СВЕТОИНДУЦИРОВАННЫЕ ДИФРАКЦИОННЫЕ РЕШЕТКИ НА МЕТАПОВЕРХНОСТЯХ НА ОСНОВЕ ЖИДКОГО МЕТАМАТЕРИАЛА

А. А. Жаров^а, Н. А. Жарова^{b*}

^а Институт физики микроструктур Российской академии наук 603950, Нижний Новгород, Россия

^b Институт прикладной физики Российской академии наук 603950, Нижний Новгород, Россия

> Поступила в редакцию 27 июля 2022 г., после переработки 27 июля 2022 г. Принята к публикации 15 августа 2022 г.

Метаповерхности, представляющие собой специальным образом структурированную границу раздела сред, являются одним из ключевых элементов современной «плоской» оптики, поскольку позволяют эффективно манипулировать падающим на них излучением. В настоящей работе предлагается использовать метаповерхность, представляющую собой слой жидкости со взвешенными в ней серебряными наночастицами. Концентрация наночастиц перераспределяется под действием пондеромоторных сил со стороны электромагнитного поля, образуя светоиндуцированную дифракционную решетку с параметрами, зависящими от интенсивности падающего излучения. В работе исследована устойчивость однородного по метаповерхности распределения наночастиц в поле нормально падающей плоской световой волны, найдены возможные нелинейные стационарные состояния.

DOI: 10.31857/S0044451022120057 **EDN:** LCDEGZ

1. Появившиеся за последние две декады метаматериалы, представляющие собой искусственные композитные среды, структурированные на субволновом уровне, значительно расширили возможности манипулирования электромагнитным излучением в широком диапазоне частот, от микроволнового до оптического. За счет специального дизайна элементарной ячейки (метаатома) метаматериала, такой среде могут быть приданы электромагнитные свойства, отсутствующие у природных материалов, такие как отрицательная рефракция [1–3], гиперболическая дисперсия [4-6], перестраиваемость, экстремально сильный нелинейный отклик и др. [7–9]. Все эти новые свойства могут оказаться востребоваными в широком круге приложений во многих областях нанофотоники, можно, в частности, упомянуть задачи локализации и контроля света на нанометровых масштабах [10,11], создания наноисточников света для лазерной генерации [12], разработки наноантенн и нанорассеивателей с заранее заданной диаграммой направленности [13] и т.д. В этом контексте необходимо также обратить внимание на жидкие метаматериалы и метакристаллы, которые, не обладая сверхбыстрым откликом, легко перестраивают свои свойства под действием внешних управляющих полей [14–18].

Теоретические и экспериментальные исследования оптических метаматериалов дали толчок к идее планарной оптики, а именно, к использованию плоских метаповерхностей (структурированных границ раздела сред) для управления световыми потоками. Это, в свою очередь, привело к бурному развитию так называемой Ми-троники [19], изучающей взаимодействие света с массивами наночастиц в условиях возбуждения электрических и магнитных резонансов Ми. Как было показано в многочисленных работах, метаповерхности могут выполнять все те же функции, что и традиционные оптические элементы, обладают сильным нелинейным откликом благодаря высокой добротности резонансов Ми в диэлектрических структурах и возбуждению ква-

^{*} E-mail: zhani@appl.sci-nnov.ru

зисвязанных состояний в континууме [20–22]. В результате планарная оптика на основе метаповерхностей позволяет расширить и технологически упростить использование метаматериалов для широкого круга потенциальных приложений, в частности таких, как разработка сенсоров нового поколения и субволновая микроскопия применительно, например, к задачам химии и медицины.

В данной работе мы предлагаем использовать жидкую метаповерхность в качестве инструмента для манипулирования световыми пучками. Речь идет о тонком в масштабе длины волны слое вязкой жидкости со взвешенными в ней плазмонными (металлическими) наночастицами. Идея состоит в том, что под действием пондеромоторных сил со стороны электромагнитного поля концентрация наночастиц в слое перераспределяется, что, в свою очередь, ведет к самосогласованному изменению структуры отраженной и прошедшей световых волн или, другими словами, к светоидуцированной дифракции, позволяющей управлять структурами прошедшего и отраженного полей. Несмотря на то, что от такой структуры нельзя ожидать сверхбыстрого отклика (соответствующие характерные времена определяются временем релаксации скорости наночастицы в жидкости), она может оказаться полезной с точки зрения контроля над рассеянием света, а в отдельных случая фокусировки или дефокусировки световых пучков с управляемым фокусным расстоянием.

