МУЛЬТИФРАКТАЛЬНО-УСИЛЕННАЯ СВЕРХПРОВОДИМОСТЬ В ДВУМЕРНЫХ СИСТЕМАХ СО СПИН-ОРБИТАЛЬНЫМ ВЗАИМОДЕЙСТВИЕМ

 $E.\ C.\ Aндрияхина\ ^{a,b},\ \mathit{И.}\ C.\ Бурмистров\ ^{b,c^*}$

^а Московский физико-технический институт, 141700, Москва, Россия

^b Институт теоретической физики им. Л. Д. Ландау, 142432, Черноголовка, Московская обл., Россия

 c Международная лаборатория физики конденсированного состояния, НИУ ВШЭ, $101000,\ Mocква,\ Poccus$

Поступила в редакцию $16.07.2022~\mathrm{r.}$, после переработки $16.07.2022~\mathrm{r.}$ Принята к публикации $17.07.2022~\mathrm{r.}$

Известно, что комбинация локализации Андерсона и электрон-электронного взаимодействия приводит к усилению сверхпроводимости за счет мультифрактальности электронных волновых функций. В работе развита теория мультифрактально-усиленных сверхпроводящих состояний в двумерных системах при наличии спин-орбитального взаимодействия. При помощи нелинейной сигма-модели Финкельштейна выведены модифицированное уравнение Узаделя и уравнение самосогласования для щели, которые учитывают перенормировки, вызванные беспорядком и квазичастичным взаимодействием. Мультифрактальные корреляции индуцируют энергетическую зависимость сверхпроводящей спектральной щели. Определены температура сверхпроводящего перехода и сверхпроводящая спектральная щель в случае изинговского и сильного спин-орбитального взаимодействий. В последнем случае энергетическая зависимость сверхпроводящей спектральной щели является выпуклой функцией энергии, тогда как в первом случае (как и при отсутствии спин-орбитального взаимодействия) — вогнутой. Мультифрактальность увеличивает не только температуру перехода, но и спектральную щель при нулевой температуре. Также изучены мезоскопические флуктуации локальной плотности состояний в сверхпроводящем состоянии. Как и в случае металла в нормальном состоянии, спин-орбитальное взаимодействие уменьшает амплитуду флуктуаций.

Статья для специального выпуска $X \ni T \Phi$, посвященного 95-летию \ni . И. Рашба

DOI: 10.31857/S0044451022100091

EDN: ENPUZY

1. ВВЕДЕНИЕ

Сверхпроводимость и локализация Андерсона — два фундаментальных квантовых явления, которые до сих пор вызывают большой интерес. Первоначально считалось, что немагнитный беспорядок не влияет на s-волновой сверхпроводящий параметр порядка (это утверждение известно как "тео-

рема Андерсона" [1–3]). Позже парадигма сменилась в сторону того, чтобы рассматривать сверхпроводимость и беспорядок как антагонистов из-за локализации Андерсона [4]. Было предсказано, что сильная локализация подавляет сверхпроводимость [5–8]. Также, разрушение сверхпроводимости было предсказано и при слабом беспорядке за счет кулоновского взаимодействия [9–15]. Экспериментальное открытие перехода сверхпроводник—изолятор [16] подстегнуло интерес к изучению влияния беспорядка на сверхпроводящие корреляции в тонких пленках (см. обзоры [17–19]).

^{*} E-mail: burmi@itp.ac.ru

В последнее время парадигма снова изменилась. В работах [20, 21] было показано, что локализация Андерсона может привести к повышению температуры сверхпроводящего перехода T_c для систем, близких к переходу Андерсона (например, в трех пространственных измерениях). Этот эффект появляется за счет мультифрактального поведения волновых функций — известного спутника локализации Андерсона — приводящего к усилению эффективного притяжения между электронами. Этот механизм работает при отсутствии дальнодействующего кулоновского отталкивания. Позднее мультифрактальное усиление T_c было предсказано для систем в режиме слабой локализации (или антилокализации), что актуально для слабонеупорядоченных сверхпроводящих пленок [22,23]. Эти аналитические предсказания были дополнительно проверены численными расчетами неупорядоченной модели Хаббарда с притяжением на двумерной решетке [24-26]. Также в качестве демонстрации механизма мультифрактального усиления сверхпроводимости стоит упомянуть недавние экспериментальные работы [27, 28], в которых продемонстрировано увеличение T_c с ростом беспорядка в монослойных дихалькогенидах ниобия.

Одним из способов определения мультифрактально-усиленного сверхпроводящего состояния является изучение мезоскопических флуктуаций локальной плотности состояний [29, 30]. Потенциально это может быть очень многообещающим из-за (і) большого количества опубликованных данных о туннельной спектроскопии пространственных флуктуаций локальной плотности состояний в тонких сверхпроводящих пленках [31–36] и (іі) качественного согласия между теорией [37], развитой для температур $T > T_c$, и экспериментами по локальной плотности состояний в нормальной фазе неупорядоченных сверхпроводящих пленок.

Однако также существуют сверхпроводящие тонкие пленки и двумерные системы с нарушенной симметрией относительно вращения спина из-за наличия спин-орбитального взаимодействия. В их числе одиночные атомарные слои Pb на поверхностях Si [38], SrTiO₃ [39, 40], интерфейсы LaAlO₃/SrTiO₃ [41, 42] и чешуйки MoS_2 [43–45]. Кроме того, в монослоях дихалькогенида ниобия, в которых измерено мультифрактальное усиление сверхпроводимости [27, 28], предсказывается наличие спин-орбитального взаимодействия изинговского типа. Все вышеперечисленное требует развития теории мультифрактально-усиленной сверхпроводи-

мости в двумерных системах со спин-орбитальным взаимодействием.

В настоящей работе мы продолжаем теорию мультифрактального сверхпроводящего ния, развитую в [29], на случай тонких пленок спин-орбитальным взаимодействием. и в [29], мы сосредоточимся на случае слабого короткодействующего электрон-электронного взаимодействия¹⁾. Мы рассматриваем беспорядок промежуточной силы (но все еще слабый), при котором анализ уравнений ренормализационной группы в нормальном состоянии предсказывает параметрически-усиленную T_c по сравнению с обычным результатом из теории Бардина-Купера-Шриффера (БКШ) [22]. Используя нелинейную сигма-модель Финкельштейна, мы выводим уравнение Узаделя и уравнение для спектральной щели. Оба уравнения модифицируются из-за наличия беспорядка и квазичастичных взаимодействий на масштабах, меньших сверхпроводящей длины когерентности. Эти уравнения решены для случаев изинговского и сильного спин-орбитального взаимодействий. В первом случае только одна триплетная диффузионная мода остается эффективной на больших масштабах длины, тогда как во втором случае все триплетные моды оказываются подавлены. В обоих случаях мы определяем температуру сверхпроводящего перехода и энергетическую зависимость спектральной щели при низких температурах $T \ll T_c$ и вблизи перехода $T_c - T \ll T_c$. Показано, что максимальная величина щели пропорциональна T_c , т.е. также усиливается из-за мультифрактальности. Кроме того, мы оцениваем мезоскопические флуктуации локальной плотности состояний. Эти флуктуации логарифмически расходятся с размером системы (если пренебречь эффектом дефазировки), несмотря на отсутствие вращательной симметрии в спиновом пространстве.

Статья построена следующим образом. В разд. 2 представлена общая схема описания сверхпроводящего состояния. Это описание применяется к случаю спин-орбитального взаимодействия изинговского типа в разделе 3. В разд. 4 мы рассматриваем случай сильной спин-орбитальной связи. Флуктуации локальной плотности состояний обсуждаются в разд. 5. Обсуждение результатов и выводы пред-

¹⁾ Дальнодействующая составляющая (кулоновского) взаимодействия может быть подавлена в пленках с подложкой с высокой диэлектрической проницаемостью.

ставлены в разд. 6. Некоторые технические детали можно найти в Приложениях.

