ВЛИЯНИЕ УСЛОВИЙ ПОЛИМЕРИЗАЦИИ НА МАГНИТНЫЕ СВОЙСТВА ФЕРРОКОМПОЗИТА

Д. И. Радушнов^{*}, А. Ю. Соловьева, Е. А. Елфимова

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина 620000, Екатеринбург, Россия

> Поступила в редакцию 21 июля 2022 г., после переработки 10 августа 2022 г. Принята к публикации 10 августа 2022 г.

Данная работа посвящена теоретическому исследованию магнитных свойств ансамбля однодоменных взаимодействующих магнитных наночастиц, внедренных в неподвижную полимерную матрицу. Эта модель типична для описания магнитоактивных полимерных феррокомпозитов, широко применяющихся в промышленных и биомедицинских приложениях. Предполагается, что феррокомпозит получается путем отверждения несущей среды в феррожидкости, находящейся во внешнем магнитном поле \mathbf{h}_p при температуре полимеризации T_p ; после отверждения жидкости носителя наночастицы сохраняют пространственное распределение и ориентацию своих осей легкого намагничивания, которые они имели до отверждения несущей среды. Отдельно исследован вклад межчастичных диполь-дипольных взаимодействий в статическую намагниченность феррокомпозита в зависимости от напряженности магнитного поля \mathbf{h} и поля полимеризации \mathbf{h}_p . Проанализирована роль температуры полимеризации и размера магнитных наночастиц на магнитные свойства феррокомпозита. Представленные в статье аналитические выражения намагниченности и начальной магнитной восприимчивости позволяют прогнозировать магнитные свойства феррокомпозита в зависимости от собенностей и условий синтеза, что является теоретической основой для производства феррокомпозитов с заранее заданным магнитным откликом в определенном магнитном поле.

Статья представлена в рамках публикации материалов VIII Евроазиатского симпозиума «Тенденции в магнетизме» (EASTMAG-2022), Казань, август 2022 г.

DOI: 10.31857/S004445102301011X **EDN:** NODOPA

1. ВВЕДЕНИЕ

В последние десятилетия растет интерес к искусственно синтезируемым мягким магнитным материалам, таким как феррожидкости, магнитные эластомеры и феррогели, ферронематические жидкие кристаллы и различные биосовместимые магнитные суспензии. Данные феррокомпозиты состоят из магнитных наночастиц, внедренных в жидкую или полимерную матрицу. Внедрение большого количества магнитных наночастиц в матрицу позволяет управлять свойствами композитного материала с помощью внешнего магнитного поля, что обуславливает широкое применение феррокомпозитов во многих технологических и биомедицинских приложениях [1–10]. К настоящему моменту разработано несколько экспериментальных методик встраивания магнитных частиц в полимерную матрицу [11–17]. Одним из таких способов синтеза феррокомпозитов является полимеризация феррожидкостей [18–21], которые представляют собой устойчивые коллоидные суспензии однодоменных магнитных наночастиц диаметра порядка 10 нм в инертной жидкости-носителе [22].

Для феррокомпозитов с жидкой матрицей характерен броуновский механизм вращения магнитных моментов наночастиц, изменение ориентации которых происходит вместе с поворотом тела частицы во время броуновского движения. Внешнее магнитное поле упорядочивает направления магнитных моментов частиц, создавая таким образом анизотропию ориентационной структуры ансамбля наноча-

E-mail: radushnovs@mail.ru

стиц. Кроме того, межчастичные диполь-дипольные взаимодействия способствуют появлению пространственной анизотропии, поскольку частицы стремятся сформировать энергетически выгодные структуры типа "голова-хвост" относительно направлений своих магнитных моментов [23, 24]. Сформированная конфигурация ориентаций осей легкого намагничивания и положений частиц зависит от напряженности внешнего поля, температуры, концентрации наночастиц, интенсивности диполь-дипольного взаимодействия и т.п. Для оценки интенсивности диполь-дипольных взаимодействий в системе используется безразмерный параметр λ :

$$\lambda = \frac{\mu_0 m^2}{4\pi d^3 k_B T} , \qquad (1)$$

который имеет смысл отношения магнитной энергии взаимодействия двух частиц диаметра d с магнитным моментом m при их контакте к тепловой энергии k_BT . Константой μ_0 обозначена магнитная проницаемость вакуума. Поскольку параметр $\lambda \sim 1/T$, то интенсивность межчастичных магнитных взаимодействий можно регулировать с помощью изменения температуры образца.