2. Итак, рассмотрим тонкий в масштабе длины падающей волны слой жидкости (или геля) толщиной *d* со взвешенными в ней сферическими металлическими наночастицами (в дальнейшем в качестве материала наночастиц будет рассматриваться серебро). Эффективная диэлектрическая проницаемость такого композита может быть приближенно вычислена по формуле Максвелла-Гарнетта [23]

$$\varepsilon_{eff} = \varepsilon_l (1 + 3\eta(\varepsilon_p - \varepsilon_l) / (\varepsilon_p + 2\varepsilon_l)), \qquad (1)$$

где $\varepsilon_{p,l}$ — диэлектрические проницаемости частиц и жидкости, η — объемная доля частиц в среде. Будем полагать, что на этот слой, окруженный с обеих сторон диэлектриком с проницаемостью ε_d , по нормали падает плоская световая волна ТЕМ-поляризации (см. рис. 1).

Со стороны электромагнитного поля на частицы действует пондеромоторная сила, смещающая частицы в ту или иную сторону. Ниже частицы предполагаются достаточно малыми, так, чтобы при расчете сил, действующих на частицы, можно было бы

Рис. 1. Постановка задачи: на слой жидкости (диэлектрическая проницаемость ε_l) со взвешенными в ней металлическими наночастицами (проницаемость ε_p) падает плоская волна. Слой толщиной d заключен между диэлектрическими (проницаемость ε_d) обкладками. При достаточно большой амплитуде падающего излучения и подходящих параметрах среды однородное распределение частиц оказывается неустойчивым, их плотность модулируется в поперечном (x) направлении и падающая волна рассеивается на этих неоднородностях

ограничиться дипольным приближением. Усредненная по периоду поля пондеромоторная сила, действующая на дипольную частицу, имеет вид

$$F_i = 1/2(p_k \nabla_i E_k^* + \text{c.c.}), \qquad (2)$$

где $\mathbf{p} = \hat{\alpha} \mathbf{E}$ — наведенный внешним полем дипольный момент частицы, \mathbf{E} — напряженность электрического поля, $\hat{\alpha}$ — тензор поляризуемости, с.с. обозначает комплексное сопряжение и по повторяющимся индексам в (2) предполагается суммирование.

Поляризуемость сферической изотропной частицы является скалярной величиной и дается выражением

$$\alpha = 3V_p \varepsilon_l (\varepsilon_p - \varepsilon_l) / (\varepsilon_p + 2\varepsilon_l), \tag{3}$$

где $V_p = (4/3)\pi a^3$ — объем и a — радиус частицы.

Выражение (2) содержит две компоненты силы: градиентную часть $\mathbf{F}_{\nabla} \sim \operatorname{Re}(\alpha) \nabla |\mathbf{E}|^2$ и силу «увлечения» (scattering force) $\mathbf{F} \sim \operatorname{Im}(\alpha) \mathbf{S}$, направленную вдоль средней по времени плотности потока энергии \mathbf{S} . В дальнейшем мы будем пренебрегать силой увлечения, поскольку для нормально падающей волны она компенсируется силой со стороны границ слоя, удерживающих жидкость. В латеральном направлении эта сила отсутствует, поскольку отсутствует поток энергии электромагнитного поля в этом направлении.

Рис. 2. Инкремент неустойчивости в зависимости от квадрата амплитуды падающей волны (поле нормировано на характерное поле нелинейности) и поперечного волнового числа k_x . Пунктир обозначает границу области неустойчивости, там, где $\delta\eta^{NL} = \delta\eta^L$. Значение диэлектрической постоянной жидкости бралось равным $\varepsilon_l = 6$ (a) и 8 (b). При расчетах использовались следующие значения параметров: $\varepsilon_d = 2$, $\tau = 1.6 \cdot 10^{-7}$ с⁻¹, d = 0.1 мкм, $\eta_0 = 0.3$, $V_T = 8.6$ см/с, длина волны падающего излучения в свободном пространстве $\lambda = 0.6$ мкм

Под влиянием пондеромоторной силы наночастицы в жидкости начинают двигаться, их плотность меняется, возникает градиент давления, и временная динамика концентрации частиц под действием обеих этих сил описывается уравнением диффузионного типа

$$\frac{\partial \eta}{\partial t} + \tau V_T^2 \operatorname{div} \left(\eta \operatorname{Re}(\tilde{\alpha}) \nabla |\mathbf{E}|^2 - \nabla \eta \right) = 0.$$
 (4)

