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1. INTRODUCTION

Rotation and rotating frames have always been a

source of confusion while dealing with the problem of a

uniformly rotating disk and its spatial geometry in the

context of special theory of relativity (STR) [1]. An in-

teresting feature in treating a rotational phenomena is

the Galilean rotational transformation (GRT) between

inertial (laboratory) frames and non-inertial rotating

frames.

This coordinate transformation {xµ} → {x′µ} is

de�ned by (t → t′, r → r′, φ → φ′ + Ω t′, z → z′)

[2�4], where Ω is the uniform angular speed of the ro-

tating frame measured by an observer in the inertial

frame. They had showed that the axial coordinate is

restricted by 0 ≤ r < c
Ω and others are usual ranges.

Rotating frame of reference for various physical sys-

tems have been investigated in literature, for instance,

on free scalar �elds [5], on the Dirac particle [6], on

a neutral particle [7], with quantum states under an

electromagnetic �eld [8],

on the Dirac oscillator [9�11], on the Dirac par-

ticle subject to a hard-wall con�ning potential [12],

on massive scalar �elds [13], on spin-1 particles [14],

on quantum fermionic �elds inside a cylinder [15], on

scalar bosons subject to Coulomb-type potential [16],

on scattering problem of a non-relativistic particle [17],

on spin-zero scalar particles in a space-time with space-
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like and spiral dislocations [18], on spin-zero scalar mas-

sive charged particles subject to Coulomb-type scalar

and vector potentials [19], on spin-1/2 particles with a

�eld and mixed potential [20], on the Casimir energy

in a space-time with one extra compacti�ed dimension

[21], on spin-zero scalar particles in a space-time with

magnetic screw dislocation [22], on the Dirac particles

in an accelerated reference frame [23], on the Dirac

�elds in a space-time with spiral dislocation [24], on

spin-zero scalar particles in a space-time with distor-

tion of a vertical line to a vertical spiral [25], on the

Klein-Gordon oscillator in a topologically non-trivial

space-time [26] and in a cosmic string space-time with

space-like dislocation [27], on spin-zero scalar particles

in a Lorentz symmetry violation environment [28], on

spin-zero scalar particles induced by the topology as-

sociated with a time-like dislocation space-time [29],

on spin-zero scalar massive charged particles subject to

Coulomb-type potential [30], on scalar particles [31,32],

and the Klein�Gordon oscillator with scalar potential

[33] in the context of Kaluza�Klein theory.

We are mainly interest on a space-time that is

produced by a non-trivial topology de�ned by the

geometry S1 × R3, where R3 represents usual di-

rections and S1 is a compact dimension (see �g.

1). The metric in polar coordinates (t′, r′, φ′, θ′) for

this topologically non-trivial geometry is given by

ds2 = −dt′2 + dr′2 + r′2 dφ′2 +R2 dθ′2 [26].

For S1 rotating frame of reference, we per-

form the coordinate transformation from in-

ertial frame (t, r, φ, θ) to the rotating frame

(t′ = t, r′ = r, φ′ = φ, θ′ = θ + Ω t), one will

have
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ds2 = −
(

1−R2 Ω2
)
dt2 + dr2 + r2 dφ2 +R2 dθ2

+2 ΩR2 dt dθ. (1)

The ranges of the coordinate 0 < θ < 2π and others are

in the usual ranges. Here R is radius of the compact di-

mension S1, and the determinant of the corresponding

metric tensor gµν is det g = −r2R2. An interesting fea-

ture one can see in contrast to the rotating Minkowski

space-time is that the radius of the compact dimension

S1 satis�es the condition R < 1
Ω [26] such that the

metric component gtt is always negative otherwise this

rotating system is physically unacceptable for R > 1
Ω .