2. УРАВНЕНИЕ ДЛЯ СПЕКТРАЛЬНОЙ ЩЕЛИ

В грязных сверхпроводниках имеется существенное энергетическое окно между диффузионным масштабом $1/\tau$ (τ — среднее время свободного пробега) и энергетическим масштабом, связанным со сверхпроводимостью, в качестве которого естественно выбрать T_c . Поэтому для описания сверхпроводящих свойств, которые обычно соответствуют энергетической шкале T_c (соответствующая шкала длин — это сверхпроводящая длина когерентности, $\xi = \sqrt{D/T_c}$), необходимо учитывать эффекты, связанные с взаимодействием диффузионных мод в интервале энергий $T_c \lesssim \varepsilon \lesssim 1/ au$. Как известно из исследований обычных грязных металлов, основным эффектом диффузионного режима является перенормировка физических параметров системы, т. е. проводимости, силы взаимодействия и т. д.

Такую перенормировку следует учитывать и в сверхпроводящем состоянии. Наиболее важным эффектом перенормировки является модификация уравнения Узаделя и уравнения самосогласования для спектральной щели. Следуя подходу, изложенному в [29], модифицированные уравнения могут быть получены с помощью нелинейной сигма-модели Финкельштейна (подробности см. в приложении А). Этот метод приводит к следующему модифицированному уравнению Узаделя для спектрального угла θ_{ε} :

$$\frac{D_{\varepsilon}}{2} \nabla^2 \theta_{\varepsilon} - |\varepsilon| \sin \theta_{\varepsilon} + \Delta_{\varepsilon} \cos \theta_{\varepsilon} = 0.$$
 (1)

Здесь $\varepsilon=\pi T(2n+1)$ — фермионная мацубаровская частота. Уравнение (1) отличается от стандартного уравнения Узаделя [46] зависящей от энергии спектральной щелью Δ_ε и зависящим от энергии коэффициентом диффузии $D_\varepsilon^{\,2)}$.

В низшем порядке по беспорядку и взаимодействию спектральная щель удовлетворяет следующе-

му уравнению:

$$\Delta_{\varepsilon} = -2\pi T \sum_{\varepsilon_{n}' > 0} \sin \theta_{\varepsilon'} \left\{ \gamma_{c} - 2 \frac{(\gamma_{s} - \mathcal{N}\gamma_{t})}{g} \times \int \frac{d^{2}\mathbf{q}}{(2\pi)^{2}} \frac{D}{Dq^{2} + E_{\varepsilon} + E_{\varepsilon'}} \right\},$$

$$E_{\varepsilon} = |\varepsilon| \cos \theta_{\varepsilon} + \Delta \sin \theta_{\varepsilon}.$$
(2)

Здесь $\gamma_c < 0$, γ_s и γ_t — затравочные значения безразмерных амплитуд взаимодействия в куперовском канале, а также в синглетном и в триплетном каналах частица—дырка, соответственно. Мы предполагаем, что взаимодействие в канале частица—дырка слабое и короткодействующее. Поэтому рассмотрим случай $|\gamma_{c,s,t}| \ll 1$.

Сила беспорядка контролируется затравочной безразмерной (в единицах e^2/h) проводимостью $g=h/(e^2R_\square)$, где R_\square — сопротивление пленки на квадрат в нормальном состоянии. Завтравочный коэффициент диффузии D связан с проводимостью и плотностью состояний ν на энергии Ферми в нормальном состоянии через соотношение Эйнштейна $g=2\pi\nu D$. Параметр сверхпроводящего порядка Δ определяет затравочное значение сверхпроводящей щели.

Параметр \mathcal{N} в уравнении (2) показывает количество безмассовых триплетных диффузионных мод. Ниже мы сосредоточимся на случаях $\mathcal{N}=0$ и $\mathcal{N}=1$, тогда как случай $\mathcal{N}=3$ рассматривался в [29].

Отметим, что аналогичная форма уравнения самосогласования для спектральной щели была получена в работах [47,48] для случая только кулоновского взаимодействия ($\gamma_s=-1$) в пренебрежении обменным взаимодействием ($\gamma_t=0$) с помощью диаграммной техники.

Уравнение (2) напоминает стандартное уравнение самосогласования из теории БКШ, если убрать часть, отвечающую логарифмически-перенормированному параметру притяжения γ_c . При этом перенормировка γ_c совпадает с аналогичной в нормальном металле с той разницей, что инфракрасная обрезка задается $\max\{\varepsilon,\varepsilon',\Delta\}$. Пертурбативный результат (2) для перенормировки γ_c может быть обобщен с помощью метода ренормализационной группы, см. [29].

Решая модифицированное уравнение Узаделя (1) в однородном случае с помощью $\sin \theta_{\varepsilon} = \Delta_{\varepsilon}/\sqrt{\varepsilon^2 + \Delta_{\varepsilon}^2}$, мы находим следующее уравнение самосогласования для Δ_{ε} :

$$\Delta_{\varepsilon} = -2\pi T \sum_{\varepsilon'>0} \frac{\gamma_c(L_{E_{\varepsilon}+E_{\varepsilon'}}) \Delta_{\varepsilon'}}{\sqrt{\varepsilon'^2 + \Delta_{\varepsilon'}^2}},$$
 (3)

 $^{^{2)}}$ В настоящей статье нас интересует пространственно-однородное на масштабах порядка ξ сверхпроводящее состояние. Поэтому здесь мы не будем обсуждать энергетическую зависимость коэффициента диффузии.

где $L_{\varepsilon} = \sqrt{D/\varepsilon}$ — диффузионная длина, связанная с энергией ε . Изменение γ_c с масштабом длины L определяется следующим уравнением ренормализационной группы (см. [29] для $\mathcal{N}=3$):

$$\frac{d\gamma_c}{du} = -\frac{t}{2} \left(\gamma_s - \mathcal{N}\gamma_t \right). \tag{4}$$

Здесь $y=\ln L/\ell$, где ℓ и L — длина свободного пробега и размер системы, соответственно. Безразмерное сопротивление обозначено через $t=2/(\pi g)$. Затравочное значение t_0 предполагается малым, $t_0\ll 1$.

Уравнение (4) не содержит стандартного члена $-\gamma_c^2$, ответственного за куперовскую неустойчивость в чистом случае. Этот вклад уже учтен в сверхпроводящем параметре порядка Δ (подробности см. в [29]).

Кажется заманчивым заменить в уравнении (3) Δ на Δ_{ε} в выражении для E_{ε} , так как это приведет уравнение в полностью самосогласованный вид относительно Δ_{ε} . Именно это и было сделано в статье [29] на основании соотношения между уравнением Узаделя, линеаризованным по вариации θ_{ε} , и купероном на совпадающих энергиях. Однако дальнейший анализ показал, что куперон на несовпадающих мацубаровских энергиях имеет более сложную структуру после перенормировки³⁾. Как мы увидим ниже, точный вид разности $E_{\varepsilon} - |\varepsilon|$ не существенен для результатов, изложенных в этой статье.

Уравнение (4) необходимо дополнить уравнениями ренормализационной группы для $\gamma_{s,t}$ и t. Однако их точная форма зависит от числа триплетных мод \mathcal{N} . Ниже мы проанализируем уравнение (3) отдельно для случаев $\mathcal{N}=0$ и 1. В дальнейшем будем всегда считать затравочные значения взаимодействия и беспорядка слабыми: $|\gamma_{s0}|$, $|\gamma_{t0}|$, $|\gamma_{c0}|$, $t_0 \ll 1$.

