbar\omega)G^{A}_{\downarrow}(\mathbf{q},\varepsilon) =$$
$$= \int \frac{d^{3}k}{(2\pi)^{3}}G^{R}_{\uparrow}(\mathbf{k}+\mathbf{q},\varepsilon+\hbar\omega)G^{A}_{\downarrow}(\mathbf{q},\varepsilon) \approx$$
$$\approx \frac{\hbar}{nV_{0}^{2}} \left(1+i\left(\omega-\frac{\Delta\mu}{\hbar}\right)\tau - D_{0}\tau\mathbf{q}^{2}-\frac{\tau}{\tau_{sf}}\right). \quad (2)$$

В результате можно записать поперечную восприимчивость χ^{sc}_{\perp} в виде

$$\chi_{\perp}^{sc}(\mathbf{q},\omega) = N_F + \frac{1}{i\pi} \int \left[n(\varepsilon + \hbar\omega) - n(\varepsilon) \right] \langle \Pi_{sc} \rangle \, d\varepsilon,$$
(3)

где N_F — плотность состояний электронов на уровне Ферми на один атом, $n(\varepsilon + \hbar \omega) - n(\varepsilon) = -\hbar \omega \delta(\varepsilon - E_F)$, а $\langle \Pi_{sc} \rangle$ — поляризационный пропагатор (см. рис. 2), усредненный по примесям в лестничном приближении. С учетом того, что $\omega \tau \ll 1$, $\tau_{sf}^{-1} \ll \tau^{-1}$ и $|\mathbf{q}|l \ll 1$, он принимает следующую форму:

$$\langle \Pi_{sc}(\mathbf{q},\omega) \rangle = \langle G^R_{\uparrow}(\mathbf{k} + \mathbf{q},\varepsilon + \hbar\omega) G^A_{\downarrow}(\mathbf{q},\varepsilon) \rangle =$$

$$= \Pi_{sc}(\mathbf{q},\omega) + \Pi^2_{sc}(\mathbf{q},\omega) \Gamma_{sc}(\mathbf{q},\omega) =$$

$$= \frac{N_F \pi}{-i(\omega - \Delta\mu/\hbar) + D_0 \mathbf{q}^2 + \tau_{sf}^{-1}}.$$
(4)

Подставляя (4) в (3), получим окончательное выражение для поперечной восприимчивости, учитывая, что $\hbar \omega \ll E_F$ и $|\mathbf{q}| \ll k_F$ [14]:

$$\chi_{\perp}^{sc}(\mathbf{q},\omega) = -N_F \frac{\Delta\mu/\hbar - i(D_0 \mathbf{q}^2 + \tau_{sf}^{-1})}{(\omega - \Delta\mu/\hbar) + i(D_0 \mathbf{q}^2 + \tau_{sf}^{-1})}.$$
 (5)

Как можно увидеть из выражения (5) для восприимчивости, она имеет резонансный вид из-за наведенного обменного расщепления $\Delta \mu$, вызванного эффектом спиновой аккумуляции. В отсутствие примесей ($\tau_{sf}^{-1} + D_0 \mathbf{q}^2 = 0$) восприимчивость (5) принимает вид лоренциана с резонансной частотой $\omega_R = \Delta \mu / \hbar$. В статическом случае, при $\omega = 0$, восприимчивость равна восприимчивости невзаимодействующего газа свободных электронов, $\chi_{\perp}^{sc}(0,0) = N_F$.

Можно легко показать, что резонансная частота мнимой части восприимчивости (5), которая ответственна за поглощение, имеет вид

$$\omega_R = \sqrt{(\Delta \mu/\hbar)^2 + (\tau_{sf}^{-1} + D_0 \mathbf{q}^2)^2}.$$
 (6)

Действительная часть выражения (5) при частоте резонанса (6) постоянна и равна половине восприимчивости невзаимодействующего газа свободных электронов, max ($\operatorname{Re} \chi^{sc}_{\perp} = N_F/2$, тогда как мнимая часть имеет более сложный вид:

$$\max\left(\operatorname{Im} \chi_{\perp}^{sc}\right) = \frac{N_F}{2} \frac{\Delta \mu/\hbar}{\tau_{sf}^{-1} + D_0 \mathbf{q}^2} \times \left(1 + \sqrt{1 + \left(\frac{\tau_{sf}^{-1} + D_0 \mathbf{q}^2}{\Delta \mu/\hbar}\right)^2}\right). \quad (7)$$

Для оценки энергии обменного расщепления $\Delta \mu$, вызванной эффектом спиновой аккумуляции в парамагнитном слое L_2 необходимо решить диффузные спин-зависящие транспортные уравнения в спинвентильной структуре, как это сделано в следующем разделе.