2. GRAVITATIONAL FIELD EFFECTS UNDER

ROTATING FRAME ON SCALAR BOSONS

SUBJECT TO COULOMB-TYPE POTENTIAL

In this section, we study the relativistic quantum

motions of scalar bosons subject to a Coulomb-type

scalar potential in a topologically non-trivial rotating

space-time. There are two ways that one can introduce

a potential into the KG-equation. First one being an

electromagnetic four-vector potential Aµ that can be

introduced through a minimal substitution in momen-

tum four-vector via pµ → (pµ − eAµ) or in the partial

derivative via ∂µ → (∂µ − i eAµ) [39], where e is the

electric charges. This procedure has been widely used

by several authors in literature [16,19,27,30�33,40�44].

The second procedure is to introduce a scalar poten-

tial S(t, r) by modifying the mass term in the KG-

equation via transformation M2 → (M + S(t, r))2.

This procedure has also been used by several authors

to study the e�ects of potential in quantum systems

[16,19,27,30�33,39�42].

Fig. 1. Representation of the topologically non-trivial geometry

S1 ×R3 [26]

Thus, the quantum dynamics of scalar bosons sub-

ject to a potential S(r) following the �rst approach is

described by the wave equation [19,21�23,30�33,39�44][
− 1√
−g

Dµ

(√
−g gµν Dν

)
+
(
M + S(r)

)2
]

Ψ = 0,

(2)

where M is the rest mass of the scalar bosons.

In this analysis, we have chosen the electromagnetic

four-vector potential Aµ = (0, ~A) [22,27,33,42,44] with

the following components

Ar = 0 = Aθ , Aφ =
ΦB
2π

, (3)

where ΦB = Φ Φ0 is the Aharnov-Bohm �ux which

is a constant, Φ0 = 2 π
e is the amount of quantum

�ux, and Φ is the magnetic �ux which is a positive

integer. The presence of a magnetic �ux in quantum

system shows an analogue of the Aharonov-Bohm e�-

fect [37,38] which is a quantum mechanical phenomena

that has been studied by many researchers in literature

[27,30�33,41�44].

The Klein-Gordon equation (2) using (3) in the ro-

tating space-time background (1) becomes[
−
( ∂
∂ t
− Ω

∂

∂ θ

)2

+
1

r

∂

∂ r

(
r
∂

∂r

)
+

1

r2

( ∂

∂φ
− iΦ

)2

+
1

R2

∂2

∂ θ2

]
Ψ =

(
M + S(r)

)2

Ψ. (4)

Several authors have been studied quantum motions of

scalar and spin-half particles using potential of di�er-

ent kinds, such as the Cornell-type potential [40,41]. In

this analysis, we are interested on another kind of po-

tential proportional to the inverse of the axial distance.

This type of potential is used for short-range interac-

tions and called the Coulomb-type potential given by

S(r) ∝ 1

r
⇒ S(r) =

η

r
, (5)

where η > 0 is a constant characterizes the potential

parameter. This Coulomb-type potential has widely

been studied in literature [41,43,45�57].

The total wave function Ψ(t, r, φ, z) can express in

terms of a radial wave function ψ(r) as follows:

Ψ(t, r, φ, θ) = ei (−E t+l φ+q θ) ψ(r), (6)

where E is energy of the scalar bosons, l = 0,±1,±2, ..

are the eigenvalues of the angular momentum operator

−i ∂̂φ, and q is a constant associated with the operator

−i ∂̂θ. Noted that for S1 compact dimension de�ned by
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a �nite radius R satisfying the condition R < 1
Ω , the

total wave function obeys the following condition

Ψ(θ + 2π R) = Ψ(θ). (7)

Thereby, substituting the scalar potential (5) and

the total wave function Eq. (6) into the Eq. (4), we

have obtained the following radial wave equation

ψ′′(r) +
1

r
ψ′(r) +

[
− δ2 − j2

r2
− 2 γ

r

]
ψ(r) = 0, (8)

where

δ =

√
M2 +

n2

R2
− (E + Ωn)2, j =

√
(l − Φ)2 + η2,

γ = M η. (9)

Performing a change of variables via ξ = 2 δ r into the

Eq. (8), we have

ψ′′(ξ) +
1

ξ
ψ′(ξ) +

(
− j2

ξ2
− γ

δ

1

ξ
− 1

4

)
ψ(ξ) = 0. (10)

Suppose, a possible solution for the Eq. (10) in

terms of a function F (ξ) as:

ψ(ξ) = ξj e−
ξ
2 F (ξ). (11)

Substituting this solution (11) into the Eq. (10),

we have obtained the following second-order di�eren-

tial equation:

ξ F ′′(ξ)+
(

1+2 j−ξ
)
F ′(ξ)+

(
−j− γ

δ
− 1

2

)
F (ξ) = 0.