Здесь $\tau = 1/6\pi a\nu$, ν — кинематическая вязкость жидкости и мы ввели новый параметр

$$\tilde{\alpha} = \alpha / V_p \equiv 3\varepsilon_l (\varepsilon_p - \varepsilon_l) / (\varepsilon_p + 2\varepsilon_l)$$

и нормировали электрическое поле в слое на характерное поле нелинейности, которое равно $E_c = \sqrt{k_B T/V_p} (k_B$ — постоянная Больцмана, T температура). Для краткости будем в дальнейшем считать электрическое поле E такой безразмерной величиной. Уравнение (4) получено на основе

Рис. 3. Инкремент неустойчивости в зависимости от квадрата амплитуды падающей волны и диэлектрической проницаемости жидкости ε_l ; волновое число модуляции $k_x = 4k_0$. Показаны изолинии инкремента для значений G > 0; величина инкремента отображается цветом линий. Параметры, использованные в расчетах, см. в подписи к рис. 2. Все пространственные гармоники, возбуждаемые в слое, локализованы, так как для выбранного значения $k_x/k_0 = 4$ они являются нераспространяющимися в диэлектрике с $\varepsilon_d = 2$, длина волны падающего излучения в свободном пространстве $\lambda = 0.6$ мкм

гидродинамической модели, которая подробно обсуждается в работах [24–26], где изучались пространственные солитоны в суспензиях наночастиц.

В упомянутых выше работах формирование солитона из светового пучка происходит на некотором расстоянии от входа в среду, и нелинейный процесс требует для развития заметной дистанции. В нашей постановке слой тонкий, причем нельзя при рассмотрении задачи ограничиться однонаправленным распространением светового излучения, т.е. нельзя не учитывать отражение от границ слоя. Эта и другие особенности приводят к существенным различиям в результатах.

Из уравнения (4) видно, что в стационарном состоянии выполняется условие равенства пондеромоторного и теплового давлений:

$$\frac{\nabla \eta}{\eta} \approx \nabla \operatorname{Re}(\tilde{\alpha}) |\mathbf{E}|^2.$$
(5)

Соотношение (5) напоминает зависимость возмущения концентрации частиц от интенсивности поля в среде с керровской нелинейностью. Однако в нашем случае нелинейность нелокальная, поскольку в уравнение входят не сами величины, а их производные. Поэтому далее в задаче о развитии модуляционной неустойчивости плоской волны мы увидим, что не сами малые возмущения поля и плотности частиц будут пропорциональны друг другу, но лишь их отклонения от среднего.

Рис. 4. Стационарное распределение плотности (сплошная линия) и модуля электрического поля в слое (штриховая линия) в нелинейном режиме (а). Модуль спектра электрического поля $|E_k|$ в зависимости от номера пространственной гармоники (от первой до двадцатой) (b). При расчетах использовались следующие значения параметров: $\varepsilon_l = 6$, $k_x/k_0 = 4$, $\varepsilon_d = 2$, d = 0.1 мкм, $\eta_0 = 0.3$, квадрат амплитуды падающего излучения $|E_0|^2 = 1.5$, длина волны в свободном пространстве $\lambda = 0.6$ мкм

Для исследования модуляционной неустойчивости плоской волны найдем сначала электрическое поле E_0 внутри слоя, т.е. решим линейную задачу об отражении-прохождении падающей плоской волны на слой с постоянной диэлектрической проницаемостью ε_{eff} (1), полагая в этой формуле постоянной плотность частиц $\eta = \eta_0$.

Следующий шаг состоит в том, что мы зададим малое относительно η_0 возмущение концентрации $\delta \eta^L = \mu \cos(k_x x)$ и решим линейную задачу о рассеянии плоской волны на таком модулированном слое с учетом граничных условий и условий излучения для рассеянного поля¹⁾. Электрическое поле *E* в слое окажется также промодулированным с тем же характерным масштабом, причем из условия малости параметра $\mu/\eta_0 \ll 1$ и линейности задачи

$$E = E_0 + \delta E^L \equiv E_0 + \beta \mu \cos(k_x x)$$

Рис. 5. Стационарное распределение плотности (сплошная линия) и модуля электрического поля в слое (штриховая линия) в нелинейном режиме (а). Модуль спектра электрического поля $|E_k|$ в зависимости от номера пространственной гармоники (от первой до двадцатой) (b). При расчетах использовались следующие значения параметров: $\varepsilon_l = 8$, $k_x/k_0 = 4$, $\varepsilon_d = 2$, d = 0.1 мкм, $\eta_0 = 0.3$, квадрат амплитуды падающего излучения $|E_0|^2 = 1.5$, длина волны в свободном пространстве $\lambda = 0.6$ мкм

(с некоторым, в общем случае комплексным, коэффициентом β , который находится из решения задачи рассеяния).