Если до выключения поля провести полимеризацию жидкости-носителя, то дальнейшая реакция на магнитное поле полимеризованного феррокомпозита с обездвиженными магнитными наночастицами будет иметь суперпарамагнитный характер: изменение ориентации магнитного момента будет происходить внутри тела наночастицы по неелевскому механизму за счет отклонения от оси магнитной анизотропии частицы. В качестве количественной оценки магнитной анизотропии наночастиц используется безразмерный параметр σ :

$$\sigma = \frac{K v_m}{k_B T},\tag{2}$$

где K — константа магнитной анизотропии материала частиц, $v_m = \pi d^3/6$ — объем частицы. Для обычных наноразмерных частиц энергетический барьер анизотропии Kv_m может быть сопоставим с тепловой энергией k_BT , и поэтому тепловые флуктуации приводят к стохастической переориентации магнитного момента внутри частицы. Уменьшение температуры приводит к росту магнитокристаллической анизотропии в системе, т.е. магнитные моменты частиц стремятся быть ориентированы параллельно осям легкого намагничивания. На кривую намагничивания феррожидкости величина σ не влияет за счет присутствия вращательных степеней свободы феррочастиц, в то время как после по-

Рис. 1. Схематические иллюстрации рассмотренных образцов: *а* — суспензия СМЧ, вовлеченных в броуновское движение и неелевское вращение; *б* — замороженная конфигурация положений СМЧ и направлений осей легкого намагничивания. Синие сплошные стрелки иллюстрируют направления осей легкого намагничивания, красные пунктирные стрелки показывают ориентации магнитных моментов СМЧ

лимеризации значение этого параметра для феррокомпозита становится немаловажным. На рис. 1 схематично показано отличие суспензии суперпарамагнитных частиц (СМЧ), подверженных броуновскому движению и неелевскому вращению, от феррокомпозита, в котором положения СМЧ и направления их осей магнитной анизотропии фиксированы. При этом созданная в процессе полимеризации конфигурация положений частиц и направлений осей магнитной анизотропии, с одной стороны, зависит от основных контролируемых условий полимеризации образца (поля полимеризации \mathbf{h}_p и температуры полимеризации T_p), а с другой стороны, она полностью определяет магнитный отклик синтезированного феррокомпозита.

Взаимосвязь между условиями полимеризации феррожидкости и магнитными свойствами феррокомпозита исследовалась как экспериментально [25– 27], так и в ряде теоретических работ [28–38]. Теоретическое описание магнитных свойств феррокомпозита осложнено сразу несколькими факторами: учет сформированной в процессе синтеза ориентационной текстуры осей легкого намагничивания наночастиц, а также дальнодействующих межчастичных диполь-дипольных взаимодействий в системе СМЧ. В недавней работе [39] представлено описание намагниченности и начальной магнитной восприимчивости ансамбля неподвижных СМЧ, ориентационное текстурирование которых отличается от равномерного [29-33] или идеального выравнивания [32, 34-38]. Межчастичное диполь-дипольное взаимодействие в этой работе не учитывалось, поэтому полученные аналитические выражения могут быть использованы для описания магнитных свойств только низкоконцентрированных феррокомпозитов. В следующей работе [40] удалось разработать теорию, которая, с одной стороны, учитывает естественное ориентационное текстурирование СМЧ, сформированное в процессе синтеза, а с другой стороны, принимает во внимание диполь-дипольные взаимодействия между частицами. Представленное в [40] аналитическое выражение намагниченности ограничивается частным случаем, когда температура при полимеризации образца феррожидкости совпадает с температурой синтезированного феррокомпозита. При этом анализировались только полевые зависимости магнитного отклика феррокомпозита при фиксированном значении интенсивности межчастичных диполь-дипольных взаимодействий. В данной работе предлагается более общее универсальное аналитическое выражение статической намагниченности феррокомпозита, позволяющее точнее учитывать температурные условия полимеризации магнитоактивных материалов. Полученные кривые намагничивания и начальной магнитной восприимчивости будут исследованы в широкой области значений \mathbf{h}_p и T_p , что позволит определить взаимосвязь между параметрами, при которых происходит полимеризация образца, сформированной ориентацией и пространственной структурой магнитного наполнителя и свойствами, проявляемыми феррокомпозитом.

2. МОДЕЛЬ

Система до полимеризации моделируется как суспензия из N сферических однодоменных СМЧ, погруженных в некоторую жидкость или раствор полимера при температуре T_p , общим объемом V. Контейнер с образцом имеет форму цилиндра, вытянутого вдоль лабораторной оси z, совпадающей с направлением приложенного магнитного поля $\hat{\mathbf{h}} = (0, 0, 1)$. Такая конструкция системы позволяет пренебречь эффектами

размагничивания, а внутреннее магнитное поле считать таким же, как внешнее приложенное поле $\mathbf{h} = h \hat{\mathbf{h}}$. Магнитный момент однодоменной СМЧ определяется в виде $m = M_s v_m$, где M_s — объемная намагниченность насыщения. Численная концентрация СМЧ в системе равна $\rho = N/V$, а объемная доля $\varphi = \rho \pi d^3/6$. Каждая СМЧ с номером *i* характеризуется своим радиус-вектором $\mathbf{r}_i = (\sin \theta_i \cos \phi_i, \sin \theta_i \sin \phi_i, \cos \theta_i), \text{описывающим ее}$ центральное положение, направлением оси легкого намагничивания $\hat{\mathbf{n}}_i = (\sin \xi_i \cos \psi_i, \sin \xi_i \sin \psi_i, \cos \xi_i)$ направлением магнитного И момента $\mathbf{m}_i = m\hat{\mathbf{m}}_i = (\sin\omega_i \cos\zeta_i, \sin\omega_i \sin\zeta_i, \cos\omega_i)$ (рис. 2).