(12)

Equation (12) is the well-known con�uent hyperge-

ometric equation form [58, 59]. As state in Refs.

[16, 19, 22, 26, 43, 51, 56, 58, 59], the solution to the

di�erential equation of the form (12) can be ex-

pressed in terms of a con�uent hyper-geometric func-

tion F (ξ) = 1F1

(
j + γ

δ + 1
2 , 2 j + 1; ξ

)
which is well-

behaved for ξ → ∞. Then, in searching for the

bound-state solutions of the wave equation, the func-

tion 1F1 must be a �nite degree polynomial in ξ

of degree n, and the quantity
(
j + γ

δ + 1
2

)
= −n

[16, 19,22,26,43,51,56,58,59], where n = 0, 1, 2, ...

After simplifying this condition
(
j + γ

δ + 1
2

)
= −n,

one will have the following expression of the energy

eigenvalues:

En,l,q = −Ω q±

±

[
M2 +

q2

R2
− η2(

n+
√

(l − Φ)2 + η2 + 1
2

)2

]1/2

. (13)

The radial wave function is given by

ψn,l(ξ) = ξ
√

(l−Φ)2+η2 e−
ξ
2×

×1 F1

(
j +

γ

δ
+

1

2
, 2 j + 1; ξ

)
. (14)

Equation (13) is the relativistic energy eigenvalue

and Eq. (14) is the radial wave function of the scalar

bosons in a topologically non-trivial rotating space-

time subject to a Coulomb-type external potential. We

can see that the eigenvalue solution is modi�ed by the

non-trivial topology of the geometry de�ned by the ra-

dius R, and the Coulomb-type potential. We also see

that the energy levels are shifted by rotating frame of

reference, and hence, these are not equally spaced on

either side about En,l,q = 0 for constant values of l, q.

This e�ect arises due to the coupling between the quan-

tum number q 6= 0 and the uniform angular speed Ω of

rotating frame of reference.

In Ref. [26], authors studied the Klein-Gordon os-

cillator in a non-trivial topological space-time geome-

try. They solved the wave equation analytically and ob-

tained the following energy eigenvalue expression (see

Eq. (28) there and we have replaced n→ q)

E± = ±
√
M2 +

q2

R2
+ 2M ω (2N ′ + |l|), (15)

where N ′ = N + 1 = 1, 2, 3, ...

One can easily show that the presented energy

eigenvalue (13) is completely di�erent from the re-

sult (15) obtained in Ref. [26]. This is because, we

have considered a non-inertial reference frame which

rotates with constant angular speed Ω, the Coulomb-

type scalar potential characterise by the parameter η

as well as the magnetic �ux Φ which shifts the energy

levels and the wave function. Thus, our presented re-

sult in this section is completely new and di�erent from

the previous result given in Ref. [26].

3. GRAVITATIONAL FIELD EFFECTS UNDER

ROTATING FRAME ON KG-OSCILLATOR

SUBJECT TO COULOMB-TYPE SCALAR

POTENTIAL

In this section, we will study the Klein-Gordon os-

cillator [60] subject to an external potential in a topo-

logically non-trivial four-dimensional rotating space-

time. In Ref. [26], authors studied the KG-oscillator in

this topologically non-trivial rotating space-time with-

out any external potential. In this work, we have in-

serted a Coulomb-type external potential and magnetic
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�ux as stated earlier and analyze their e�ects on the

eigenvalue solution of the oscillator �elds. The KG-

oscillator analogous to the Dirac oscillator [61] has at-

tracted attention among researchers in current times

(see, Refs. [19, 22, 26, 27, 33, 57, 62]). The KG-oscillator

is examined by the replacements of the radial momen-

tum vector [19,22,26,27,33,57,62]

~p→ (~p− iM ω ~r), ~p† → (~p+ iM ω ~r), (16)

where ω is the frequency of the oscillator �elds, and r

being distance from the particle to the axis of symme-

try.

