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Several approaches to quantum gravity (including

the model of superplastic vacuum; Diakonov tetrads

emerging as the bilinear combinations of the fermionis

�elds [1�4]; BF -theories of gravity; and e�ective acous-

tic metric [5, 6] ) suggest that in general relativity the

metric must have dimension 2, i.e. [gµν ] = 1/[L]2, ir-

respective of the dimension of spacetime. This leads

to the "dimensionless physics" discussed in the review

paper [7]. We continue to exploit this issue.

Elasticity tetrads. The 3 + 1-dimensional vacuum

crystal is the plastic (malleable) medium [8], described

in terms of the elasticity tetrads [9�12]:

Eaµ =
∂Xa

∂xµ
, (1)

where equations Xa(x) = 2πna are equations of the

(deformed) crystal planes. The functions Xa play the

role of the geometric U(1) phases and are dimension-

less. The elasticity tetrads play the role of the gauge

�elds (translation gauge �elds) and have the same di-

mension 1 as the dimension of gauge �elds:

[Eaµ] =
1

[L]
. (2)

The dimension n of quantity A means [A] = [L]−n,

where [L] is dimension of length. The matrix Eaµ is not

necessarily quadratic. The extension of tetrads to the

rectangular vilebein is considered in Ref. [13].

Elasticity tetrads in Eq.(1) give rise to the metric,

which is the bilinear combination of tetrads:

gµν = ηabE
a
µE

b
ν . (3)

* E-mail: grigori.volovik@aalto.�

The metric gµν has dimension n = 2, while the con-

travariant metric gµν has dimension n = −2:

[gµν ] =
1

[L]2
, [gµν ] = [L]2 . (4)

The tetrad determinant has dimension n = 4 in the

4-dimensional spacetime and dimension n = N in the

N -dimensional spacetime, where the dimensions of the

metric elements are the same as in Eq.(4):

[e] = [
√
−g ] =

1

[L]N
. (5)

Eq.(5) makes the spacetime integration dimensionless:[ ∫
dNx
√
−g
]

= [1] = 0 , (6)

which leads to the dimensionless Lagrangian L:[
S
]

=
[ ∫

dNx
√
−gL

]
=
[ ∫

dNx
√
−g
]
·
[
L
]

= [1]·[1] = [1] .

(7)

Classical dynamics of particle is described by action:

S = M

∫
ds , (8)

where with Eq.(3) the interval is dimensionless:

ds2 = gµνdx
µdxν , [s2] =

1

[L]2
· [L]2 = [1] = 0 . (9)

The variation of action gives the Hamilton�Jacobi

equation in terms of the contravariant metric:

gµν∂µS∂νS +M2 = 0 . (10)

Since the action and the interval are dimensionless, the

mass M in Eq.(8) is also dimensionless, [M ] = [1] = 0,

for any dimension N of spacetime.
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In the spacetime crystal, the interval between the

events is counted in terms of the lattice points, and this

is the geometric reason why the interval is dimension-

less. One may say that dynamics comes from geom-

etry. In the Diakonov theory, the interval determines

the dynamics of the particle, rather than the geometric

distance, i.e. the geometry follows from dynamics.

Scalar �elds. The quadratic terms in the action for

the scalar �eld Φ in the N -dimensional spacetime are:

S =

∫
dNx

√
−g

(
gµν∇µΦ∗∇νΦ +M2|Φ|2

)
. (11)

From Eqs. (4) and (6) it follows that the scalar �eld is

dimensionless, [Φ] = [1] = 0, for arbitrary spacetime di-

mension N . This universal zero dimension di�ers from

the N -dependent dimension n = (N − 2)/2 of scalar

�elds in the conventional approach.

Wave function. Expanding the Klein-Gordon

equation over 1/M one obtains the non-relativistic

Schrödinger action for the wave function ψ:

Φ(r, t) =
1√
M

exp
(
iMt/

√
−g00

)
ψ(r, t) , (12)

SSchr =

∫
d3xdt

√
−gL , (13)

2L = i
√
−g00 (ψ∂tψ

∗ − ψ∗∂tψ) +
gik

M
∇iψ∗∇kψ . (14)

The normalization condition for the wave function is:∫
d3r
√
γ |ψ|2 = 1 , (15)

where
√
γ =

√
−g
√
−g00 is the determinant of the

space part of the metric. This corresponds to the parti-

cle number conservation in the nonrelativistic quantum

mechanics, see e.g. Eq.(13) in Ref. [14].