Рис. 2. Лабораторная система координат, ориентация частицы задается вектором оси легкого намагничивания $\hat{\mathbf{n}} = (\sin\xi\cos\psi,\sin\xi\sin\psi,\cos\xi)$, вмороженным в тело частицы. Ориентация магнитного момента частицы определяется вектором $\hat{\mathbf{m}} = (\sin\omega\cos\zeta,\sin\omega\sin\zeta,\cos\omega)$, который может отличаться от вектора оси легкого намагничивания из-за суперпарамагнитных флуктуаций

Предполагается, что изначально СМЧ помещены в жидкий носитель, поэтому они могут двигаться и вращаться, меняя в результате свое положение \mathbf{r}_i и ориентацию легкой оси $\hat{\mathbf{n}}_i$, исключая самопересечения: $r_{ij} = |\mathbf{r}_{ij}| = |\mathbf{r}_i - \mathbf{r}_j| \ge d$. Магнитные моменты частиц вовлечены в три вида взаимодействий:

(1) межчастичные диполь-дипольные взаимодействия, описываемые потенциалом $U_d(ij)$:

$$\hat{H}_d = \sum_{i < j=1}^N U_d(ij), \tag{3}$$

$$U_{\rm d}(ij) = \frac{\lambda d^3 k_B T}{r_{ij}^3} \left[(\hat{\mathbf{m}}_i \cdot \hat{\mathbf{m}}_j) - 3(\hat{\mathbf{m}}_i \cdot \hat{\mathbf{r}}_{ij}) (\hat{\mathbf{m}}_j \cdot \hat{\mathbf{r}}_{ij}) \right],$$

(2) взаимодействие магнитного момента с внешним магнитным полем, моделируемое потенциалом $U_m(i)$:

$$\hat{H}_m = \sum_{i=1}^N U_m(i), \quad U_m(i) = -\alpha k_B T(\hat{\mathbf{m}}_i \cdot \hat{\mathbf{h}}), \quad (5)$$

(3) преодоление потенциального барьера внутренней магнитной анизотропии $U_{\sigma}(i)$:

$$\hat{H}_{\sigma} = \sum_{i=1}^{N} U_{\sigma}(i), \quad U_{\sigma}(i) = -\sigma k_B T (\hat{\mathbf{m}}_i \cdot \hat{\mathbf{n}}_i)^2, \quad (6)$$

где $\hat{\mathbf{r}}_{ij}$ — единичный вектор \mathbf{r}_{ij} , $\alpha = \mu_0 m h/k_B T$ — безразмерный параметр Ланжевена. Следовательно, полная потенциальная энергия ансамбля СМЧ представляет собой сумму гамильтонианов:

$$U = \hat{H}_d + \hat{H}_m + \hat{H}_\sigma. \tag{7}$$

Находясь под действием магнитного поля, феррожидкость намагничивается в равновесии с напряженностью поля h_p при температуре T_p , после чего жидкость-носитель подвергается мгновенному затвердеванию. СМЧ теряют свои поступательные и вращательные степени свободы, после чего положение и ориентация СМЧ в затвердевшем образце остаются такими же, как и в жидкости в момент затвердевания. Наличие внешнего поля формирует текстуру, степень анизотропии которой зависит от поля полимеризации, температуры полимеризации и интенсивности межчастичных диполь-дипольных взаимодействий. Опишем статическую намагниченность системы неподвижных СМЧ при различных параметрах α , σ и λ . Будем считать, что безразмерные параметры λ_p и σ_p , описывающие феррожидкость в момент полимеризации, могут отличаться от соответствующих параметров λ и σ для полимеризованного композита за счет изменения температуры системы; направление поля полимеризации феррожидкости совпадает с направлением магнитного поля, приложенного к феррокомпозиту: $\mathbf{h}_p ||\mathbf{h}|| z$.

3. ТЕОРИЯ

После отвердевания жидкости-носителя во внешнем магнитном поле \mathbf{h}_p частицы в феррожидкости теряют подвижность, и в образовавшемся феррокомпозите наблюдается некоторая текстура в ориентации осей легкого намагничивания и расположении частиц. Сформированная текстура может быть описана одночастичной функцией распределения $f_0(\hat{\mathbf{n}}_1, \hat{\mathbf{r}}_1)$, характеризующей плотность вероятности того, что случайно выбранная частица с номером 1 имеет направление оси легкого намагничивания $\hat{\mathbf{n}}_1$, а ее положение описывается вектором $\hat{\mathbf{r}}_1$. Полный аналитический вид данной функции приведен в [40]. При вторичном воздействии внешнего магнитного поля напряженностью **h** на текстурированный образец он намагничивается за счет суперпарамагнитных механизмов ориентации магнитных моментов частиц. При этом плотность вероятности того, что случайно выбранная частица с номером 1 имеет направление оси магнитной анизотропии $\hat{\mathbf{n}}_1$ и магнитный момент $\hat{\mathbf{m}}_1$, а также радиус-вектор $\hat{\mathbf{r}}_1$, определяется одночастичной трехпараметрической функцией распределения