3. $\mathcal{N}=1$: ИЗИНГОВСКОЕ СПИН-ОРБИТАЛЬНОЕ ВЗАИМОДЕЙСТВИЕ

В данном разделе мы сосредоточимся на сверхпроводящих пленках с так называемым изинговским спин-орбитальным взаимодействием. Это взаимодействие заставляет спины электронов ориентироваться в направлении из плоскости двумерного движения. В этом случае скорости переворота спина для проекций в плоскости меньше, чем для проекции перпендикулярной плоскости,

 $1/\tau_{\rm so}^{x,y}\ll 1/\tau_{\rm so}^z$. Поэтому одна триплетная диффузионная мода, соответствующая проекции полного спина $S_z=0$, как и синглетная диффузионная мода, остается бесщелевой. Таким образом, для изинговского спин-орбитального взаимодействия реализуется случай $\mathcal{N}=1$.

Для анализа уравнения (3) необходимо учесть зависимость γ_c от масштаба длины. В работе [23] полная система однопетлевых уравнений ренормгруппы для $\gamma_{s,t,c}$ и t была получена с помощью перенормировки нелинейной сигма-модели выше температуры сверхпроводящего перехода с помощью фонового поля. Применяя тот же метод к сверхпроводящему состоянию, находим

$$\frac{dt}{dy} = -\frac{t^2}{2} \left(\gamma_s + \gamma_t + 2\gamma_c \right), \tag{5a}$$

$$\frac{d}{dy} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix} = -\frac{t}{2} \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & -2 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix}. \tag{5b}$$

Отметим, что уравнение (5а) записано в предположении $|\gamma_{s,t,c}| \ll 1$. Так же, как и в нормальном металле [49], слабая локализация и слабая антилокализация компенсируют друг друга при наличии изинговского спин-орбитального взаимодействия. Из уравнения (5а) мы заключаем, что в главном порядке безразмерное сопротивление t остается почти постоянным. Поэтому в дальнейшем в этом разделе мы будем предполагать $t \simeq t_0$. Система (5b) указывает на то, что при ренормгрупповом потоке параметры взаимодействия приближаются к так называемой линии БКШ $-\gamma_s = \gamma_t = \gamma_c \equiv \gamma$ [22]. Чтобы описать поведение системы на масштабах длины $y \gtrsim t_0^{-1}$, мы проецируем уравнение (5b) на БКШ-линию и далее будем работать с эффективным параметром взаимодействия γ , удовлетворяющем соотношению

$$d\gamma/dy \simeq t_0 \gamma$$
, $\gamma_0 = (\gamma_{t0} - \gamma_{s0} + 2\gamma_{c0})/4 < 0$. (6)

Решая это уравнение, находим

$$\gamma(L) = \gamma_0 (L/\ell)^{t_0}. \tag{7}$$

В дальнейшем мы считаем, что беспорядок доминирует над взаимодействием, т. е. $t_0 \gg |\gamma_0|$. Как известно [22], именно в этом режиме ожидается мультифрактальное повышение температуры сверхпроводящего перехода. Критическую температуру T_c можно оценить из соотношения $|\gamma(L_{T_c})| \sim t_0$ (см. приложение В). Такая оценка дает

$$T_c \sim (1/\tau)(|\gamma_0|/t_0)^{2/t_0}$$
. (8)

³⁾ Авторы благодарны П. Носову за это замечание.

Отметим, что температура перехода T_c соответствует $y_c \sim t_0^{-1} \ln(t_0/|\gamma_0|) \gg t_0^{-1}$, что оправдывает проекцию на БКШ-линию.

3.1. Критическая температура

Более точно температуру T_c перехода в сверхпроводящее состояние можно определить, решая линеаризованное уравнение самосогласования (3). Отметим также, что после проецирования уравнения самосогласования (3) на БКШ линию γ_c в нем заменится на γ . Таким образом, мы получаем следующее линеаризованное уравнение самосогласования:

$$\Delta_{\varepsilon} = -2\pi T \sum_{\varepsilon' > 0} \gamma(L_{\varepsilon + \varepsilon'}) \frac{\Delta_{\varepsilon'}}{\varepsilon'}.$$
 (9)

Принимая во внимание реальную зависимость $\gamma(L)$ от L, см. (7), найдем

$$\Delta_n = \frac{|\gamma_0|}{(2\pi T\tau)^{t_0/2}} \sum_{n'\geqslant 0}^{n_{\text{max}}} \frac{\Delta_{n'}}{(n+n'+1)^{t_0/2}(n'+1/2)}, \quad (10)$$

где $n_{\rm max}\simeq 1/(2\pi T\tau)$ — естественная обрезка для мацубаровских энергий, связанная с тем, что мы работаем в диффузионном режиме. Поиск T_c из уравнения (10) можно переформулировать как задачу о нахождении максимального собственного значения соответствующей матрицы. Температура сверхпроводящего перехода удовлетворяет $(2\pi T_c\tau)^{t_0/2}=$ = $|\gamma_0|\lambda_M$, где λ_M — максимальное собственное значение матрицы $M_{nn'}=(n+n'+1)^{-t_0/2}(n'+1/2)^{-1}$.

Численное решение уравнения (10) с помощью степенного метода (см. приложение С) дает $\lambda_M \simeq 1.4/t_0$. Значит,

$$T_c \simeq \frac{1}{2\pi\tau} \left(1.4|\gamma_0|/t_0 \right)^{2/t_0}.$$
 (11)

Правый собственный вектор r_n матрицы M, соответствующий λ_M , показан на рис. 1. (Левый собственный вектор матрицы M выражается через r_n как $l_n = r_n/(n+1/2)$.) Отметим, что спектральная щель существенно зависит от энергии, что отличается от модели БКШ, в которой щель постоянна.

Результат (11) можно также обосновать аналитически. Сначала в уравнении (10) заменим $(n+n'+1)^{t_0/2}$ на $\max\{(n+1/2)^{t_0/2},(n'+1/2)^{t_0/2}\}$. Это оправдано малостью показателя $t_0\ll 1$. Далее вводим переменную

$$u_{\varepsilon} = \frac{2}{t_0} |\gamma(L_{\varepsilon})| = \frac{2|\gamma_0|}{t_0} (\varepsilon \tau)^{-t_0/2}.$$
 (12)

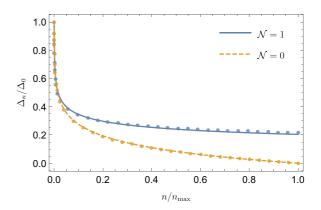


Рис. 1. Зависимость спектральной щели Δ_n от мацубаровских энергий $\varepsilon_n=2\pi T(n+1/2)$ при T вблизи критической температуры T_c . Сплошная и штриховая линии показывают аналитические выражения (15) и (41), соответственно. Точками соответствующих цветов отмечены численные решения для ведущих собственных векторов из уравнений (10) и (36)

Затем, применяя пересуммирование методом Эйлера – Маклорена к правой части уравнения (9), получаем

$$\Delta_{u_n} \simeq u_n \int_{u_0}^{u_0} du \, \frac{\Delta_u}{u} + \int_{u_0}^{u_n} du \, \Delta_u + \frac{at_0}{2} u_n \Delta_{u_0}, \quad (13a)$$

$$u_{\infty} \equiv u_{1/\tau} \sim |\gamma_0|/t_0 \ll 1, \tag{13b}$$

$$a = 1 + \sum_{k=1}^{\infty} 2^{2k-1} B_{2k} / k \approx 1.27.$$
 (13c)

Здесь u_{∞} соответствует n_{\max} , а величины B_{2k} обозначают четные числа Бернулли. При $T=T_c$ ищем решение уравнения (13a) в виде $\Delta_{u_n}=\Delta_{u_0}f(u_n)$ с условием $f(u_0)=1$. Интегральное уравнение (13a) можно свести к следующей задаче Коши для неизвестной функции f(u):

$$f''(u) = -f(u)/u, f'(u_0) = at_0/2, \quad f'(u_\infty) = f(u_\infty)/u_\infty.$$
 (14)

Решая уравнение (14), получаем

$$f(u) = \frac{F_1(u)}{F_1(u_0)}, \quad F_1(u) \simeq \sqrt{u}J_1(2\sqrt{u}).$$
 (15)