Since the dimension of this determinant is

[
√
γ ] = 1

[L]3 , the wave function is dimensionless.

This is distinct from the conventional Schrödinger

equation without gravity, where the dimension of ψ

is [ψ] = [L]−(N−1)/2 for the N dimensional space-

time. Inclusion of gravity provides the natural zero

dimension for the probability amplitude in quantum

mechanics, [ψ] = 0, for any spacetime dimension.

The same result can be obtained from overlap of the

quantum states, which is naturally dimensionless:

< r | r′ >=
1
√
γ
δ(r− r′) . (16)

Then for the wave function

ψ(r) =< r |ψ > , |ψ >=

∫
dN−1r

√
γ ψ(r)| r > ,

(17)

one obtains Eq.(15) for normalization:

1 =< ψ |ψ >=

∫
dN−1r

√
γ |ψ|2 . (18)

From Eq.(18) it follows that the wave function is di-

mensionless, which is the consequence of the presence

of the metric �eld. This demonstrates the connection

between quantum mechanics and general relativity.

The action (13) and Lagrangian (14) do not contain

~. The role of ~ in the conventional relation between

the energy levels and frequency, Em − En = ~ωmn,
is now played by

√
g00 in the red shift equation

Mm − Mn =
√
g00 ωmn [15]. The dimensional met-

ric leads to the di�erence between the dimensional fre-

quency, [ωmn] = 1/[L], and the dimensionless mass:

[M ] = [
√
g00][ω] = [L] · 1

[L]
= [1] = 0 . (19)

Weyl and Dirac fermions. The dimensional tetrads

[Eaµ] = 1/[L] are obtained directly from the zero dimen-

sion of wave functions, which gives rise to the dimen-

sionless Weyl and Dirac �elds, [Ψ] = 0, in the action:

S =

∫
d4x e eµaΨ̄γa∇µΨ , (20)

where e is the tetrad determinant. Since the ac-

tion is dimensionless, then assuming that the quan-

tum �eld operators Ψ are dimensionless, one obtains

[e eµa ] = 1/[L]3, which gives the dimensional tetrads:

[eµa ] = [L] , [Eaµ] =
1

[L]
, [e] =

1

[L]4
. (21)

This is in agreement with the Diakonov theory [1�4],

where tetrads emerge as the bilinear combinations:

Eaµ ∝< Ψ̄γa∇µΨ > , [Eaµ] =
1

[L]
, (22)

and metric gµν is the quadrilinear combination of the

fermionic �elds, < Ψ̄ΨΨ̄Ψ >. This approach also al-

lows the rectangular vilebein [13], where spin a and

coordinate µ spaces have di�erent dimensions.

The Hamiltonian for massless Dirac fermions has di-

mension 1, i.e. the same as the dimension of frequency:

H =

∫
x0=const

d3r e eiaΨ̄γa∇iΨ , [H] = [ω] =
1

[L]
.

(23)

The dimension of the Hamiltonian does not coincide

with the dimension of mass M , which is dimensionless.

Gauge �elds. The action for the U(1) gauge �eld in

the N -dimensional spacetime is:

S ∼
∫
dNx

√
−g gµνgαβFµαFνβ . (24)
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In case of the conventional dimensionless tetrads, the

action in Eq.(24) is dimensionless only for N = 4.

With dimensionful tetrads the action (24) is dimen-

sionless for arbitrary N , since

[gµν ] = [L]2 , [Fµν ] =
1

[L]2
, [
√
−g] =

1

[L]N
. (25)

Acoustic metric also has dimension 2. The e�ective

acoustic metric [5,6] describes propagation of sound in

a non-homogeneous �owing �uid and also phonons in

moving super�uids and other Goldstone modes, such as

magnons and collective modes of magnon Bose conden-

sate [16]. The action for Goldstone mode (the phase φ

of the Bose condensate) is similar to the action (11):

S =

∫
d4x

√
−g̃ g̃µν∇µφ∇νφ . (26)

From the action (26) it follows that the e�ective con-

travariant metric g̃µν has the conventional dimension

−2, i.e. [g̃µν ] = [l]2. This is also seen form the e�ective

interval in terms of hydrodynamic variables [6, 17]:

ds̃2 = g̃µνdx
µdxν =

n

ms
[−s2dt2+(dxi−vidt)(dxi−vidt)] .