$$f(\hat{\mathbf{n}}_{1}, \hat{\mathbf{m}}_{1}, \hat{\mathbf{r}}_{1}) = f_{0}(\hat{\mathbf{n}}_{1}, \hat{\mathbf{r}}_{1}) \int \exp\left(-\frac{U}{k_{B}T}\right) \times \\ \times \frac{1}{Z_{1}(\hat{\mathbf{n}}, \hat{\mathbf{r}})} \prod_{i=2}^{N} d\hat{\mathbf{n}}_{i} d\hat{\mathbf{m}}_{i} d\hat{\mathbf{r}}_{i}, \qquad (8)$$
$$Z_{1}(\hat{\mathbf{n}}, \hat{\mathbf{r}}) = \int \exp\left(-\frac{U}{k_{B}T}\right) d\hat{\mathbf{m}},$$

где усреднения по степеням свободы частицы *i* определяется формулами

$$\int d\hat{\mathbf{n}}_i = \frac{1}{4\pi} \int_0^{2\pi} d\psi_i \int_{-1}^1 d\cos\xi_i, \quad \int d\hat{\mathbf{n}}_i \cdot 1 = 1,$$
$$\int d\hat{\mathbf{m}}_i = \frac{1}{4\pi} \int_0^{2\pi} d\zeta_i \int_{-1}^1 d\cos\omega_i, \quad \int d\hat{\mathbf{m}}_i \cdot 1 = 1,$$
$$\int d\hat{\mathbf{r}}_i = \frac{1}{V} \lim_{R \to \infty} \int_0^{2\pi} d\phi_i \int_{-1}^1 d\cos\theta_i \int_0^{R/\sin\theta_i} r_i^2 dr_i,$$
$$\int d\hat{\mathbf{r}}_i \cdot 1 = 1.$$

Намагниченность феррокомпозита в поле **h** можно выразить через одночастичную функцию распределения $f(\hat{\mathbf{n}}_1, \hat{\mathbf{m}}_1, \hat{\mathbf{r}}_1)$ следующим образом:

$$M = \rho m \int \left(\hat{\mathbf{m}}_1 \cdot \hat{\mathbf{h}} \right) f(\hat{\mathbf{n}}_1, \hat{\mathbf{m}}_1, \hat{\mathbf{r}}_1) d\hat{\mathbf{n}}_1 d\hat{\mathbf{m}}_1 d\hat{\mathbf{r}}_1.$$
(9)

Далее необходимо провести вириальное разложение функции распределения (8), ограничиваясь линейными слагаемыми по $\chi_{Lp} = 8\lambda_p \phi$ и $\chi_L = 8\lambda \phi$. Процедура данного разложения подробно описана в [40]. В результате мы получаем аналитическое выражение намагниченности, учитывающее усло-

вия полимеризации $(\alpha_p, \sigma_p, \lambda_p)$ и вторичное намагничивание образца при параметрах α, σ, λ :

$$M = M_{id} + \frac{\rho m}{2R(\alpha_p, \sigma_p)} \left\{ \frac{\chi_{Lp}}{2R(\alpha_p, \sigma_p)} \int_0^{\pi} \frac{\partial P(\alpha, \sigma, \xi_1)}{\partial \alpha} \frac{\partial P(\alpha_p, \sigma_p, \xi_1)}{\partial \alpha_p} \frac{\sin \xi_1}{P(\alpha, \sigma, \xi_1)} d\xi_1 \int_0^{\pi} \frac{\partial P(\alpha_p, \sigma_p, \xi_2)}{\partial \alpha_p} \sin \xi_2 d\xi_2 \right. \\ \left. + \frac{\chi_L}{2} \int_0^{\pi} \frac{\partial P(\alpha, \sigma, \xi_2)}{\partial \alpha} \frac{\sin \xi_2}{P(\alpha, \sigma, \xi_2)} d\xi_2 \int_0^{\pi} \frac{P(\alpha_p, \sigma_p, \xi_1)}{P(\alpha, \sigma, \xi_1)} \left[\frac{\partial^2 P(\alpha, \sigma, \xi_1)}{\partial \alpha^2} - \frac{1}{P(\alpha, \sigma, \xi_1)} \left(\frac{\partial P(\alpha, \sigma, \xi_1)}{\partial \alpha} \right)^2 \right] \sin \xi_1 d\xi_1 \\ \left. - \frac{\chi_{Lp}}{4R^2(\alpha_p, \sigma_p)} \int_0^{\pi} \frac{P(\alpha_p, \sigma_p, \xi_1)}{P(\alpha, \sigma, \xi_1)} \frac{\partial P(\alpha, \sigma, \xi_1)}{\partial \alpha} \sin \xi_1 d\xi_1 \left(\int_0^{\pi} \frac{\partial P(\alpha_p, \sigma_p, \xi_2)}{\partial \alpha_p} \sin \xi_2 d\xi_2 \right)^2 \right\},$$
(10)

