
ÆÝÒÔ, 2023, òîì 163, âûï. 4, ñòð. 496�502 © 2023

NOETHER SYMMETRIES AND SOME EXACT SOLUTIONS IN
f(R, T 2) THEORY

M. Sharif a*, M. Z. Gul a**

a Department of Mathematics and Statistics, The University of Lahore
54000, Lahore, Pakistan

Received September 30, 2022,
revised version October 09, 2022

Accepted for publication October 12, 2022

DOI: 10.31857/S0044451023040065
EDN: LRECZQ

Abstract. The main objective of this article is to
examine some physically viable solutions through the
Noether symmetry technique in f(R, T 2) theory. In or-
der to investigate Noether equations, symmetry gener-
ators and conserved quantities, we use a specific model
of this modified theory. We find exact solutions and ex-
amine the behavior of various cosmological quantities.
It is found the behavior these quantities is consistent
with current observations indicating that this theory
describes the cosmic accelerated expansion. We con-
clude that generators of Noether symmetry and con-
served quantities exist in this theory.

1. Introduction. The current cosmic expansion
has been the most stunning and dazzling result for the
scientific community [1]. Although general relativity
(GR) is a widely accepted theory which explains the
cause of this expansion but it has some issues like coin-
cidence and fine tuning problems. To addresses these
issues, several modifications of GR (modified gravita-
tional theories) have been formulated to unveil the cos-
mic mysteries. The first modification of GR is f(R)
theory and significant literature [2] is available to un-
derstand the physical features of this theory. Recently,
Katirci and Kavuk [3] modified f(R) theory by intro-
ducing a non-linear term (T 2 = TξηT

ξη) in the func-
tional action referred to as f(R, T 2) theory.

This proposal is also dubbed as energy-momentum
squared gravity (EMSG) and contains higher-order
matter source terms which are helpful to analyze var-
ious interesting cosmological results. It is worthwhile
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to mention here that this theory explains the complete
cosmic history and the cosmic evolution. Roshan and
Shojai [4] examined that EMSG resolves the primor-
dial singularity as it has bounce in the early universe.
Board and Barrow [5] used a specific model of this the-
ory and discussed exact solution, singularities as well
as cosmic evolution with the isotropic configuration of
matter in this theory. Bahamonde et al [6] studied
various EMSG models and analyzed that these models
manifest the current cosmic evolution and acceleration.
We have examined some physically viable solutions [7]
and dynamics of celestial objects in this theory [8].

The Noether symmetry (NS) strategy gives a fasci-
nating method to develop new cosmic models and as-
sociated structures in modified theories of gravity. The
NS approach is significant as it recovers symmetry gen-
erators as well as some conservation laws of the system
[9]. This method does not deal only with the dynamical
solutions but it also provides some viable conditions to
select cosmic models based on recent observations [10].
Moreover, this method is an important and useful tech-
nique to examine exact solutions by using conserved
values of the system. Conservation laws are the main
ingredients to analyze the distinct physical phenomena.
These are the particular cases of the Noether theorem,
according to which every differentiable symmetry pro-
duces conservation laws. The conservation laws of lin-
ear and angular momentum govern the translational
and rotational symmetry of any object. The Noether
charges are important in the literature as they are used
to examine various major cosmic problems in various
considerations [12–21].

This manuscript investigates the NS for anisotropic
and homogenous cosmic models such as BT-I, BT-
III and Kantowski–Sachs (KS) in the background of
EMSG. The manuscript is organized as follows. Section
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Fig. 1. Behavior of effective energy density for ǫ = −1 (green
line) and ǫ = 1 (red line)

2 studies the basic formalism of EMSG. Section 3 pro-
vides a detailed study of the NS approach and derives
exact cosmological solutions which are then discussed
through graphs. The summary of the consequences is
given in sect. 4.

2. Field Equations. We derive the field equations
of the homogeneous and anisotropic spacetime in this
section. The action of EMSG is expressed as [3]

A =

∫ (
f(R, T 2)

2κ2
+ Lm

)
d4x

√
−g, (1)

where κ2 = 1 and Lm manifest the coupling constant
and Lagrangian of matter, respectively. The corre-
sponding equations of motion are obtained as

RξηfR + gξη�fR −∇ξ∇ηfR − 1

2
gξηf =

= Tξη −ΘξηfT 2 , (2)

where

� = ∇ξ∇ξ, fT 2 =
∂f

∂T 2
, fR =

∂f

∂R

and

Θξη = −2Lm(Tξη −
1

2
gξηT )−

− 4
∂2Lm

∂gξη∂gαβ
Tαβ − TTξη + 2Tαξ Tηα.