(27)

Here n is the density of atoms in the liquid; m is the

mass of the atom; s is the speed of sound; and vi is the

velocity of the liquid, which coincides with the shift vec-

tor N i in the Arnowitt-Deser-Misner formalism. Using

the conventional dimensions of hydrodynamic variables

one obtains the dimension 2 for the covariant metric:

[g̃µν ] = [n] · 1

[m]
=

1

[l]3
· [l] =

1

[l]2
, (28)

and the dimensionless interval. The dimension of

avoustic metric follows from the dynamics of the su-

per�uid: geometry comes from dynamics.

General relativity. Let us consider the GR action on

example of q-theory � the class of theories which avoid

the cosmological constant problem. The huge contribu-

tions of zero point energy to the cosmological constant

is cancelled in the equilibrium state of the vacuum due

to thermodynamics [18�20]. For the particular q-theory

on �brane� the action is [21,22]:

S = −
∫
d4x
√
−g

[
ε(q) +

R

16πGN (q)
+ Λ0 + LM [ψ, q]

]

+µ

∫
d4x n , q =

n√
−g

. (29)

Here n is the 4D analog of the particle density in the

quantum vacuum (density of the "spacetime atoms"),

which has the same dimension 4 as tetrad determinant

[n] = [
√
−g] =

1

[L]4
, (30)

q is the vacuum variable, and µ plays the role of the

chemical potential in the vacuum thermodynamics. In

the expanding Friedmann-Robertson-Walker universe:

ds2 = gµνdx
µdxν = −dτ2 + a2(τ)dr2 , H(τ) =

da/dτ

a(τ)
, (31)

where τ is the conformal time; a(τ) is the scale factor;

and H(τ) is time-dependent Hubble parameter. The

scale factor a(τ) has dimensions 1, [a(τ)] = 1
[L] , while

the following quantities are dimensionless:

[q] = [µ] = [ε] = [R] = [GN ] = [Λ0] =

= [H] = [τ ] = [ψ] = [M ] = [1] = 0 . (32)

Some of the dimensionless quantities can be fundamen-

tal, or correspond to some integer valued topological in-

variants. For example, the "chemical potential" µ may

correspond to the topological invariant, µ = ±1, which

changes sign at the Big-Bang quantum phase transition

[20]. Since masses of particles are dimensionless, and

there is no fundamental mass scale, one can choose any

convenient mass as a unit mass.

Note also that the dimensionless interval in Eq.(9)

does not mean the existence of the fundamental length,

such as Planck length. First, because the gravitational

coupling 1/GN is not necessarily fundamental. Sec-

ond, in the model of the superplastic vacuum there is

no equilibrium value of the distance between the neigh-

bouring lattice points. As distinct from the solid state

crystals, arbitrary deformations of the vacuum crys-

tal are possible. In Diakonov model [1] the metric is

emergent, and on the fundamental level the distance

between the spacetime points is not determined.

Unruh and Hawking. In terms of the dimensionful

metric, the acceleration is dimensionless [7]:

a2 = gµν
d2xµ

ds2

d2xν

ds2
, (33)

[a2] = [gµν ][xµ][xν ] =
1

[l]2
· [l]2 = [1] = 0 . (34)

This leads to the dimensionless Unruh temperature:

TU =
a

2π
, [TU] = [1] = 0 . (35)

The Gibbons-Hawking temperature of the cosmological

horizon is also dimensionless, as follows from Eq.(32):

TH =
H

2π
, [TH ] = [H] = [1] = 0 . (36)

Eqs. (35) and (36) look fundamental: they do not

contain parameters. However, for the temperature of

the Hawking radiation from the black hole horizon,

682



ÆÝÒÔ, òîì 162, âûï. 5 (11), 2022 Landau Institute

TBH = 1/8πGNM , situation is di�erent. Although

the Hawking temperature is dimensionless ([TBH] = [1],

since [GN ] = [M ] = [1]), it does not look fundamental,

since it depends on the dimensionless parameter GN .

The same concerns the Bekenstein-Hawking entropy:

SBH =
A

4GN
. (37)

It is dimensionless due to dimensionless horizon area:

dA =
√
dSikdSik , [A] = [1] = 0 , (38)

A =

∫ π

0

dθ

∫ 2π

0

dφ
√
gφφgθθ , [gφφ] = [gθθ] = [A] = 0 .