$$M_{id} = \frac{\rho m}{2R(\alpha_p, \sigma_p)} \left\{ \int_0^{\pi} \frac{P(\alpha_p, \sigma_p, \xi_1)}{P(\alpha, \sigma, \xi_1)} \frac{\partial P(\alpha, \sigma, \xi_1)}{\partial \alpha} \sin \xi_1 d\xi_1 \right\},\tag{11}$$

$$R(\alpha, \sigma) = \left(\frac{\operatorname{sh} \alpha}{\alpha}\right) \int_{0}^{1} \exp(\sigma t^{2}) dt,$$
$$P(\alpha, \sigma, \xi) = \frac{1}{2} \int_{-1}^{1} \exp\left(\sigma t^{2} + \alpha t \cos\xi\right) I_{0}\left(\alpha \sqrt{1 - t^{2}} \sin\xi\right) dt.$$
(12)

Заметим, что выражение (11) порядка χ_L^0 определяет намагниченность текстурированного композита без учета межчастичных взаимодействий, которое уже было вычислено в работе [39]. Таким образом, можно выделить вклад диполь-дипольных взаимодействий в статическую намагниченность:

$$\Delta M = M - M_{id}.\tag{13}$$

Начальная магнитная восприимчивость характеризует магнитный отклик феррокомпозита в малых полях и может быть определена через намагниченность (10) как

$$\chi = \frac{\partial M}{\partial h} \bigg|_{h=0}.$$

При этом полученная функция не зависит от параметра h, однако в ней остается зависимость от поля полимеризации h_p . Данная величина отличается сильной чувствительностью к изменениям температуры образца. В ряде экспериментальных работ [41– 44] была исследована начальная магнитная восприимчивость синтезированных высококонцентрированных образцов феррожидкости. При комнатной температуре наблюдались значения $\chi \sim 40$ –60, в то время как при низких температурах $T \sim 200$ –220 К начальная магнитная восприимчивость достигала значений $\chi \sim 100-120$ при сохранении текучести коллоида. Такой рост начальной магнитной восприимчивости связан с ослаблением теплового флуктуационного разупорядочивания в ориентациях магнитных моментов феррочастиц.

4. РЕЗУЛЬТАТЫ

Для апробации полученного выражения было выбрано два модельных феррокомпозита с намагниченностью насыщения магнитного материала $M_s = 480 \,\mathrm{kA/m}$ и константой магнитокристаллической анизотропии $K = 15 \, \mathrm{k} \, \mathrm{Д} \, \mathrm{m}^3$. Феррокомпозит 1 состоял из частиц с диаметром магнитного ядра d = 10 нм, а частицы в феррокомпозите 2 обладали диаметром d = 12 нм. Такое, на первый взгляд, небольшое отличие в размерах частиц приводит к заметной разнице в параметрах интенсивности диполь-дипольных взаимодействий λ и параметра магнитной анизотропии σ , пропорциональных d^3 . Объемная концентрация феррочастиц была выбрана в обоих случаях $\varphi = 0.125$, так что восприимчивость Ланжвенена совпадала с параметром интенсивности диполь-дипольных взаимодействий $\chi_L \equiv \lambda$. Численные значения параметров λ и σ для модельных систем представлены в табл. 1 и 2.

Таблица 1. Численные значения параметров λ и σ , характеристизующих феррокомпозит 1 (d = 10 нм), при разных температурах

$T, ^{\circ}\mathrm{C}$	-20	20	60
λ	1.808323	1.561452	1.373891
σ	2.248465	1.941507	1.708293

Таблица 2. Численные значения параметров λ и σ , характеристизующих феррокомпозит 2 (d = 12 нм), при разных температурах

$T, ^{\circ}\mathrm{C}$	-20	20	60
λ	3.124781	2.69819	2.374083
σ	3.885347	3.354924	2.95193

На рис. 3 показан вклад диполь-дипольных взаимодействий в статическую намагниченность феррокомпозитов 1 и 2 при температуре полимеризации $T_p = 20^{\circ}$ C как функция внешнего магнитного поля h. Для первого феррокомпозита (рис. 3 a) видно, что межчастичные взаимодействия наиболее сильно проявляются в полях $h_p \sim 20 \, {\rm kA/m}$. При этом для трех разных температур, которые обозначены синим, зеленым и красным цветом в порядке их возрастания, можно отметить небольшой сдвиг максимума кривой в сторону малых полей при понижении температуры. Это происходит потому, что зависимость от интенсивности внешнего магнитного поля *h* в формуле (10) входит через параметр Ланжевена α , который, в свою очередь, пропорционален 1/T. Таким образом, чем ниже температура образца, тем больше безразмерный параметр поля α при одной и той же напряженности внешнего магнитного поля *h*. Это, в свою очередь, приводит к более быстрому росту намагниченности феррокомпозита с понижением температуры в координатах h. Увеличение высоты пика рассматриваемой кривой с понижением температуры связано с ростом интенсивности межчастичных взаимодействий $\lambda \sim 1/T$. Увеличение напряженности поля полимеризации h_p приводит к незначительному усилению наблюдаемых тенденций. Для второго феррокомпозита (рис. 3 б) можно отметить сдвиг пиков кривых $\Delta M/
hommom{m}$ в область полей $h_p \sim 10\,{
m kA/m},$ поскольку более крупные частицы быстрее намагничиваются и дают больший вклад на начальном участке