Fig. 2. Behavior of effective pressure (upper pannel) and de-
celeration parameter (lower pannel) for ǫ = −1 (green line),

ǫ = 1 (red line) and ǫ = 0 (orange line)

Rearranging Eq.(2), we have

Gξη =
1

fR
(T

(D)
ξη + Tξη) = T effξη , (3)

where

Tξη = (ρ+ p)UξUη + pgξη
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Fig. 3. Behavior of r− s (upper pannel) and EoS ((lower pan-
nel) parameters for ǫ = −1 (green line), ǫ = 1 (red line) and

ǫ = 0 (orange line)

and T (D)
ξη defines the modified terms of EMSG, repre-

sented as

T
(D)
ξη =

1

2
gξη(f −RfR)− gξη�fR +

+∇ξ∇ηfR −ΘξηfT 2 . (4)

Fig. 4. Plot of Ωm and ΩΛ verses redshift parameter for ǫ = −1

(green line) and ǫ = 1 (red line)

We assume a generalized spacetime that corresponds
to BT-I, BT-III and KS spacetimes as

ds2 = −dt2 + a2(t)dx2 + b2(t)(dθ2 + ψ2(θ)dφ2), (5)

where ψ(θ) = θ, sinh θ, sin θ satisfying the relation

1

ψ

d2ψ

dθ2
= −ǫ.
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For ǫ = 0,−1, 1, the BT-I, BT-III and KS cosmic mod-
els are obtained. The resulting equations of motion
become

ρeff =
1

fR
[ρ− 1

2
f + (3p2 + ρ2 + 4pρ)fT 2 +

+ ǫb−2fR − (ȧa−1 + 2ḃb−1)(ṘfRR + Ṫ 2fRT 2) +

+ (äa−1 + 2b̈b−1 + 2ȧḃa−1b−1 + ḃ2b−2)fR], (6)

peff =
1

fR
[p+

1

2
f + 2ḃb−1(ṘfRR + Ṫ 2fRT 2)−

− ǫb−2fR + R̈fRR + T̈ 2fRT 2 −
− (äa−1 + 2b̈b−1 + 2ȧḃa−1b−1 + ḃ2b−2)fR +

+ Ṙ2fRRR + Ṫ 2fRT 2T 2 + 2ṘṪ fRRT 2 ], (7)

peff =
1

fR
[p+

1

2
f+(ȧa−1+ ḃb−1)(ṘfRR+Ṫ

2fRT 2)−

− ǫb−2fR + T̈ 2fRT 2 + R̈fRR −
− (äa−1 + 2b̈b−1 + 2ȧḃa−1b−1 + ḃ2b−2)fR +

+ Ṙ2fRRR + Ṫ 2fRT 2T 2 + 2ṘṪ fRRT 2 ]. (8)

Now, we apply Lagrange multiplier method to formu-
late the Lagrangian as

L = ab2(f −RfR − T 2fT 2 + (3p2 + ρ2)fT 2 + p)−
− 2a(2ȧḃba−1 + ḃ2 − ǫ)fR −

− (2b2ȧ+ 4abḃ)ṘfRR − (2b2ȧ+ 4abḃ)Ṫ 2fRT 2 . (9)

The fundamental properties of the system can be ex-
plained using the Hamiltonian (E) and the dynamical
equations, determined as

∂L

∂qi
− d

dt
(
∂L

∂q̇i
) = 0, E = q̇i(

∂L

∂q̇i
)− L, (10)

where generalized coordinates are denoted by qi. The
resulting dynamical equations are

f −RfR − T 2fT 2 + (3p2 + ρ2)fT 2 + p+

+4ḃb−1(ṘfRR+fRT 2 Ṫ 2)+a(fT 2(6pp,a+2ρρ,a)+p,a)+

+b−2(2ḃ2+4b̈b+2ǫ)fR+2R̈fRR+2T̈ 2fRT 2+2Ṙ2fRRR+

+ 2Ṫ 2fRT 2T 2 + 4ṘṪ 2fRRT 2 = 0, (11)

f −RfR − T 2fT 2 + (3p2 + ρ2)fT 2 + (ṘfRR +

+ Ṫ 2fRT
2)4ȧa−1 + p+ b(fT 2(6pp,b + 2ρρ,b) + p,b) +

+ 2a−1b−1(äb+ ȧḃ+ b̈a)fR + 2f̈R +

+ 4ḃb−1(ṘfRRT 2 + Ṫ 2fRT 2T 2) = 0, (12)