Здесь $J_1(x)$ — функция Бесселя первого рода. Отметим, что для краткости в приведенном выше выражении $F_1(u)$ записано в низшем порядке по малым параметрам $|\gamma_0| \ll t_0 \ll 1$. Хотя легко можно найти точное решение для f(u), в дальнейшем оно нам не понадобится. Отметим также, что решение (15) удовлетворяет условию нормировки $f(u_0)=1$ и граничному условию при $u=u_\infty$. Пока неизвестный

параметр u_0 определяет температуру сверхпроводящего перехода как

$$T_c = (2\pi\tau)^{-1} \left((2/u_0) |\gamma_0| / t_0 \right)^{2/t_0}. \tag{16}$$

Его можно извлечь из граничного условия при $u=u_0$. Используя соотношение $(xJ_1(x))'=xJ_0(x)$ и пренебрегая $at_0/2$ в правой части граничного уравнения в точке $u=u_0$, находим $u_0\simeq (j_{0,1})^2/4\simeq 1.45$, где $j_{n,k}-k$ -й нуль функции Бесселя $J_n(x)$. Ответ (16) находится в количественном согласии с найденным численно результатом (11). Более того, как показано на рис. 1, отмечается замечательное согласие между функцией $f(u_n)$ и численно найденным собственным вектором, соответствующим максимальному собственному значению матрицы M.



Рис. 2. Мультифрактальное увеличение температуры сверхпроводящего перехода T_c . Сплошными линиями показана зависимость $\ln T_c/T_c^{(BCS)}$ от величины отношения $t_0/|\gamma_0|$ при начальных параметрах взаимодействия γ_{s0} , γ_{t0} , γ_{c0} , лежащих на линии БКШ, т.е. когда $-\gamma_s=\gamma_t=\gamma_c=\gamma$ при $\mathcal{N}=1$ и $-\gamma_s=\gamma_c=\gamma$ для $\mathcal{N}=0$. Штриховые линии соответствующих цветов иллюстрируют поведение $\ln T_c/T_c^{(BCS)}$ при отклонении начальных параметров от БКШ-линии. Это может привести к снижению критической температуры T_c по сравнению с $T_c^{(BCS)}$ при малом отношении t_0 к $|\gamma_0|$ (см. вставку), но в итоге $\ln T_c/T_c^{(BCS)}$ становится положительным и продолжает расти с ростом беспорядка. Черные пунктирные линии соответствуют выражениям (16) и (42)

Уравнение (11) предсказывает увеличение T_c с увеличением беспорядка t_0 при фиксированном γ_0 . Однако уравнение (11) действительно только для $t_0\gg |\gamma_0|$. Мы решаем уравнение самосогласования (10) для различных t_0 численно. Полученная зависимость T_c от t_0 представлена на рис. 2. Как видно, для начальных условий на БКШ-линии T_c растет с увеличением t_0 , достигая асимптотическое выражение (16) (черные пунктирные линии) при

 $t_0 \gg |\gamma_0|$. При удалении первоначальной системы от линии БКШ T_c сначала подавляется с ростом t_0 , а затем начинает расти при $t_0 \gtrsim |\gamma_0|$.

Перейдем теперь к изучению поведения функции спектральной щели Δ_{ε} в зависимости от ε при различных температурных режимах: при T, близком к T_c , и при $T \ll T_c$.

3.2. Спектальная щель

3.2.1. Спектальная щель вблизи T_c

При $T=T_c$ амплитуда Δ_0 спектральной щели обращается в нуль. Чтобы найти зависимость Δ_ε от энергии при $T_c-T\ll T_c$, разложим модифицированное уравнение самосогласования до третьего порядка, получив

$$\Delta_{\varepsilon} = 2\pi T \sum_{\varepsilon'>0} |\gamma(L_{\varepsilon+\varepsilon'})| \left(\frac{\Delta_{\varepsilon'}}{\varepsilon'} - \frac{\Delta_{\varepsilon'}^3}{2\varepsilon'^3}\right).$$
 (17)

Отметим, что квадратичные по Δ_{ε} члены, появляющиеся из разложения $|\gamma(L_{E_{\varepsilon}+E_{\varepsilon'}})|$, подавлены за счет малого множителя $t_0\ll 1$.

Будем искать решение в виде $\Delta_{\varepsilon_n}=\Delta_0(T)r_n$ с нормировкой $r_0=1.$ Тогда уравнение (17) принимает вид

$$\lambda_M \left(\frac{T}{T_c}\right)^{\frac{t_0}{2}} r_n = \sum_{n'=0}^{n_{\text{max}}} M_{nn'} \left[r_{n'} - \frac{\frac{\Delta_0^2(T)}{8\pi^2 T_c^2} r_{n'}^3}{(n'+1/2)^2} \right]. \tag{18}$$

Из условия $\Delta_0(T_c)=0$ следует, что r_n — это компоненты правого собственного вектора матрицы $M_{nn'}$, соответствующего ее максимальному собственному значению λ_M . Далее, умножая слева обе части уравнения (18) на левый собственный вектор $l_n=r_n/(n+1/2)$ (соответствующий λ_M), находим

$$\Delta_0(T) = \left(b_N \frac{8\pi^2}{7\zeta(3)} T_c(T_c - T)\right)^{1/2}.$$
 (19)

Здесь константа $b_{\mathcal{N}}$ при $\mathcal{N}=1$ — это

$$b_1 = \frac{7\zeta(3)t_0}{2} \frac{\sum_{n=0}^{n_{\text{max}}} r_n^2/(n+1/2)}{\sum_{n=0}^{n_{\text{max}}} r_n^4/(n+1/2)^3}.$$
 (20)

Мы выбрали нормировку b_1 таким образом, чтобы величина b_1-1 описывала отклонение от теории БКШ. Можно было бы ожидать ненулевого значения разности b_1-1 из-за сильной зависимости спектральной щели от энергии, но, как мы покажем ниже, в рамках нашего приближения это не так.

Прежде всего, заменив r_n^4 на $r_0^4 = 1$ в знаменателе уравнения (20), находим, что

$$\sum_{n=0}^{n_{\text{max}}} \frac{r_n^4}{(n+1/2)^3} \simeq 7\zeta(3). \tag{21}$$

Далее, чтобы оценить числитель уравнения (20), мы заменяем r_n аналитическим выражением $r_n = f(u_n)$, см. уравнение (15). Получаем

$$\sum_{n=0}^{n_{\text{max}}} \frac{r_n^2}{n+1/2} \simeq \frac{2}{t_0} \int_0^{u_0} \frac{du}{u} f^2(u) \simeq \frac{2}{t_0}.$$
 (22)

Приняв во внимание все перечисленное выше, находим, что в пределе $t_0 \ll 1$ восстанавливается ответ из теории БКШ, т.е. $b_1=1$. Отметим также, что для нахождения поправок к значению $b_1=1$ из теории БКШ, необходимо знать точный вид зависимости $L_{E_\varepsilon+E_{\varepsilon'}}$ на энергиях Δ_ε и $\Delta_{\varepsilon'}$ в уравнении (3).

Можно оценить вклад других собственных мод в зависимость Δ_{ε} от ε . Записав $\Delta_{\varepsilon} = \Delta_0(T) \bigg(r_n + \sum_j s_j r_n^{(j)} \bigg),$ где $r_n^{(j)}$ — правые собственные векторы матрицы M с собственными значениями $\lambda_j < \lambda_M,$ находим

$$s_{j} = -\frac{\lambda_{j}}{\lambda_{M} - \lambda_{j}} \frac{\Delta_{0}^{2}(T)}{8\pi^{2}T_{c}^{2}} \frac{\sum_{n=0}^{N} l_{n}^{(j)} r_{n}^{3} / (n+1/2)^{2}}{\sum_{n=0}^{N} l_{n}^{(j)} r_{n}^{(j)}}.$$
 (23)

Здесь мы воспользовались условием ортогональности $\sum_n l_n^{(j)} r_n = 0$, где $l_n^{(j)}$ — левый собственный вектор матрицы $M_{nn'}$, соответствующий собственному значению λ_j . Мы видим, что примешивание других собственных мод при $T_c - T \ll T_c$ незначительно. Поэтому энергетическая зависимость Δ_ε от ε при $T_c - T \ll T_c$ практически такая же, как и на переходе.