(39)

The Bekenstein-Hawking entropy (37) determines the

black hole thermodynamics, but similar to the Hawking

temperature it does not look as fundamental, since it

contains the gravitational coupling 1/GN . Also it is not

clear why the microscopic degrees of freedom responsi-

ble for the black hole entropy should be characterized

by the Planck length [23]. In the superplastic vacuum

[8] the Planck length scale is absent, since there is no

equilibrium value of the distance between the lattice

points: this vacuum can be arbitrarily deformed.

On the other hand, since the area is dimensionless,

one may suggest that the entropy of the black hole hori-

zon can be expressed in terms of the area only:

SBH = ηA , [η] = [SBH] = [A] = [1] = 0 . (40)

Here η is some fundamental dimensionless parameter,

like the topological invariant. In this case one may take

the point of view that Einstein's gravity equations can

be derived solely from thermodynamics [24]. The con-

stant of proportionality η between the entropy and the

area determines gravitational coupling 1/GN = 4η. In

this thermodynamic approach, 1/GN becomes funda-

mental due to the fundamentality of the parameter η.

However, in the thermodynamic approach to grav-

ity there is the "species problem" [25]: the gravita-

tional coupling GN may depend on the number of

fermionic and bosonic quantum �elds [26�28]. This

destroys many conjectures, which are based on posi-

tivity of the gravitational coupling [29], and prevents

1/GN to be the fundamental parameter. But this "no-

go theorem" can be avoided, if 1/GN is the quantum

number related to symmetry and/or topology. Then

the parameter 1/GN does not depend on interaction

between gravity and quantum �eld, though it may ex-

perience jumps during the topological quantum phase

transitions. This takes place in topological materials

when one varies the parameters of interaction [30, 31]

and may take place when the Big Bang is crossed [20].

Einstein-Cartan, Barbero-Immirzi, Nieh-Yan and

topology. Topological invariants relevant for the quan-

tum vacuum are known in the crystalline matter

[10, 11, 32] and can be extended to the superplastic

vacuum. The topology in the crystalline quantum

vacua is enriched due to the dimensional elasticity

tetrads in Eq.(1), which come from the geometric U(1)

phases. This topological approach may take place in

the Einstein-Cartan-Sciama-Kibble theory, which is ex-

pressed in terms of tetrads, and thus is more funda-

mental than the conventional Einstein gravity based on

metric. Such type of gravity emerging in superplastic

crystals has been discussed in Ref. [33]. The action in

the Einstein-Cartan gravity can be expressed in terms

of the di�erential forms, which contain the elasticity

tetrads as the translational gauge �elds:

SEC ∼ εabcd
∫
d4xEa ∧ Eb ∧Rcd . (41)

This action is dimensionless because the one-form

tetrad has dimension 1, [Eaµ] = 1
[L] , while the curva-

ture two-form Rab has dimension 2:

[Rabµν ] =
1

[L]2
. (42)

With the dimensional elasticity tetrads the topology

of the 3 + 1 crystalline phases [10, 11, 32] may provide

the fundamental topological prefactor in Eq.(41), with

1/GN as integer or fractional topological number.

The same can be valid for the dimensionless param-

eter in the Barbero-Immirzi action:

SBI ∼
∫
d4xEa ∧ Eb ∧Rab . (43)

Eq.(43) looks similar to the Nieh-Yan term in the ac-

tion, see e.g. Ref. [34]. Due to dimensional tetrads the

prefactors in the Nieh-Yan and in the Barbero-Immirzi

actions are dimensionless, and thus can be fundamen-

tal [7]. It is not excluded that these parameters are

the topological invariants similar to that in topological

insulators, semimetals and superconductors [10].

The dimensional metric and tetrads appear also in

such topological �eld theories as the BF -theoryl. For

example, the composite metric (Schönberg-Urbantke

metric [35�40]) is formed by triplet of the 2-form �elds:

√
−ggµν =

1

12
eabce

αβγδBaµαB
b
βγB

c
δν . (44)

The 2-forms in the BF action
∫
B ∧F have dimension

2, [B] = [F ] = 1/[L]2. Then the composite metric in

Eq.(44) has also dimension 2, [gµν ] = 1/[L]2. In the

same way the two-form �eld B can be represented as
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the bilinear combination of the tetrads [37]: B = E∧E.
These one-form tetrads have dimension 1, [Eaµ] = 1/[L].