Therefore, the Klein-Gordon oscillator equation is

given by[
− 1√
−g

(
Dµ +M ωXµ

)
×

×
{√
−g gµν

(
Dν −M ωXν

)}
+

+
(
M + S(r)

)2
]

Ψ = 0, (17)

where Xµ = (0, r, 0, 0) = r δrµ is a four-vector.

Explicitly witting the KG-oscillator equation (17)

in the rotating space-time background (1) and using

the electromagnetic potential Eq. (3) and the external

potential Eq. (5), we have[
−
(
∂

∂t
− Ω

∂

∂θ

)2

+
∂2

∂r2
+

1

r

∂

∂r
−M2 ω2 r2 − 2M ω

+
1

r2

(
∂

∂φ
− iΦ

)2

+
1

R2

∂2

∂θ2

]
Ψ =

(
M +

η

r

)2

Ψ. (18)

Substituting the wave function (6) into the Eq. (18),

we have obtained the following radial wave equation:

ψ′′(r) +
1

r
ψ′(r) +

[
Λ−M2 ω2 r2− j2

r2
− 2 γ

r

]
ψ(r) = 0,

(19)

where j, γ are de�ned in Eq. (9) and

Λ = (E + Ω q)2 −M2 − 2M ω −
( q
R

)2

. (20)

Let us now perform a change of variables via

x =
√
M ω r. Then, Eq. (19) can be rewritten as

ψ′′(x)+
1

x
ψ′(x)+

[
Λ

M ω
−x2− ς

x
− j

2

x2

]
ψ(x) = 0, (21)

where ς = 2 γ√
M ω

.

As stated earlier the wave function ψ(x) is well-

behaved and regular everywhere. Suppose, a possible

solution to the above radial wave equation Eq. (21) is

given by

ψ(x) = xj e−
x2

2 H(x), (22)

where H(x) is an unknown function.

Thereby, substituting the radial wave function Eq.

(22) into the Eq. (21), we have

H ′′(x) +
[1 + 2 j

x
− 2x

]
H ′(x) +

[
− ς

x
+ Ξ

]
H(x) = 0,

(23)

where Ξ = Λ
M ω − 2 (1 + j).

Equation (23) is the bicon�uent Heun di�erential

equation form [22, 32, 33, 40, 42] and H(x) is the Heun

function. Substituting a power series expansion

H(x) =

∞∑
i=0

di x
i

[59] into the Eq. (23), we have obtained few coe�cients

d1 =

(
ς

1 + 2 j

)
d0, d2 =

1

4 (1 + j)

[
ς d1 − Ξ d0

]
with the following recurrence relation

dm+2 =
1

(m+ 2)(m+ 2 + 2 j)

[
ς dm+1− (Ξ−2m) dm

]
.

(24)

One can see this power series expansion H(x) becomes

a polynomial of �nite degree m by imposing the follow-

ing two conditions [22,32,33,40,42]

Ξ = 2m (m = 1, 2, ...) , dm+1 = 0. (25)

By analyzing the �rst condition, we have obtained fol-

lowing energy eigenvalue Em,l,q expression:

Em,l,q = −Ω q ±

±

[
M2 + 2M ωm,l ×

×
(
m+

√
(l − Φ)2 + η2 + 2

)
+
q2

R2

]1/2

. (26)

The corresponding radial wave function is given by

ψm,l(x) = x
√

(l−Φ)2+η2 e−
x2

2 H(x), (27)

where H(x) is now a �nite degree polynomial of degree

m.