3.2.2. Спектральная щель при $T \ll T_c$

Начнем с предела нулевой температуры. Чтобы изучить поведение щели при T=0, в уравнении (3) заменим суммирование по мацубаровским частотам на интегрирование по энергии ε' . Отметим, что при этом существует два источника зависимости от ε' . Быстрая зависимость находится под корнем, а медленная (почти логарифмическая при $t_0 \ll 1$) зависимость зашита в γ . Зная поведение щели вблизи $T=T_c$, найденное в предыдущем разделе, мы ожидаем, что и при низких температурах Δ_ε будет убывающей функцией от ε . Введем характерную

энергию ε_0 , такую, что $\Delta_{\varepsilon_0}=\varepsilon_0$. Структура уравнения (3) указывает на то, что вплоть до энергий порядка $\varepsilon_0=\Delta_{\varepsilon_0}$ щель лишь немного отклоняется от своего значения Δ_0 при $\varepsilon=0$. Отсюда следует, что $\varepsilon_0\sim\Delta_0$. Чтобы аккуратно найти связь между ε_0 и Δ_0 , а также зависимость Δ_ε при $\varepsilon<\Delta_0$, необходимо знать точное поведение инфракрасного масштаба длины $L_{E_\varepsilon+E_{\varepsilon'}}$ на энергиях Δ_ε и $\Delta_{\varepsilon'}$, см. уравнение (3). Однако при больших энергиях $\varepsilon\gg\Delta_\varepsilon$ такой трудности не возникает. Как мы покажем далее, в силу малости размерного сопротивления $t_0\ll 1$, это условие выполняется при энергиях ε , не слишком близких к Δ_0 , т.е. при $\varepsilon\gtrsim\Delta_0$.

Когда $\varepsilon \gg \Delta_{\varepsilon}$, мы аппроксимируем уравнение самосогласования (3) следующим образом:

$$\Delta_{\varepsilon} \simeq |\gamma(L_{\varepsilon})| \int_{0}^{\Delta_{0}} \frac{d\varepsilon' \Delta_{0}}{\sqrt{\varepsilon'^{2} + \Delta_{0}^{2}}} + |\gamma(L_{\varepsilon})| \int_{\Delta_{0}}^{\varepsilon} \frac{d\varepsilon' \Delta_{\varepsilon'}}{\sqrt{\varepsilon'^{2} + \Delta_{\varepsilon'}^{2}}} + \int_{0}^{1/\tau} \frac{d\varepsilon' \Delta_{\varepsilon'}}{\sqrt{\varepsilon'^{2} + \Delta_{\varepsilon'}^{2}}} |\gamma(L_{\varepsilon'})|. \quad (24)$$

Если искать решение для Δ_{ε} в виде $\Delta_{u_{\varepsilon}} = \Delta_{u_0} f(u_{\varepsilon})$, где u_{ε} определено в уравнении (12), то приведенное выше уравнение можно переписать в следующей дифференциальной форме

$$f''(u_{\varepsilon}) = -\frac{\varepsilon f(u_{\varepsilon})/u_{\varepsilon}}{\sqrt{\varepsilon^2 + \Delta_0^2 f^2(u_{\varepsilon})}}.$$
 (25)

Так как мы работаем в режиме $\varepsilon \gg \Delta_{\varepsilon}$, то членом с Δ_0 под корнем в правой части уравнения (25) можно смело пренебречь. Тогда уравнение (25) сводится к уравнению (14) с теми же граничными условиями, за исключением того, что теперь $a = \arcsinh(1)$. Таким образом, решение можно сразу получить из формулы (15). Итак, мы находим следующее поведение спектральной щели в зависимости от энергии,

$$\Delta_{\varepsilon} \simeq \Delta_0 \begin{cases} 1, & \varepsilon \lesssim \Delta_0, \\ F_1(u_{\varepsilon})/F_1(u_{\Delta_0}), & \varepsilon \gtrsim \Delta_0. \end{cases}$$
 (26)

Теперь мы можем проверить предположение $\varepsilon\gg\Delta_{\varepsilon}.$ Используя уравнение (26), находим, что

$$\frac{\varepsilon}{\Delta_{\varepsilon}} = \frac{u_{\Delta_0}^{2/t_0} F_1(u_{\Delta_0})}{u_{\varepsilon}^{2/t_0} F_1(u_{\varepsilon})} \gg 1 \tag{27}$$

выполняется для всех ε , кроме энергий в непосредственной близости от $\varepsilon\sim\Delta_0$, т. е. в диапазоне $|\varepsilon-\Delta_0|\sim\Delta_0$.

Отметим идеальное совпадение обеих асимптотик (26) при $\varepsilon = \Delta_0$. Далее, используя граничное условие $f'(u_{\Delta_0}) = 0$, находим, что Δ_0 совпадает с T_c с точностью до численного множителя,

$$\Delta_0 \sim T_c.$$
(28)

Однако, как мы отмечали выше, наш подход неприменим в окрестности точки $\varepsilon = \Delta_0$. Поэтому мы не можем определить точную константу в отношении Δ_0/T_c . Подчеркнем однако, что зависимость функции спектральной щели при $\varepsilon \gg \Delta_0$ при T=0 точно такая же, как и при T, близких к T_c .

Отметим, что щель параметрически усиливается на малых энергиях. Используя уравнение (26), находим, что при $\varepsilon \sim 1/\tau$ спектральная щель (совпадающая с параметром порядка Δ) пропорциональна $\Delta_0|\gamma_0|/t_0\ll\Delta_0$. Типичное поведение Δ_ε показано на рис. 3.

При ненулевой температуре вид функции спектральной щели остается прежним, но происходит уменьшение величины Δ_0 при повышении температуры. Когда $T \ll \Delta_0$ зависимость Δ_0 от температуры можно оценить следующим образом. При $\varepsilon \gg \Delta_0$ щель Δ_ε удовлетворяет уравнению, аналогичному уравнению (24), в котором Δ_0 заменено на $\Delta_0(T)$ и

$$\int_{0}^{\Delta_{0}} \frac{d\varepsilon' \Delta_{0}}{\sqrt{\varepsilon'^{2} + \Delta_{0}^{2}}} \rightarrow$$

$$\rightarrow 2\pi T \sum_{\varepsilon'>0} \frac{\Delta_{0}(T)}{\sqrt{\varepsilon'^{2} + \Delta_{0}^{2}(T)}} - \int_{\Delta_{0}(T)}^{1/\tau} \frac{d\varepsilon' \Delta_{0}(T)}{\sqrt{\varepsilon'^{2} + \Delta_{0}^{2}(T)}} \simeq$$

$$\simeq \int_{0}^{\Delta_{0}(T)} \frac{d\varepsilon' \Delta_{0}(T)}{\sqrt{\varepsilon'^{2} + \Delta_{0}^{2}(T)}} - \sqrt{\frac{2\pi T}{\Delta_{0}}} e^{-\Delta_{0}/T}. \quad (29)$$

Такая модификация уравнения (24) приводит к изменению константы a в граничных условиях (14): теперь $a=\arcsin \ln(1)-\sqrt{2\pi T/\Delta_0}\exp(-\Delta_0/T)$. Учитывая такой температурный сдвиг в константе a, находим

$$\Delta_0 - \Delta_0(T) \sim \sqrt{2\pi T \Delta_0} e^{-\Delta_0/T}, \quad T \ll \Delta_0.$$
 (30)

Заметим, что поскольку этот результат получен из граничного условия при $\varepsilon = \Delta_0(T)$, численный множитель в уравнении (30) мы не можем определить однозначно.