(2äa−1 − 4b̈b−1)fRR + (3p2 + ρ2)fRT 2 −
− 2ǫb−1fRR −RfRR − T 2fRT 2 −

− (4ȧḃa−1b−1 + 2ḃ2b−2)fRR = 0, (13)

(2äa−1 − 4b̈b−1)fRT 2 + (3p2 + ρ2)fT 2T 2 −
− 2ǫb−1fRT 2 −RfRT 2 − T 2fT 2T 2 −

− (4ȧḃa−1b−1 + 2ḃ2b−2)fRT 2 = 0. (14)

We formulate the Hamiltonian to examine the total
energy of the system as

E = −ab2(f −RfR − T 2fT 2 + (3p2 + ρ2)fT 2)−
− (2ȧḃba−1 + ḃ2)× 2afR − ǫfR − ab2p−

− (2b2ȧ+ 4abḃ) ˙fR. (15)

The dynamical equations (11)–(14) are extremely com-
plex due to multivariate functions and their derivatives.
In the next section, we use NS technique to identify
exact solutions. Although this theory is not conserved
but one can obtain conserved values through NS ap-
proach, which are then used to examine the mysterious
universe. As a result, this strategy is more intriguing
and we adopt it in this article.

3. Noether Symmetries in EMSG.This section
formulates the Noether equations for the homogenous
and anisotropic universe model in EMSG. The symme-
try generators are expressed as

Y = λ(t, qi)
∂

∂t
+Υj(t, qi)

∂

∂qj
, i = 1, 2, 3, ..., n,

where λ(t, a, b, R, T 2) and Υj(t, a, b, R, T 2) are the un-
known parameters. The Lagrangian must satisfy the
invariance constraint, expressed as

Y [1]L+ (Dλ)L = DΩ, Y [1] = Y + Υ̇i
∂

∂q̇i
, (16)

where Ω is the boundary term and

D =
∂

∂t
+ q̇i

∂

∂qi

defines the total derivative. The corresponding integral
integral of motion is expressed as

I = Υi
∂L

∂q̇i
− λE − Ω. (17)

This is a crucial component of NS that is essential for
computing viable solutions and is also named as the
conserved quantities.

We take the vector field (Y ) with configuration
space Q = (t, a, b, R, T 2) to examine the generators
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with corresponding first integrals of Lagrangian (9) un-
der invariance condition (16). By comparing the coef-
ficients of Eq.(16), we have

2b2Υ1
,tfRT 2 + 4abΥ2

,tfRT 2 +Ω,T 2 = 0, (18)

2b2Υ1
,tfRR + 4abΥ2

,tfRR + Ω,R = 0, λ,afR = 0, (19)

bΥ1
,T 2fRR + bΥ1

,RfRT 2 + 2aΥ2
,T 2fRR +

+ 2aΥ2
,RfRT 2 = 0, (20)

4bΥ1
,tfR + 4aΥ2

,tfR + 4abΥ3
,tfRR +

+ 4abΥ4
,tfRT 2 +Ω,b = 0, (21)

4bΥ2
,tfR + 2b2Υ3

,tfRR + 2b2Υ4
,tfRT 2 +Ω,a = 0, (22)

λ,bfR = 0,

bΥ1
,T 2fRR + 2abΥ2

,T 2fRT 2 = 0, (23)

λ,RfRR = 0, λ,T 2fRT 2 = 0,

bΥ1
,RfRR + 2abΥ2

,RfRR = 0, (24)

2Υ2
,afR + bΥ3

,afRR + bΥ4
,afRT 2 = 0,

Υ1fR + aΥ3fRR + aΥ4fRT 2 + 2bΥ1
,bfR +

+ 2abΥ4
,bfRT 2 + 2abΥ3

,bfRR − aλ,tfR +

+ 2aΥ2
,bfR = 0, (25)

λ,afRR = 0, λ,afRT 2 = 0,

2Υ2
,RfR + bΥ3

,RfRR + bΥ4
,RfRT 2 − bλ,tfRR +

+ 2Υ2fRR + bΥ1
,afRR + bΥ3fRRR +

+ bΥ4fRRT 2 + 2aΥ2
,afRR = 0, (26)

λ,bfRR = 0,

2Υ2fRT 2 − bλ,tfRT 2 + bΥ3
,T 2fRR +

+ bΥ1
,afRT 2 + bΥ4

,T 2fRT 2 + 2Υ2
,T 2fR + bΥ4fRT 2T 2 +

+ 2aΥ2
,afRT 2 + bΥ3fRRT 2 = 0, (27)