Finding solutions of the quantum system still not

complete because one must analyze the second condi-

tion dm+1 = 0 one by one to get the complete infor-

mation of a quantum state. As example, for the radial
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mode m = 1, we have Ξ = 2 and d2 = 0 which gives

us a constraint on the oscillation frequency ω → ω1,l

given by

ω1,l =

(
M η2√

(l − Φ)2 + η2 + 1
2

)
. (28)

Therefore, the ground state energy level associated

with the radial mode m = 1 is given by

E1,l,q = −Ω q ±

±M

√√√√1 + 2 η2

(√
(l − Φ)2 + η2 + 3√
(l − Φ)2 + η2 + 1

2

)
+
( q

M R

)2

.(29)

And the ground state radial wave function is given by

ψ1,l(x) = x
√

(l−Φ)2+η2 e−
x2

2 ×

×

(
1 +

x√√
(l − Φ)2 + η2 + 1

2

)
d0. (30)

Similarly, for the radial modem = 2, we have Ξ = 4

and d3 = 0 which gives us another constraint on the os-

cillation frequency ω → ω2,l given by

ω2,l =
1

2

(
M η2√

(l − Φ)2 + η2 + 1

)
, (31)

Therefore, the �rst excited state energy level of the

bound-states solution de�ned by the radial modem = 2

is given by

E2,l,q = −Ω q ±

±M

√√√√1 + η2

(√
(l − Φ)2 + η2 + 3√
(l − Φ)2 + η2 + 1

)
+
( q

M R

)2

. (32)

And the corresponding radial wave function is given

by

ψ2,l(x) = x
√

(l−Φ)2+η2 e−
x2

2 (d0 + d1 x+ d2 x
2), (33)

where

d1 = 2


√√

(l − Φ)2 + η2 + 3
4√

(l − Φ)2 + η2 + 1
2

 d0,

d2 =

(
1√

(l − Φ)2 + η2 + 1
2

)
d0. (34)

We can see that the energy eigenvalues and the wave

function are modi�ed by the non-trivial topology of the

space-time geometry, and the Coulomb-type potential.

One can show that the presented energy eigenvalue gets

modi�ed in comparison to those result obtained in [26]

due to the presence of the Coulomb-type external po-

tential and the magnetic quantum �ux. This Coulomb-

type external potential is responsible for the bound-

state solutions, and thus, the ground state is de�ned

by the radial quantum number n = 1 instead of n = 0.

4. CONCLUSIONS

In this analysis, we have determined solutions of

the wave equation under the e�ects of the gravitational

�eld produced a topologically non-trivial geometry sub-

ject to a Coulomb-type external potential in a rotating

frame of reference. We have seen that the non-trivial

topology of the geometry de�ned by the radius R of

the compact dimension, and the Coulomb-type external

potential modi�ed the eigenvalue solutions. Further-

more, the presence of the magnetic �ux causes a change

in the angular quantum number l → l0 =
(
l − eΦB

2 π

)
which shows that the energy eigenvalue depends on

the geometric quantum phase. This dependence of the

eigenvalue on the geometric quantum phase gives us

the gravitational analogue to the Aharonov-Bohm ef-

fect [37, 38]. Several authors have been investigated

this quantum mechanical e�ect in literature (e. g.,

[27, 30, 31, 33]). Also, we have seen a coupling between

the angular quantum number q and the uniform angu-

lar speed Ω of the rotating frame of reference. This

coupling causes asymmetry in the relativistic energy

levels, and hence, are not equally spaced on either side

about En/m,l,q = 0 for constant values of l, q.

We has seen that the presence of Coulomb-type po-

tential allowed the formation of bound-state solutions

and causes di�erence in results with those obtained in

Ref. [26]. Another point we have noticed is that the ro-

tating frames restricted the radius of compact circle S1

in the range R < 1
Ω , and an analogous to the Sagnac-

type e�ect [6,10,27,33] is observed due to the coupling

between the quantum number q and uniform angular

speed Ω of rotating frames. This coupling causes asym-

metry in the energy levels and therefore, they are not

equally spaced on either side about En,l,q = 0 for con-

stant values of l, q.

The full text of this paper is published in the English

version of JETP.
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