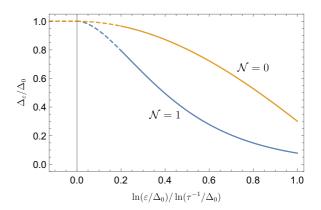


Рис. 3. Зависимость спектральной щели Δ_{ε} от энергии ε при низких температурах (см. текст). Безразмерная константа взаимодействия равна $|\gamma_0|=0.005$, а безразмерное сопротивление $t_0=0.2$. Нижняя кривая иллюстрирует поведение Δ_{ε} для случая изинговского спин-орбитального взаимодействия $(\mathcal{N}=1)$, а верхняя — для случая сильного спин-орбитального взаимодействия $(\mathcal{N}=0)$

4. $\mathcal{N}=0$: СИЛЬНОЕ СПИН-ОРБИТАЛЬНОЕ ВЗАИМОДЕЙСТВИЕ

В этом разделе мы рассматриваем случай, когда все три скорости переворота спина, $1/\tau_{\rm so}^{x,y,z}$, индуцированные спин-орбитальным взаимодействием, одного порядка. Тогда бесщелевыми остаются только диффузионные моды, соответствующие нулевому значению полного спина. Таким образом, количество безмассовых триплетных мод сводится к нулю, $\mathcal{N}=0$.

При $\mathcal{N}=0$ ренормгрупповой поток параметров взаимодействия $\gamma_{s,c}$ и безразмерного сопротивления t определяется следующими уравнениями [23]:

$$\frac{dt}{dy} = -t^2(1 + \gamma_s + 2\gamma_c)/2,\tag{31a}$$

$$\frac{d}{dy} \begin{pmatrix} \gamma_s \\ \gamma_c \end{pmatrix} = -\frac{t}{2} \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \gamma_s \\ \gamma_c \end{pmatrix}. \tag{31b}$$

Отметим, что, в отличие от случая $\mathcal{N}=1$, имеет место поправка, связанная со слабой антилокализацией (слагаемое с единицей в скобках в правой части уравнения (31а)), которая приводит к обращению t в нуль на больших размерах. В дальнейшем мы пренебрегаем членами, пропорциональными $\gamma_{s,c}$ (поправка Альтшулера – Аронова и поправка типа плотности состояний в куперовском канале) в уравнении (31а), по сравнению с эффектом слабой антилокализации. В соответствии с уравнение (31b) ренормгрупповой поток параметров взаимодействия

приближается к линии БКШ $-\gamma_s = \gamma_c \equiv \gamma$. Проецируя систему (31b) на БКШ-линию, находим

$$d\gamma/dy = t\gamma/2, \quad \gamma_0 = (2\gamma_{c0} - \gamma_{s0})/3 < 0.$$
 (32)

Здесь γ_0 — затравочное значение эффективного коэффициента притяжения. Предположим, что $t_0 \gg |\gamma_0|$. Тогда решения уравнений (31a) и (32) будут иметь вид

$$t(L) = \frac{t_0}{1 + (t_0/2) \ln L/\ell}, \quad \gamma(L) = \gamma_0 \frac{t_0}{t(L)}.$$
 (33)

То есть эффективное притяжение растет с увеличением масштаба длины. Критическая температура сверхпроводящего перехода может быть оценена из условия $|\gamma(L_{T_c})| \sim t(L_{T_c})$ (см. Приложение В). В результате имеем [22]

$$ln 1/(T_c \tau) \sim \frac{1}{\sqrt{|\gamma_0|t_0}}.$$
(34)

Заметим, что при таком подходе численный множитель не может быть надежно определен.

4.1. Критическая температура

Чтобы определить температуру сверхпроводящего перехода, необходимо решить линериазованное уравнение самосогласования (9). Для этого удобно ввести параметризацию критической температуры как

$$T_c = (2\pi\tau)^{-1} \exp(4/t_0 - 4/t_c),$$
 (35)

где, исходя из оценки (34), мы ожидаем, что t_c будет порядка $\sqrt{|\gamma_0|t_0}$. При такой параметризации уравнение (9) принимает вид

$$\Delta_n = \frac{|\gamma_0|t_0}{4} \sum_{n'=0}^{n_{\text{max}}} \frac{4/t_c - \ln(n+n'+1)}{n'+1/2} \,\Delta_{n'}.$$
 (36)

Здесь $n_{\rm max}=1/(2\pi T_c\tau)\simeq \exp(4/t_c)$. Как и прежде, об уравнении (36) можно думать как о задаче нахождения максимального собственного значения λ_M матрицы $M_{nn'}(\zeta)=(\zeta-\ln(n+n'+1))/(n'+1/2)$, где $\zeta=4/t_c$. Численное решение дает $\lambda_M\approx 0.41(4/t_c)^2$ (см. Приложение C). Таким образом, мы находим

$$t_c \approx 1.3\sqrt{|\gamma_0|t_0}. (37)$$

Зависимость численно найденного собственного вектора, соответствующего максимальному собственному значению λ_M , представлена на рис. 1.

Как и в случае $\mathcal{N}=1$, мы можем решить линеаризованное уравнение самосогласования (9) аналитически. Введем переменную

$$u_{\varepsilon} = \frac{4}{t(L_{\varepsilon})} = \frac{4|\gamma(L_{\varepsilon})|}{|\gamma_0|t_0} = \frac{4}{t_0} - \ln(\varepsilon\tau).$$
 (38)

Заменив $\ln(n+n'+1)$ на $\ln(\max\{n+1/2,n'+1/2\})$ и воспользовавшись формулой Эйлера – Маклорена, получим

$$\frac{4\Delta_{u_n}}{|\gamma_0|t_0} = u_n \int_{u_n}^{u_0} du \,\Delta_u + \int_{u_{\infty}}^{u_n} du \,u\Delta_u + au_n\Delta_{u_0}. \tag{39}$$

Здесь a совпадает со значением, определенным в уравнении (13c). Затем, записывая $\Delta_{u_n} = \Delta_{u_0} f(u_n)$, где $f(u_0) = 1$, мы преобразуем приведенное выше уравнение к следующей дифференциальной задаче:

$$f''(u) = -(|\gamma_0|t_0/4)f(u),$$

$$f(u_0) = 1, \quad f'(u_\infty) = \frac{f(u_\infty)}{u_\infty},$$

$$f'(u_0) = \frac{|\gamma_0|t_0}{4}.$$
(40)

Это уравнение элементарно решается:

$$f(u) = \frac{F_0(u)}{F_0(u_0)}, \quad F_0(u) \simeq \sin(u\sqrt{|\gamma_0|t_0/4}).$$
 (41)

Снова отметим, что в приведенном выше уравнении решение f(u) записано в низшем порядке по малым параметрам $|\gamma_0| \ll t_0 \ll 1$. Последний шаг — найти $u_0 = 4/t_c$ из соотношения $f'(u_0) = |\gamma_0|t_0/4$. После нехитрых вычислений получаем

$$u_0 \simeq \pi / \sqrt{|\gamma_0| t_0}, \quad \Leftrightarrow \quad t_c \simeq \frac{4}{\pi} \sqrt{|\gamma_0| t_0}.$$
 (42)

Обратим внимание на замечательное согласие между численными и аналитическими результатами, уравнения (37) и (42): 1.3 и $4/\pi$, соответственно.

Численное решение уравнения (36) для T_c с произвольными значениями t_0 показано на рис. 2. Аналитическое выражение (42) (отмечено черной пунктирной линией) дает правильные асимптотические значения $\ln T_c/T_c^{(BCS)}$ в режиме больших значений отношения $t_0/|\gamma_0|$.