λ,bfRT 2 = 0,

2Υ2fR+2bΥ3fRR+2bΥ4fRT 2+2bΥ1
,afR+2aΥ2

,afR+

+2abΥ3
,afRR +2bΥ2

,T 2fR + b2Υ3
,bfRR + 2abΥ4

,afRT 2 +

+ b2Υ4
,bfRT 2 − 2bλ,tfR = 0, (28)

2bΥ1fRR+2aΥ2fRR+2abΥ3fRRR+2abΥ4fRRT 2 +

+ b2Υ1
,bfRR + 2bΥ1

,RfR + 2abΥ2
,bfRR + 2aΥ2

,RfR +

+ 2abΥ3
,RfRR + 2abΥ4

,RfRT 2 − 2abλ,tfRR = 0, (29)

λ,RfR = 0, λ,T 2fR = 0,

2bΥ1fRT 2 + 2aΥ2fRT 2 + 2abΥ3fRRT 2 +

+2abΥ4fRT 2T 2+b2Υ1
,bfRT 2+2bΥ1

,T 2fR+2abΥ2
,bfRT 2+

+ 2aΥ2
,T 2fR + 2abΥ3

,T 2fRR + 2abΥ4
,T 2fRT 2

− 2abλ,tfRT 2 = 0, (30)

λ,RfRT 2 = 0, λ,T 2fRR = 0,

b2Υ1[f −RfR − T 2fT 2 + (3p2 + ρ2)fT 2 + p+

+ a((6pp,a + 2ρρ,a)fT 2 + p,a) + 2ǫfR] +

+ Υ2[2ab(f −RfR − T 2fT 2 + (3p2 + ρ2)fT 2 + p) +

+ ab2((6pp,b + 2ρρ,b)fT 2 + p,b)] + (3p2 + ρ2)fRT 2) +

+Υ3[−ab2(RfRR−T 2fRT 2+(3p2+ρ2)fT 2T 2)+2aǫfRR]+

+ Υ4[−ab2(RfRT 2 − T 2fT 2T 2 −
− (3p2 + ρ2)fT 2T 2) + 2aǫfRT 2 ] +

+ λ,t[ab
2(f −RfR − T 2fT 2 + 2ǫfR +

+ (3p2 + ρ2)fT 2 + p)]− Ω,t = 0. (31)

These equations help to study the dark cosmos in the
context of f(R, T 2). We solve the above system to ob-
tain exact solutions for specific f(R, T 2) model in the
following section.

3.1. Exact Solutions. Here, we formulate the
generators of NS, conserved values of the system and
corresponding physical solutions. Due to the above sys-
tem’s complexity and nonlinearity, we assume a partic-
ular EMSG model f(R, T 2) = R+T 2 which minimizes
the system complexity and help to examine the exact
solutions. Manipulating Eqs.(18)-(31), we obtain

Υ1 =
1

3
aḞ1(t)− 2c1a−

1

2

aF2(t)

b
3
2

− 3

8

F4(t)√
b

+
c2√
b
,

Υ2 =
F2(t)√

b
+ (

1

3
Ḟ1(t) + c1)b, λ = F1(t),

Ψ = −4

3
ab2F̈1(t)− 4a

√
bḞ2(t) + F3(t) + Ḟ4(t)b

3
2 ,

ρ =

√
3c1(−3c1a2ǫ− 6c1aǫ− 2c3at)

3c1ba
, (32)

where ci(i = 1, ..., 5) are integration constants with
c1 6= 0. The corresponding symmetry generators be-
come

Y1 = −3t
∂

∂t
, Y2 = −3a

∂

∂a
.

Substituting the value of Lagrangian (9), Hamiltonian
(15) and above solutions (32) in Eq.(17), we obtain first
integral as

I = 12abḃc1 + 3

[
3c1a

2ǫ+ 6c1aǫ+ 2c3at

3c1a
−
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− 2aḃ2 − 4ȧḃb+ 2
ǫ

b2

]
c1t− c3t

2.

By comparing the coefficients of c1 and c3, we have

I1 = t2, I2 = 12abḃ+ 3t
(
ǫa− 2aḃ2 − 4ȧḃb +

2ǫ

b2

)
.

We substitute Eqs.(32) into dynamical equations (11)-
(15) and obtain the exact solution as

a(t) =
(
6c5c3(c5 + t)

2
3 − 15c1ǫ(c5 + t)

2
3 −

− 4c3t(c5 + t)
2
3 + 60c4c1ǫ

)(
60c1ǫ(c5 + t)

2
3

)−1

,

b(t) =
1

2

√
−6ǫ(c5 + t). (33)

To analyze this solution, we study the graphical be-
havior of some important cosmological parameters like
deceleration and r − s parameters that are the major
factors in the field of cosmology. These cosmic param-
eters for anisotropic and homogeneous universe model
are defined as

H =
1

3
(
ȧ

a
+ 2

ḃ

b
), q = − H

H2
− 1.