3. СПИНОВАЯ АККУМУЛЯЦИЯ

Теория спинового транспорта в геометрии, когда ток перпендикулярен интерфейсу между слоями, была предложена в работе Вале и Ферта [5]. Уравнения диффузии в спин-вентильной структуре в случае коллинеарной ориентации намагниченности в ферромагнитных слоях записываются в виде

$$\sum_{i} \frac{\partial}{\partial \xi_{i}} j_{e}^{i} = 0,$$

$$\sum_{i} \frac{\partial}{\partial \xi_{i}} j_{m}^{ij} = -\frac{m_{j}}{a_{0}^{3} \tau_{sf}},$$
(8)

где $m_j - j$ -я компонента вектора спиновой аккумуляции на один атом, $\xi_i = x, y$. Вектор зарядового тока \mathbf{J}_e с компонентами j_e^i и тензор спинового тока j_m^{ij} выражаются следующим образом:

$$j_{e}^{i} = -\sigma \frac{\partial}{\partial \xi_{i}} \varphi - \frac{\beta \sigma}{|e_{c}|N_{F}} \sum_{j} M_{j} \frac{\partial}{\partial \xi_{i}} m_{j},$$

$$j_{m}^{ij} = -\frac{\sigma \beta}{|e_{c}|} M_{j} \frac{\partial}{\partial \xi_{i}} \varphi - \frac{\sigma}{e_{c}^{2} N_{F}} \frac{\partial}{\partial \xi_{i}} m_{j},$$
(9)

где φ — электрический потенциал, σ — проводимость, которая связана с константой диффузии через соотношение Эйнштейна: $\sigma = e_c^2 N_F D_0/a_0^3$ [15], $M_j - j$ -я компонента единичного вектора вдоль намагниченности ферромагнитного слоя, a_0 — параметр решетки, β — параметр спиновой ассиметрии проводимости и e_c — заряд электрона.

Система диффузных уравнений (8) с выражениями для токов (9) описывает спин-зависящий транспорт в спин-вентильной структуре. Эта система уравнений может быть решена численно с использо-

Рис. 3. (В цвете онлайн) Численный расчет спинового транспорта в спин-вентильной структуре. Цветом обозначена величина x-компоненты спиновой аккумуляции. Напряжение 0.83 В, приложенное между электродами L_1 и L_3 , создает зарядовую плотность тока 10^8 A/cm². Проводимость парамагнитных и ферромагнитных слоев $\sigma_{2,4} = 10^{-2} (\text{Ом} \cdot \text{нм})^{-1}$ и $\sigma_{1,3,5} = 10^{-3} (\text{Ом} \cdot \text{нм})^{-1}$ соответственно. Время релаксации с переворотом спина $\tau_{sf2,4} = 2.4 \cdot 10^{-12}$ с (соответствует диффузионной длине $l_{sf} = 200$ нм) и $\tau_{sf1,3,5} = 6 \cdot 10^{-14}$ с ($l_{sf} = 10$ нм), спиновая асимметрия проводимости $\beta_{1,3,5} = 0.7$ и $N_F = 0.1$ эВ⁻¹

ванием метода конечных элементов для любой геометрии, например так, как это показано в работе [6].

Численные вычисления х-компоненты вектора спиновой аккумуляции представлены на рис. 3. Ее значение в парамагнитном слое L₂ практически постоянно и равно в среднем 9.5 · 10⁻⁴. При этом плотность тока через спин-вентильную структуру составляет $10^8 \,\mathrm{A/cm^2}$. Диффузионная длина l_{sf} связана со временем релаксации электрона с переворотом спина, au_{sf} , в уравнении (8) и определяется выражением $l_{sf} = \sqrt{D_0 \tau_{sf}}$. Используя соотношение Эйнштейна и полагая параметр решетки равным $a_0 = 0.3$ нм, легко показать, что l_{sf} для параи ферромагнитного слоев равны 200 нм и 10 нм соответственно. Можно теперь оценить величину обменного расщепления $\Delta \mu = m_x/N_F$ в парамагнитном слое L₂ и рассчитать частотную зависимость поперечной восприимчивости. Заметим, что относительная поляризация тока выражается через $\Delta \mu$ как $P = \Delta \mu / E_F.$

На рис. 4 показана зависимость поперечной восприимчивости χ_{\perp}^{sc} (5) в парамагнитном слое L_2 с параметрами спин-вентильной структуры, перечисленными в подписи к рис. 3, как функция частоты $f = \omega/2\pi$ и волнового вектора **q** падающей волны. На вставке изображена зависимость резонансной частоты (6) от волнового вектора **q**. Значение мнимой части поперечной восприимчивости опре-