4.2. Спектральная щель

4.2.1. Спектральная щель при T_c

Чтобы найти Δ_{ε} при температурах близких к переходу, $T_c-T\ll T_c$, мы вновь воспользуемся уравнением (17). Для этого параметризуем температуру T с помощью переменной t_T , так что $T=(2\pi\tau)^{-1}\exp(4/t_0-4/t_T)$. Параметризовав Δ_{ε} как $\Delta_{\varepsilon}=\Delta_0(T)r_n$, запишем уравнение (17) в виде

$$\lambda_M r_n \simeq \sum_{n'=0}^{n_{\text{max}}} M_{nn'}(4/t_T) \left[r_{n'} - \frac{\frac{\Delta_0^2(T)}{8\pi^2 T_c^2} r_{n'}^3}{(n'+1/2)^2} \right]. \quad (43)$$

Здесь, напомним, λ_M обозначает максимальное собственное значение матрицы $M_{nn'}(4/t_c)$. Используя тождество $M_{nn'}(4/t_T) = M_{nn'}(4/t_c) + (4/t_T - 4/t_c)/(n' + 1/2)$ и приближение $4/t_T - 4/t_c \approx (T_c - T)/T_c$, перепишем уравнение (43) как

$$\lambda_M(4/t_c)r_n \simeq \sum_{n'=0}^{n_{\text{max}}} M_{nn'}(4/t_c) \left[r_{n'} - \frac{\frac{\Delta_0^2(T)}{8\pi^2 T_c^2} r_{n'}^3}{(n'+1/2)^2} \right] + \frac{T_c - T}{T_c} \sum_{n'=0}^{n_{\text{max}}} \frac{r_{n'}}{n'+1/2}.$$
(44)

При $T=T_c$ щель обращается в нуль. Отсюда следует, что r_n являются компонентами старшего собственного вектора матрицы $M_{nn'}(4/t_c)$. Умножая уравнение (44) на левый собственный вектор $M_{nn'}(4/t_c)$, $l_n=r_n/(n+1/2)$, мы вновь приходим к выражению (19), где $b_{\mathcal{N}}$ для $\mathcal{N}=0$ равно

$$b_0 = \frac{7\zeta(3)}{\lambda_M} \frac{\left(\sum_{n=0}^{n_{\text{max}}} r_n/(n+1/2)\right)^2}{\sum_{n=0}^{n_{\text{max}}} r_n^4/(n+1/2)^3}.$$
 (45)

Как и в случае $\mathcal{N}=1$, можно проверить, что в рамках нашего приближения восстанавливается результат $b_0=1$ из теории БКШ. Знаменатель в правой части уравнения (45) находится так же, как и в случае $\mathcal{N}=1$. В то же время в числителе мы используем $r_n=f(u_n)$, где f(u) из уравнения (41). Используя $F_0(u)=\sin(u/\sqrt{\lambda_M})$ и $u_0=\sqrt{\lambda_M}\pi/2$, получаем

$$\left(\sum_{n=0}^{n_{\text{max}}} \frac{r_n}{n+1/2}\right)^2 \simeq \left(\int_0^{u_0} du \ f(u)\right)^2 = \lambda_M. \tag{46}$$

Таким образом, объединяя результаты для числителя и знаменателя, мы восстанавливаем $b_0 = 1$.

4.2.2. Спектральная щель при $T \ll T_c$

Спектральную щель при T=0 можно найти так же, как это было сделано в разд. 3.2.2 для $\mathcal{N}=1$. После несложных вычислений находим

$$\Delta_{\varepsilon} \simeq \Delta_0 \begin{cases} 1, & \varepsilon \lesssim \Delta_0, \\ F_0(u_{\varepsilon})/F_0(u_{\Delta_0}), & \varepsilon \gtrsim \Delta_0. \end{cases}$$
(47)

Максимальная величина щели, Δ_0 , определяется выражением, подобным уравнению (35),

$$\Delta_0 = (2\pi\tau)^{-1} e^{4/t_0 - 4/t_{\Delta_0}}, \quad t_{\Delta_0} \sim \sqrt{|\gamma_0| t_0}.$$
(48)

К сожалению, в рамках нашего приближения мы не можем однозначно определить числовой множитель в отношении $t_{\Delta_0}/\sqrt{|\gamma_0|t_0}$, так как для этого требуется знание точной зависимости инфракрасной шкалы длин $L_{E_\varepsilon+E_{\varepsilon'}}$ от Δ_ε и $\Delta_{\varepsilon'}$, см.(3). Поскольку t_{Δ_0} стоит в показателе степени выражения для Δ_0 , мы не можем исключить возможность того, что Δ_0 параметрически отличается от T_c .

Отметим, что параметр сверхпроводящего порядка (совпадающий со спектральной щелью на энергиях $\varepsilon \sim 1/\tau$) пропорционален $\Delta_0 \sqrt{|\gamma_0|/t_0} \ll \Delta_0$. Типичная зависимость Δ_ε от ε показана на рис. 3.

Изменение Δ_{ε} с ростом температуры такое же, как и в случае $\mathcal{N}=1$. При $T\ll T_c$ амплитуда Δ_0 убывает в соответствии с уравнением (30).

5. ЛОКАЛЬНАЯ ПЛОТНОСТЬ СОСТОЯНИЙ

В данном разделе мы изучим локальную плотность состояний и ее мезоскопические флуктуации в сверхпроводящем состоянии. Для простоты считаем T=0.

Усредненная по беспорядку плотность состояний может быть найдена из решения уравнения Узаделя

$$\langle \rho(E) \rangle = \nu \operatorname{Re} \cos \theta_{\varepsilon \to -iE+0} =$$

$$= \nu \operatorname{Re} \frac{\varepsilon}{\sqrt{\varepsilon^2 + \Delta_{\varepsilon}^2}} \Big|_{\varepsilon \to -iE+0}. \tag{49}$$

Здесь подразумевается аналитическое продолжение от мацубаровской энергии к действительной, $i \varepsilon \to E + i 0.$

Поведение плотности состояний при энергиях E, близких к Δ_0 , зависит от точной структуры Δ_ε при $\varepsilon \sim \Delta_0$. В рамках нашего подхода эта область энергии не доступна. Единственное, что можно утверждать наверняка, это существование спектральной щели порядка Δ_0 . Вдали от Δ_0 , т. е. в области $E \gtrsim \Delta_0$, используя малость $\Delta_\varepsilon/\varepsilon$, находим

$$\frac{\langle \rho(E) \rangle}{\nu} \simeq 1 + \text{Re} \, \frac{\Delta^2(E)}{2E^2} \simeq 1 + \frac{\Delta_0^2}{2E^2} \frac{F_N^2(u_E)}{F_N^2(u_{\Delta_0})}.$$
 (50)

Здесь $u_E = u_{\Delta_0}(E/\Delta_0)^{-t_0/2}$ и $u_E = u_{\Delta_0} - \ln(E/\Delta_0)$ для $\mathcal{N} = 1$ и 0, соответственно.

Теперь оценим мезоскопические флуктуации локальной плотности состояний. Это можно сделать, используя подход нелинейной сигма-модели, аналогичный тому, который используется в [29]. Ограничимся рассмотрением диапазона энергий

$$\Delta_0 \ll \frac{1}{\tau} e^{-2(2-\mathcal{N})/t_0} \ll E \lesssim \frac{1}{\tau}.$$
 (51)

В этом интервале энергий можно пренебречь зависимостью Δ_{ε} от энергии и аппроксимировать ее неперенормированным значением Δ . Тогда для дисперсии локальной плотности состояний получаем следующий результат (см. Приложение D)

$$\frac{\langle [\delta \rho(E, r)]^{2} \rangle}{\nu^{2}} = \frac{1 + \mathcal{N}}{g} \operatorname{Re} \int \frac{d^{2} \mathbf{q}}{(2\pi)^{2}} \left[\frac{2E^{2} - \Delta^{2}}{E^{2} - \Delta^{2}} \frac{1}{q^{2}} + \frac{\Delta^{2}}{E^{2} - \Delta^{2}} \frac{D}{Dq^{2} + 2i\sqrt{E^{2} - \Delta^{2}}} \right].$$
(52)

Отметим, что вклад в первой строке уравнения (52) соответствует корреляциям между двумя электронно-подобными возбуждениями. Они нечувствительны к наличию сверхпроводящей спектральной щели. Это объясняет, почему инфракрасная расходимость в диффузоне сохраняется внутри сверхпроводника. Вклад во второй строке уравнения (52) возникает из-за корреляций между электронно-подобными и дырочно-подобными возбуждениями, которые разделены удвоенной сверхпроводящей щелью.