The pair of r − s parameters constructs a relationship
between formulated and standard models of the uni-
verse which is used to examine the characteristics of
DE, expressed as

r = q + 2q2 − q̇

H
, s =

r − 1

3(q − 1
2 )
.

For (r, s) = (1, 0), the constructed model corresponds
to ΛCDM model whereas quintessence and phantom
DE eras are obtained for s > 0 and r < 1, respectively.
The EoS parameter

ωeff =
peff

ρeff

is a dimensionless quantity that determines the correla-
tion between state parameters. This parameter differ-
entiates the DE era into quintessence (−1 < ω ≤ −1/3)

and phantom (ω < −1) phases.

We have considered the values of integration con-
stants as c1 = −2, c3 = −10, c4 = 10 and c5 = 5.7

to analyze the graphical behavior of physical quanti-
ties. Figure 1 shows that the effective energy density is
positively increasing for ǫ = −1 which manifests that
our universe is in the expansion phase. Figure 2 shows
that the effective pressure and deceleration parameter

are negative for BT-III universe model which support
the current cosmic acceleration. Figure 3 determines
that r − s and EoS parameters describe quintessence
and phantom phases of DE which represent the cos-
mic expansion. The obtained solutions for ǫ = −1 are
consistent with recent observations which indicate that
this theory demonstrates expansion of the universe.

The total amount of energy density can be ex-
pressed as fractional energy density. The fractional
density is defined as

1 + Ωσ = Ωm +ΩΛ,

where

Ωm =
ρ

3H2
, ΩΛ =

ρΛ
3H2

, Ωσ =
σ2

3H2
.

The evaluation of fractional densities corresponding
to ordinary matter (Ωm) and dark energy (ΩΛ) plays
a vital role to measure the contribution of these ele-
ments in the cosmos. The densities for isotropic uni-
verse model defined as Ωm+ΩΛ = 1 whereas expression
equality becomes Ωm+ΩΛ = 1+Ωσ for anisotropic uni-
verse model. We analyze the behavior of fractional den-
sities corresponding to matter and dark energy graph-
ically at redshift scale factor where a(t) = a0(1 + z)−1

and z is the redshift parameter. From observations of
Planck data 2018, it is suggested that Ωm ∼= 0.3111 and
ΩΛ

∼= 0.6889. According to some recent observations,
there are some evidences in favor of closed universe
model with fractional density ΩΛ

∼= 0.01. For ε = −1,
the fractional density of matter indicates inconsistent
behavior and the trajectory of fractional density pro-
vides Ωm = 0.3 for ε = 1 as shown in Figure 4 (left
plot). In this regard, it implies consistent behavior with
Planck data 2018. The right plot of Figure 4 reveals
the behavior of fractional density of dark energy which
shows consistent behavior with Plank data for ε = 1

and it exhibits inconsistent behavior for ε = −1.

4. Final Remarks. Modified theories are as-
sumed as the most propitious and elegant proposals to
examine the dark universe due to the presence of extra
higher-order geometric terms. In this paper, we have
formulated exact solutions of anisotropic and homoge-
neous spacetimes in f(R, T 2) gravity. For this reason,
we have considered the NS technique to examine the
exact solutions. We have formulated the Lagrangian,
NS generators with conserved values in the background
of EMSG. The behavior of exact solutions have been
investigated through different cosmological quantities.
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The main findings are summarized as follows.
1. We have established two non-zero NS genera-

tors and corresponding conserved quantities. We have
obtained the exact solutions for BT-I, BT-III and KS
universe models.

2. The effective energy density show accelerated
and constant expansion corresponding to BT-III, BT-I
and KS spacetimes, respectively (Figure 1).

3. The value of effective pressure and deceleration
parameter remain negative for ǫ = −1 which support
the current cosmic acceleration (Figure 2).

4. The r−s and EoS parameters yield quintessence
and phantom DE phases which determine the rapid ex-
pansion of the universe (Figure 3).

5. In the background of BT-III universe models,
the analysis of fractional density parameter of matter
reveals that the EMSG is consistent with Plancks 2018
data. In case of KS universe model, this consistency is
not preserved (Figure 4). We conclude that the EMSG
significantly explains the cosmic journey from deceler-
ated to accelerated epoch.

6. We find that first integrals of motion are very
useful to obtain viable cosmological solutions. It is
found that the considered model of EMSG supports
the cosmic expansion.

The full text of this paper is published in the English
version of JETP.
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