Arnowitt-Deser-Misner (ADM) formalism [41] is

used for the Hamiltonian formulation of general relativ-

ity. Let us consider this formalism and its application

using the dimensional metric. One has the following

metric elements and their dimensions:

gik = γik , [γik] =
1

[L]2
, (45)

g0i = Ni = γikN
k , [Ni] =

1

[L]2
, [N i] = 0 , (46)

g00 = γikN
iNk −N2 = N iNi −N2 , [N ] =

1

[L]
, (47)

g00 = − 1

N2
, [g00] = [L]2 , (48)

g0i =
N i

N2
, [g0i] = [L]2 , (49)

gik = γik − N iN j

N2
, [γik] = [L]2 , (50)

√
−g = N

√
γ , [
√
γ ] =

1

[L]3
, (51)

γikγkl = δil . (52)

Here N and N i are lapse and shift functions corre-

spondingly, and γik are space components of metric.

The ADM formalism allows to consider dynamics

in curved space in terms of the Poisson brackets. Let

us consider this on example of Poisson brackets for the

classical 3 + 1 electrodynamics in curved space:

{Ai(r), Dk(r′)} = δki δ(r− r′) , (53)

which in terms of the gauge invariant �elds is:

{Bi(r), Dk(r′)} = eikl∇lδ(r− r′) . (54)

Here B is magnetic �eld, and the vector D is the electric

induction of the quantum vacuum (electric displace-

ment �eld). The electric induction D is expressed in

terms of the electric �eld Ei = F0i:

Dk =
1

α

√
γ

N
γikEi . (55)

Here α is the dimensionless �ne structure constant,

which determines the dielectric constant � the electric

permittivity of the relativistic quantum vacuum, εvac,

and the magnetic permeability of the vacuum, µvac:

εvac =
1

µvac
=

1

α
. (56)

In spite of the dimensional metric, electric induc-

tance D has the same dimension 2 as electric �eld E:

[Di] = [Ei] =
1

[L]2
. (57)

This follows from Eqs.(45), (48) and (51) for dimen-

sions of the ADM metric elements in 3 + 1 spacetime.

The corresponding quadratic Hamiltonian for the

electromagnetic �eld is:

H =

∫
d3r

2

N
√
γ
γik

(
αDiDk +

1

α
BiBk

)
. (58)

The Hamiltonian has dimension 1, i.e. [H] = 1/[L].

Both the Hamiltonian in Eq.(58) and the Poisson

bracket in Eq. (54) do not contain the gauge poten-

tials. The gauge potentials also do not enter the Pois-

son brackets for charged particle, {pi, pj} = qFij and

{pi(r), Dk(r′)} = −qδki δ(r− r′), where q is the dimen-

sionless electric charge of the particle in terms of the

electric charge of the electron.

The quantization of electromagnetic �eld is ob-

tained by the substitution of the Poisson brackets (54)

by commutation relations between D and B. The Pois-

son brackets in Eqs. (53) and (54) look as fundamental.

They do not depend on the metric and do not contain

physical parameters of the quantum vacuum. However,

the function D in Eq.(55) breaks this fundamentality.

It is the phenomenological variable, which describes the

response of the vacuum to electric �eld. This response

contains the electromagnetic coupling 1/α, which is

not fundamental because of the corresponding "species

problem": it depends on the �uctuating bosonic and

fermionic �elds in the quantum vacuum, and is space-

dependent. While the gravitational coupling 1/GN can

be fundamental due to topology, there are no topologi-

cal invariants which could support the fundamentality

of the electromagnetic coupling 1/α. This is in favour

of the scenario in which the quantum electrodynamics

is the e�ective low-energy theory, where for example

the gauge �elds emerge as the bilinear combinations of

the fermionic �elds, or/and the gauge �elds emerge in

the vicinity of the topologically stable Weyl points in

the fermionic spectrum [17,42�44]. This, however, does

not exclude the other possible pre-quantum and pre-

spacetime theories, see Ref. [45] and references therein.

Conclusion. Several approaches to quantum gravity

(including the model of superplastic vacuum; Diakonov

tetrads emerging as the bilinear combinations of the

fermionis �elds; BF -theories of gravity; and e�ective

acoustic metric) suggest that in general relativity the

metric has dimension 2, i.e. [gµν ] = 1/[L]2, irrespective

of the dimension of spacetime. One consequence of such

dimension of the metric is that the wave function in

quantum mechanics is dimensionless, [ψ(x)] = [1] = 0.

This also leads to the dimensionless quantum �elds.

On the other hand, if one starts with the conjecture

that in quantum mechanics the wave function is natu-
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rally dimensionless, one obtains dimension 2 for metric.

This suggests the close connection between quantum

mechanics and general relativity.
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