Изменение электрического поля в свою очередь влияет на концентрацию частиц, возмущение которой есть $\delta\eta^{NL} = \eta - \eta_0$, и второй шаг процедуры использует уравнение (5). Учитывая условие сохранения числа частиц на периоде структуры, $\langle \eta \rangle = \eta_0$ (угловые скобки обозначают усреднение по x), найдем из (5)

$$\delta \eta^{NL} / \eta_0 = \exp(\operatorname{Re}(\tilde{\alpha}) | E_0 + \delta E^L |^2) - \langle \exp(\operatorname{Re}(\tilde{\alpha}) | E_0 + \delta E^L |^2) \rangle.$$

Учитывая малость $|\delta E^L/E_0|$, получаем окончательно

$$\delta \eta^{NL} / \eta_0 = 2\mu \cos(k_x x) e^{\operatorname{Re}(\tilde{\alpha}) |E_0|^2} \operatorname{Re}(\tilde{\alpha}) \operatorname{Re}(\beta^* E_0).$$

Если окажется, что $\delta \eta^{NL} > \delta \eta^L$, то возмущения концентрации будут неустойчивыми и начнут возрастать. Это условие совпадает с критерием возбуждения систем с положительной обратной связью, где

Следует отметить, что рассеяние поля на возмущениях концентрации наночастиц в жидкой метаповерхности происходит только в ТМ-поляризацию.

неустойчивость развивается, если коэффициент обратной связи (здесь $\delta \eta^{NL} / \delta \eta^L$) больше единицы.

Описанная процедура использовалась для численного нахождения порога неустойчивости и ее инкремента. Однако для тонкого слоя оказывается возможно решить задачу дифракции на модулированном слое аналитически, т.е. найти функциональную зависимость β от параметров, результатом чего является соотношение

$$\beta = id\alpha \frac{\sqrt{\varepsilon_d - \kappa^2}}{\varepsilon_d^{3/2}} \left(1 - \frac{\varepsilon_{eff}}{2\kappa^2}\right) E_0, \tag{6}$$

где мы ввели $\kappa = k_x/k_0$. Таким образом, порог неустойчивости определяется условием

$$G \equiv e^{\operatorname{Re}(\tilde{\alpha})|E_0|^2} \operatorname{Re}(\tilde{\alpha})|E_0|^2 \operatorname{Re}(\beta) > 1.$$
(7)

Зная надпороговость, т.е. величину

$$G-1 = \delta \eta^{NL} / \delta \eta^L - 1,$$

из уравнения (4) можно найти инкремент неустойчивости

$$\gamma \approx \tau V_T^2 k_x^2 (G-1).$$

Возможность развития модуляционной неустойчивости существенно зависит (при фиксированной частоте падающего излучения) от параметров ε_l и k_x .

Зависимость от k_x иллюстрируется рис. 2a, b, на котором приведены значения инкремента неустойчивости, рассчитанные для величин $\varepsilon_l = 6$ (a) и 8 (b). При фиксированной длине волны $\lambda = 0.6$ мкм (диэлектрическая проницаемость серебра $\varepsilon_p = -12.7 + 1.1i$) поляризуемость наночастиц оказывается положительной, $\operatorname{Re}(\alpha) = 8.4992$, в случае (a) и отрицательной, $\operatorname{Re}(\alpha) = -5.5385$, в случае (b); эффективная диэлектрическая проницаемость смеси (ее действительная часть) также является положительной для случая (a) и отрицательной для случая (b).

На рис. 3 приведены зависимости, аналогичные зависимостям на рис. 2. Отличие лишь в том, что инкремент неустойчивости рассчитан для постоянного $k_x = 4k_0$ и меняющегося значения ε_l . Интересно отметить, что область неустойчивости ограничена по интенсивности не только снизу, но и сверху (см. также рис. 2b). Очевидно, это связано с сильно нелинейной зависимостью ~ $\operatorname{Re}(\tilde{\alpha})|E_0|^2 \exp(\operatorname{Re}(\tilde{\alpha})|E_0|^2)$ при отрицательных $\tilde{\alpha}$ (см. аналитическую формулу для порога (7)).

3. Нелинейная стадия неустойчивости и формирование нелинейного стационарного профиля концентрации могут быть смоделированы описанной выше интерполяционной процедурой. Отличие от расчета линейной стадии неустойчивости состоит в том, что эволюция спектра поля учитывает 55 пространственных гармоник вместо трех, а интерполяция становится многошаговой с последовательным постепенным изменением концентрации частиц и расчетом дифракционной задачи на этом профиле концентрации.