Рис. 3. Вклад диполь-дипольных взаимодействий в статическую намагниченность феррокомпозита 1 с диаметром частиц d = 10 нм (a) и феррокомпозита 2 с диаметром частиц d = 12 нм (б) как функция внешнего магнитного поля h. Температура полимеризации в обоих случаях составляла $T_p = 20^{\circ}$ С. Пунктирные линии соответствуют значениям поля полимеризации $h_p = 10$ кА/м, сплошные линии соответствуют значениям поля полимеризации $h_p = 100$ кА/м. Синий, зеленый и красный цвета соответствуют температурам $T = -20^{\circ}$ С, $T = 20^{\circ}$ С и $T = -60^{\circ}$ С

намагниченности. Рост максимумов рассмотренных функций также вполне закономерен, поскольку интенсивность диполь-дипольных взаимодейтсвий нарастает примерно как d^3 . Сравнивая сплошные и пунктирные линии, стоит отметить, что для второго феррокомпозита различие между ними заметно возросло. Здесь виден эффект зависимости магнитных свойств феррокомпозита, с одной стороны, от напряженности поля полимеризации h_p , а с другой стороны, от параметра магнитной анизотропии σ_p . Поскольку значение σ для второго феррокомпозита выше, то и ориентационное структурирование осей легкого намагничивания вдоль направления приложенного поля проявляется сильнее.

На рис. 4 показан вклад диполь-дипольных взаимодействий в статическую намагниченность феррокомпозитов 1 и 2 как функция поля полимериза-

Рис. 4. Вклад диполь-дипольных взаимодействий в статическую намагниченность феррокомпозита как функция поля полимеризации h_p . Дипольная часть статической намагниченности феррокомпозита 1 с диаметром частиц d = 10 нм в поле h = 20 кА/м (a) и феррокомпозита 2 с диаметром частиц d = 12 нм в поле h = 10 кА/м (δ) как функция поля полимеризации h_p . Пунктирные линии соответствуют значениям температуры полимеризации $T_p = -20^{\circ}$ С, сплошные линии соответствуют значениям температуры полимеризации $T_p = -20^{\circ}$ С. Синий, зеленый и красный цвета соответствуют температурам $T = -20^{\circ}$ С и $T = -60^{\circ}$ С

ции h_p . При этом напряженность внешнего магнитного поля h, приложенного после полимеризации, была выбрана 20 кА/м для первого феррокомпозита и 10 кА/м для второго феррокомпозита, поскольку при этих значениях на рис. 3 наблюдались максимальные значения вклада диполь-дипольных взаимодействий в намагниченность. Для первого феррокомпозита (рис. 4 *a*) зависимость функции $\Delta M/\rho m$ от интенсивности поля полимеризации выражена слабо. Более ярко проявляется зависимость от температуры феррокомпозита T, которая меняется от -20 до 60° С (синий, зеленый и красный цвета). Видно, что вклад диполь-дипольных взаимодействий увеличивается с понижением как самой температурыT,так и температуры полимеризации феррокомпозита $T_p.$ Зависимость функции $\Delta M/\rho m$ от интен-

Рис. 5. Начальная магнитная восприимчивость феррокомпозита 1 с диаметром частиц d = 10 нм (a) и феррокомпозита 2 с диаметром частиц d = 12 нм (δ) как функция температуры T. Пунктирные и сплошные линии для рисунка (a) соответсвуют значениям поля полимеризации $h_p = 10$ кА/м и $h_p = 30$ кА/м. Пунктирные и сплошные линии для рисунка (δ) соответсвуют значениям поля полимеризации $h_p = 10$ кА/м и $h_p = 20$ кА/м. Синий, зеленый и красный цвета соответствуют температурам $T = -20^{\circ}$ С, $T = 20^{\circ}$ С и $T = -60^{\circ}$ С

сивности поля полимеризации для второго феррокомпозита (рис. 4 б) уже характеризуется ярко выраженным пиком в области $h_p \sim 20 \, {\rm kA/m}$. Это говорит о том, что при выборе интенсивности поля полимеризации, близкой к этому значению, магнитный отклик синтезированного феррокомпозита будет наибольший. Также на этом рисунке можно отметить близкое поведение кривых при параметрах $T_p = -20^{\circ}\text{C}, T = 20^{\circ}\text{C} \text{ M} T_p = 60^{\circ}\text{C}, T = -20^{\circ}\text{C},$ начиная с $h_p > 20 \,\mathrm{kA/m}$. Это явно указывает на то, что, выбирая эффективные значения температуры при полимеризации системы, можно регулировать магнитный отклик синтезированного феррокомпозита. Чем ниже температура полимеризации в процессе синтеза феррокомпозита, тем проще и быстрее будет добиться необходимых магнитных характеристик, уже не прибегая к низким температурам в процессе использования синтезированного образца.