Рис. 4. Мнимая часть поперечной восприимчивости χ_{\perp}^{sc} (5), деленая на N_F , в парамагнитном слое L_2 как функция частоты $f = \omega/2\pi$ падающей волны для различных значений волнового вектора q. На вставке показана зависимость резонансной чатоты (6) от волнового вектора q. Параметры расчета: $N_F = 0.1 \ \text{s}B^{-1}$, $v_F = 10^8 \ \text{см/c}$, $\tau = 5.5 \cdot 10^{-14} \ \text{с}$ (соответствует $\sigma = 10^{-2} \ (\text{Ом} \cdot \text{нм})^{-1}$), $\tau_{sf} = 2.4 \cdot 10^{-12} \ \text{с}$ (соответствует $L_s = 200 \ \text{нм}$), $a_0 = 0.3 \ \text{нм}$, $m_x = 9.5 \cdot 10^{-4} \ (\text{соответствует } \Delta \mu = 9.5 \cdot 10^{-3} \ \text{sB}$)

деляется выражением (7). Уменьшение величины плотности тока в спин-вентильной структуре приведет к уменьшению величины спиновой аккумуляции, а следовательно, и падению резонансной частоты.

Аппроксимируя экспериментальную кривую мнимой части магнитной восприимчивости функцией Лоренца, можно найти величину $\Delta \mu$, которая будет определяться положением резонанса, и величину τ_{sf} , которая будет определяться шириной резонансной кривой. Здесь мы учли, что волновой вектор **q** электромагнитной волны мал, порядка ω/c , где c — скорость света, а частота спиновой релаксации пренебрежимо мала по сравнению с частотой резонанса, $\tau_{sf}^{-1} \ll \Delta \mu/\hbar$.

4. ВЫВОДЫ

В заключение сформулируем основные результаты работы. Нами была рассчитана поперечная магнитная восприимчивость парамагнитного слоя спин-вентильной структуры с учетом упругого и спин-зависящего рассеяния под действием эффекта неравновесной спиновой аккумуляции. Было показано, что парамагнитная восприимчивость имеет резонансный характер, который зависит от величины спиновой аккумуляции, создаваемой током, протекающим через спин-вентильную структуру. Аппроксимируя экспериментальную частотную зависимость мнимой части восприимчивости полученными аналитическими зависимостями, можно вычислить такие параметры спинового транспорта, как спин-диффузная длина l_{sf} , величина спиновой аккумуляции $\Delta \mu$ и соответствующие им величины: время спиновой релаксации τ_{sf} и относительная спиновая поляризация тока P. Данный метод позволит избежать отклонения намагниченности ферромагнитных электродов, так как не подразумевает использования внешнего магнитного поля в отличие от метода, основанного на эффекте Ханле.

Ограничением данного экспериментального метода является требование к толщине парамагнитного слоя, которая должна быть заведомо меньше, чем спин-диффузионная длина l_{sf} для обеспечения однородности спиновой аккумуляции вдоль парамагнетика. Плотность тока, протекающего через спин-вентильную структуру, должна быть как можно больше, чтобы резонанс магнитной восприимчивости хорошо выделялся на уровне термоэлектрических флуктуаций.

ЛИТЕРАТУРА

- S.S.P. Parkin, K.P. Roche, M.G. Samant et al., J. Appl. Phys. 85, 5828 (1999).
- S. Tehrani, J. M. Slaughter, M. Deherrera et al., Proc. IEEE 91, 703 (2003).
- B. Dieny, V.S. Speriosu, S.S.P. Parkin et al., Phys. Rev. B 43, 1297 (1991).
- M. Baibich, J. M. Broto, A. Fert et al., Phys. Rev. Lett. 61, 2472 (1988).

- 5. T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
- N. Strelkov, A. Vedyayev, N. Ryzhanova et al., Phys. Rev. B 84, 024416 (2011).
- M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).
- F. J. Jedema, H. B. Heersche, A. T. Filip et al., Nature 416, 713 (2002).
- S. Noh, D. Monma, K. Miyake et al., IEEE Trans. Magn. 47, 2387 (2011).
- B. L. Altshuler, A. G. Aronov, D. E. Khmelnitskii, and A. I. Larkin, in *Quantum Theory of Solids*, ed. by I. M. Lifshits, Mir Publ., Moscow (1982), p. 130.
- B. L. Altshuler and A. G. Aronov, in *Electron-Electron Interactions in Disordered Systems*, ed. by A. L. Efros and M. B. Pollak, Elsevier, Amsterdam (1985), pp. 1-153.
- 12. P. C. van Son, H. van Kempen, and P. Wyder, Phys. Rev. Lett. 58, 2271 (1987).
- А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической физике, Физматлит, Москва (1962)
 [А. А. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, ed. by R. Silverman, Dover publ., New York (1963)].
- 14. D. Pines and P. Nozières, *The Theory of Quantum Liquids*, Vol. 1, CRC Press, Boca Raton (2018).
- S. Zhang, P. M. Levy, and A. Fert, Phys. Rev. Lett. 88, 236601 (2002).