На рис. 4 и 5 приведены результаты расчета стационарного нелинейного решения задачи.

Различие между вариантами, представленными на рис. 4 и 5 состоит в том, что в первом случае $\operatorname{Re} \varepsilon_{eff}$ — положительная величина, а во втором отрицательная. Однако и в том, и в другом случае частицы группируются в области слабого поля.

Следует отметить, что полученные в наших расчетах стационарные нелинейные структуры имеют фактически ступенчатый профиль показателя преломления. Таким образом можно формировать дифракционную решетку, контролируя ее период за счет небольшой затравки в спектре падающей плоской волны, и использовать эту решетку для дифракции пробных волн на других частотах.

4. В заключение, рассмотрено взаимодействие света с жидкой метаповерхностью, представляющей собой тонкий слой суспензии металлических наночастиц. Исследована устойчивость однородного распределения наночастиц на метаповерхности. Найдены условия возникновения неустойчивости, приводящей в конечном счете к образованию периодических структур (светоиндуцированных дифракционных решеток) в результате перераспределения концентрации наночастиц вдоль метаповерхности под действием пондеромоторных сил со стороны электромагнитного поля. Определены пороговые значения амплитуды падающего поля, приводящие к развитию неустойчивости, и характерные масштабы возникающих дифракционных решеток.

Финансироание. Работа выполнена при поддержке НЦМУ «Центр фотоники», при финансировании Министерством науки и высшего образования РФ, соглашение № 075-15-2022-316.

ЛИТЕРАТУРА

- D. R. Smith, W. J. Padilla, D. C. Vier et al., Phys. Rev. Lett. 84, 4184 (2000).
- S. Zhang, W. Fan, B. K. Minhas et al., Phys. Rev. Lett. 94, 037402 (2005).

- H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
- A. N. Poddubny, I. Iorsh, P. A. Belov et al., Nat. Photon. 7, 958 (2013).
- M. A. Noginov, Y. A. Barnakov, G. Zhu et al., Appl. Phys. Lett. 94, 151105 (2009).
- 6. N. A. Zharova, A. A. Zharov, and A. A. Zharov, Jr., Adv. Cond. Mat. Phys. 2018, 4578149 (2018); H. A. Жарова, A. A. Жаров, A. A. Жаров, мл., ЖЭТФ 156, 396 (2019).
- M. Lapine, I. V. Shadrivov, D. A. Powell et al., Nat. Mater. 11, 30 (2012).
- A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003).
- A. P. Slobozhanyuk, M. Lapine, D. A. Powell et al., Adv. Mater. 25, 3409 (2013).
- A. R. Davoyan, I. V. Shadrivov, A. A. Zharov et al., Phys. Rev. Lett. 105, 116804 (2010).
- 11. M. I. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
- 12. L. Cao and M. L. Brongersma, Nat. Photon. 3, 12 (2009).
- 13. L. Novotny, Nature 455, 887 (2008).
- 14. Y. A. Urzhumov, G. Shvets, J. A. Fan et al., Opt. Express 15, 14129 (2007).

- M. Fruhnert, S. Muhlig, F. Lederer et al., Phys. Rev. B 89, 075408 (2014).
- A. A. Zharov, A. A. Zharov, Jr., and N. A. Zharova, J. Opt. Soc. Am. B 31, 559 (2014).
- 17. M. Liu, K. Fan, W. Padilla et al., Adv. Mater. 28, 1553 (2016).
- A. Zharov, Z. Viskadourakis, G. Kenanakis et al., Nanomaterials 11, 346 (2021).
- 19. Y. S. Kivshar, Nano Lett. 22, 3513 (2022).
- T. Pertsch and Y. Kivshar, Mater. Res. Soc. Bull. 45, 210 (2020).
- K. Koshelev, G. Favraud, A. Bogdanov et al., Nanophotonics 8, 725 (2019).
- 22. S. I. Azzam and A. V. Kidishev, Adv. Opt. Mater. 9, 2001469 (2021).
- J. C. M. Garnett, Philos. Trans. Roy. Soc. London 203, 385 (1904).
- 24. R. El-Ganainy, D. N. Christodoulides, C. Rotschild et al., Opt. Express 15, 10207 (2007).
- 25. R. Gordon and J. T. Blakely, Phys. Rev. A 75, 055801 (2007).
- 26. M. Matuszewski, W. Krolikowski, and Y. S. Kivshar, Opt. Express 16, 1371 (2008).