Рис. 6. Начальная магнитная восприимчивость феррокомпозита как функция диаметра СМЧ d. Пунктирные и сплошные линии соттветсвуют значениям поля полимеризации $h_p = 10$ кА/м и $h_p = 30$ кА/м. Синий, зеленый и красный цвета соответствуют температурам $T = -20^{\circ}$ С, $T = 20^{\circ}$ С и $T = -60^{\circ}$ С

Температурная зависимость начальной магнитной восприимчивости феррокомпозитов 1 и 2 представлена на рис. 5. Видно, что понижение температуры от 60°C до -20°C увеличивает начальную магнитную восприимчивость феррокомпозита 1 (рис. 5 *a*) примерно в полтора раза. Изменение температуры полимеризации и напряженности поля h_p при этом слабо влияют на начальную магнитную восприимчивость первого феррокомпозита. Для феррокомпозита 2 (рис. 5 б) условия полимеризации уже позволяют несколько регулировать величину χ на всем рассмотренном диапазоне температур. Можно сделать вывод о том, что магнитные свойства мелкодисперсных феррокомпозитов значительно хуже поддаются управлению с помощью условий полимеризации. Рис. 6 показывает зависимость начальной магнитной восприимчивости от диаметра магнитных частиц в композите. Системы, состоящие из мелких частиц с диаметром до 7 нм, будут проявлять крайне слабый магнитный отклик, что делает их вовсе "неинтересными" в практическом смысле, поскольку именно на магнитных свойствах основано применение мягких магнитоактивных материалов в приложениях. Для феррокомпозитов, состоящих из частиц с диаметрами 10 нм и 15 нм, значения χ отличаются уже на порядок. Крупнодисперсные ферроколлоиды отличаются высокой интенсивностью диполь-дипольных взаимодействий и ярко выраженной магнитной анизотропией, следовательно, в момент полимеризации матрицы феррокомпозита можно добиться узкого распределения ориентаций осей магнитной анизотропии, направленных преимущественно вдоль приложенного магнитного поля.

5. ЗАКЛЮЧЕНИЕ

Проведено теоретическое исследование магнитных свойств феррокомпозита, синтезированного путем мгновенного отверждения жидкости-носителя в феррожидкости, находящейся во внешнем постоянном магнитном поле напряженностью h_p при температуре T_p. Получены аналитические формулы для статической намагниченности и начальной магнитной восприимчивости феррокомпозита с учетом как межчастичных диполь-дипольных взаимодействий, так и условий полимеризации при синтезе феррокомпозита. Диполь-дипольные взаимодействия увеличивают вероятность ориентации осей легкого намагничивания вдоль поля и уменьшают ее в направлении, перпендикулярном полю. Многочастичные корреляции наиболее сильно проявляются, когда энергия взаимодействия диполя с диполем сравнима с энергией взаимодействия диполя с полем. Для параметров, рассмотренных в статье, дипольдипольные взаимодействия наиболее сильно проявляются при $h \lesssim 30 \,\mathrm{kA/m}$ в феррокомпозитах с диаметром магнитных частиц порядка 10-12 нм. Управлять интенсивностью диполь-дипольных взаимодействий возможно с помощью изменения температуры образца. Ослабление теплового флуктуационного разупорядочивания в ориентациях магнитных моментов феррочастиц приводит к более эффективному намагничиванию феррожидкости, а также выстраиванию осей легкого намагничивания вдоль приложенного магнитного поля, поскольку неелевская энегия взаимодействия начинает преобладать над тепловой с понижением температуры в системе. На текстуру осей легкого намагничивания, формирующуюся в феррокомпозите, прямым образом влияет также и напряженность магнитного поля, при котором происходит полимеризация системы. Вторичное намагничивание синтезированного феррокомпозита в том же направлении, в каком действовало приложенное магнитное поле при полимеризации жидкости-носителя, является наиболее выгодным с точки зрения интенсивности магнитных свойств образца. Теория, предложенная в данной работе, позволяет прогнозировать магнитный отклик феррокомпозитов в зависимости от параметров системы и условий синтеза. Это обеспечивает теоертическую основу для производства феррокомпозитов с нужной реакцией на заданное магнитное поле.

Финансирование. Исследование выполнено при поддержке Фонда развития теоретической физики и математики «БАЗИС», проект №22-1-2-37-1.

ЛИТЕРАТУРА

- T. Yoshida, N.B. Othman, T. Tsubaki et al., IEEE Trans. Magn. 48, 3788 (2012).
- D. Eberbeck, F. Wiekhorst, S. Wagner et al., Appl. Phys. Lett. 98, 182502 (2011).
- A. G. Kolhatkar, A. C. Jamison, D. Litvinov et al., Int. J. Mol. Sci. 14, 15977 (2013).
- L. Rodriguez-Arco, I. A. Rodriguez, V. Carriel et al., Nanoscale 8, 8138 (2016)
- T. I. Becker, Y. L. Raikher, O. V. Stolbov et al., Smart Mater. Struct. 26, 095035 (2017).
- L. A. Makarova, T. A. Nadzharyan, Yu. A. Alekhina et al., Smart Mater. Struct. 26, 095054 (2017).
- T. Yoshida, Y. Matsugi, N. Tsujimura et al., J. Magn. Magn. Mater. 427, 162 (2017).
- N. E. Kazantseva, I. S. Smolkova, V. Babayan et al., Nanomaterials 11, 3402 (2021).
- F. Campos, A. B. Bonhome-Espinosa, R. Carmona et al., Mater. Sci. Eng., C 118,111476 (2021).
- A. Sharma, D. Mangla, H. Shehnaz et al., J. Environ. Manage. **306**, 114483 (2022).
- 11. S. Behrens, Nanoscale 3, 877 (2011).
- A. Dobroserdova, M. Schüumann, D. Borin et al., Soft Matter. 18, 496 (2022).
- B. Elder, R. Neupane, E. Tokita et al., Adv. Mater. 32, 1907142 (2020).
- G. V. Stepanov, D. Y. Borin, A. V. Bakhtiiarov et al., Phys. Sci. Rev. (2020).
- R. I. Baron, G. Biliuta, V. Socoliuc et al., Polymers 13, 1693 (2021).
- T. Krasia-Christoforou, V. Socoliuc, K. D. Knudsen et al., Nanomaterials 10, 2178 (2020).
- 17. N. Y. Mikhailin, Y. M. Galperin, V. I. Kozub et al., JETP 128, 761 (2019).
- G. Filipcsei, I. Csetneki, A. Sziláagyi et al., Adv. Polym. Sci. 206, 137 (2007).
- S. Abramchuk, E. Kramarenko, G. Stepanov et al., Polym. Adv. Technol. 18, 883 (2007).
- 20. M. Deuflhard, D. Eberbeck, P. Hietschold et al., PCCP 21, 14654 (2019).
- S. Ikhaddalene, F. Zibouche, A. Ponton et al., Period. Polytech. Chem. Eng. 65, 378 (2021).

- **22**. R. E. Rosensweig, *Ferrohydrodynamics*, Courier Corporation (2013).
- **23**. E. A. Elfimova and A. O. Ivanov, JETP **111**, 146 (2010).
- 24. Yu. E. Nekhoroshkova, O. A. Goldina, P. J. Camp et al., JETP 118, 442 – 456 (2014).
- 25. A. L. Elrefai, T. Sasayama, T. Yoshida et al., IEEE Trans. Magn. 57, 9201021 (2021).
- 26. D. Borin, G. Stepanov, A. Musikhin et al., EPJST (2022).
- 27. D. Borin, Philos. Trans. R. Soc. A: Mathematical, Physical and Engineering Sciences 378, 0256 (2020).
- 28. Yu. L. Raikher, J. Magn. Magn. Mater. 39, 11 (1983).
- 29. A. Yu. Zubarev, Phys. Rev. E 98, 032610 (2018).
- 30. J. Dieckhoff, D. Eberbeck, M. Schilling et al., J. Appl. Phys. 119, 043903 (2016).
- 31. E. A. Elfimova, L. Y. Iskakova, A. Y. Solovyova et al., Phys. Rev. E 104, 054616 (2021).
- 32. E. A. Elfimova, A. O. Ivanov, and P. J. Camp, Nanoscale 11, 21834 (2019).
- 33. K. Enpuku and T. Yoshida, AIP Adv. 11, 125123 (2021).
- 34. S. Draack, T. Viereck, F. Nording et al., J. Magn. Magn. Mater. 474, 570 (2019).
- 35. P. M. Déjardinn, J. Appl. Phys. 110, 113921 (2011).
- 36. A.V. Ambarov, V.S. Zverev, and E.A. Elfimova, J. Magn. Magn. Mater. 497, 166010 (2020).
- 37. A. V. Ambarov, V. S. Zverev, and E. A. Elfimova, Modell. Simul. Mater. Sci. Eng. 28, 085009 (2020).
- 38. A. L. Elrefai, K. Enpuku, and T. Yoshida, J. Appl. Phys. 129, 093905 (2021).
- 39. A. Yu. Solovyova, E. A. Elfimova, and A. O. Ivanov, Phys. Rev. E 104, 064616 (2021).
- 40. D. I. Radushnov, A. Yu. Solovyova, and E. A. Elfimova, Nanoscale (2022).
- 41. A. F. Pshenichnikov and A. V. Lebedev, J. Chem. Phys. 121, 5455 (2004).
- 42. A. F. Pshenichnikov and A. V. Lebedev, Colloid J. 67, 189 (2005).
- 43. A.V. Lebedev, Colloid J. 72, 815 (2010).
- 44. A.V. Lebedev, Colloid J. 76, 334 (2014).