Интегрируя по импульсу и раскладывая по $\Delta/E \ll 1$, находим

$$\frac{\langle [\delta \rho(E, \mathbf{r})]^2 \rangle}{\langle \rho(E) \rangle^2} = \frac{(1 + \mathcal{N})t_0}{2} \left(\ln \frac{L}{\ell} + \frac{\Delta^2}{2E^2} \ln \frac{L_E}{\ell} \right). \tag{53}$$

Подчеркнем логарифмическую расходимость дисперсии с размером системы L. Это свидетельствует о сильных мезоскопических флуктуациях локальной плотности состояний в неупорядоченных сверхпроводниках со спин-орбитальным взаимодействием, аналогичных случаю, когда спин-орбитальное взаимодействие отсутствует [29, 30].

До сих пор игнорируемая перенормировка диффузона приводит к замене L на $\min\{L, L_E^{(\phi)}\}$, где $L_E^{(\phi)}$ обозначает индуцированную длину дефазировки за счет электрон-электронных взаимодействий. К сожалению, в настоящее время не существует полной теории дефазировки в неупорядоченных сверхпроводниках. Однако, используя результаты работы [50], можно оценить длину дефазировки из-за электрон-электронного взаимодействия при $E\gg\Delta$ как $L_\Delta/(|\gamma_0|\sqrt{t_0})\gg L_\Delta$. Заметим, что такая оценка применима при $T\ll T_c$. Вблизи сверхпроводящего перехода скорость дефазировки увеличивается из-за сверхпроводящих флуктуаций (подробнее см. [51]).

С помощью ренормализационной группы мы можем преобразовать пертурбативный и расходящийся в инфракрасном пределе ответ (53) в выраже-

ние для второго момента локальной плотности состояний:

$$\frac{\langle \rho^{2}(E, \boldsymbol{r}) \rangle}{\langle \rho(E) \rangle^{2}} = \begin{cases}
(\min\{L, L_{E}^{(\phi)}\}/\ell)^{t_{0}}, & \mathcal{N} = 1, \\
1 + (t_{0}/2) \ln(\min\{L, L_{E}^{(\phi)}\}/\ell), & \mathcal{N} = 0.
\end{cases} (54)$$

Можно также обобщить выражение (53) на случай парной корреляционной функции локальной плотности состояний при разных энергиях $E\gg \Delta$ и $E'=E+\omega\gg \Delta$ (см. Приложение D),

$$\frac{\langle \delta \rho(E, \mathbf{r}) \delta \rho(E', \mathbf{r}) \rangle}{\langle \rho(E) \rangle \langle \rho(E') \rangle} \simeq
\simeq \frac{(1 + \mathcal{N})t_0}{2} \ln \frac{\min\{L, L_E^{(\phi)}, L_\omega\}}{\ell}.$$
(55)

Для автокорреляционной функции моментов можно использовать уравнение (54), в котором $\min\{L, L_E^{(\phi)}\}$ заменяется на $\min\{L, L_E^{(\phi)}, L_\omega\}$.

Отметим, что можно вычислить усредненые по беспордяку старшие моменты локальной плотности состояний. Аналогично случаю без спин-орбитального расщепления [29], моменты соответствуют лог-нормальной функции распределения для локальной плотности состояний.

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

В работе разработана теория мультифрактально усиленного сверхпроводящего состояния в тонких пленках со спин-орбитальным взаимодействием при наличии слабого короткодействующего электрон-электронного взаимодействия. Мы рассмотрели случай изинговского спин-орбитального взаимодействия ($\mathcal{N}=1$), для которого перенормировка сопротивления в нормальном состоянии пренебрежимо мала, и случай сильного спин-орбитального взаимодействия ($\mathcal{N} = 0$), в котором перенормировка t определяется слабой антилокализацией. Вместе со случаем, когда спин-орбитальное взаимодействие отсутствует ($\mathcal{N}=3$), который изучен в работе [29], построена теория для всех трех возможных вариантов поведения сопротивления в нормальном состоянии при увеличении размера системы: возрастающего, убывающего и постоянного.

Следуя подходу работы [29], мы рассмотрели флуктуации вокруг пространственно-однородной

среднеполевой седловой точки и получили модифицированное уравнение Узаделя и уравнение самосогласования, которые учитывают взаимное влияние беспорядка и взаимодействия при энергиях больше сверхпроводящей щели. Полученные уравнения позволяют точно определить температуру сверхпроводящего перехода. Мы показали, что T_c увеличивается (даже при $\mathcal{N}=0$) по сравнению с результатом теории БКШ при отсутствии беспорядка. Решение модифицированного уравнения Узаделя и уравнения самосогласования дает T_c , которое параметрически совпадает с оценкой, полученной из анализа куперовской неустойчивости в уравнениях ренормализационной группы для нормальной фазы. Стоит сравнить эффект мультифрактального повышения критической температуры для разного числа триплетных мод. При отсутствии спин-орбитального взаимодействия, см. [29], сверхпроводящая фаза ожидается при температурах ниже $T_c^{\mathcal{N}=3} \sim \tau^{-1} \exp(-2/t_0)$, Напротив, мы предсказываем $T_c^{\mathcal{N}=1} \sim \tau^{-1} \exp(-(2/t_0) \ln(t_0/(1.4|\gamma_0|)))$ для $\mathcal{N}=1$ и $T_c^{\mathcal{N}=0} \sim \tau^{-1} \exp(-3.1/\sqrt{|\gamma_0|t_0})$ для $\mathcal{N}=0$, соответственно. Как видно, T_c возрастает с увеличением числа безмассовых триплетных диффузионных мод: $T_c^{\mathcal{N}=3} \gg T_c^{\mathcal{N}=1} \gg T_c^{\mathcal{N}=0}$.

Индуцированная беспорядком энергетическая зависимость эффективного притяжения переходит в энергетическую зависимость спектральной щели. Вид этой зависимости чувствителен к числу триплетных мод \mathcal{N} . В случае $\mathcal{N}=1$ зависимость спектральной щели ведет себя как вогнутая функция энергии (то же верно и для $\mathcal{N}=3$), см. рис. 3. Для $\mathcal{N}=0$ Δ_{ε} становится выпуклой функцией ε . Беспорядок и взаимодействие приводит к параметрическому усилению спектральной щели при низких энергиях по сравнению с ее величиной при энергиях $\sim 1/\tau$.

Несмотря на такое сильное отличие от теории БКШ, в которой щель не зависит от энергии, основные соотношения для модели БКШ — поведение щели немного ниже T_c и при низких температурах $T \ll T_c$ — остаются прежними. Это указывает на возможность использования теории БКШ для описания температурной зависимости спектральной щели в слаборазупорядоченных пленках. При наличии спин-орбитального взаимодействия предсказаны сильные мезоскопические флуктуации локальной плотности состояний в сверхпроводящем состоянии. Эти флуктуации сохраняются вплоть до масштаба длины дефазировки. Наличие спин-орбитального взаимодействия уменьшает амплитуду дисперсии локальной плотности состояний в два раза (при

 $\mathcal{N}=1$) и в четыре раза (при $\mathcal{N}=0$). Из-за разной энергетической зависимости щели для разных \mathcal{N} зависимость дисперсии от энергии чувствительна к числу безмассовых триплетных мод. Наиболее выраженная разница ожидается вблизи пика когерентности $E\sim\pm\Delta_0$. Однако эта область находится за пределами точности наших расчетов.

Поучительно сравнить флуктуации локальной плотности состояний с флуктуациями сверхпроводящего параметра порядка. Отметим, что хотя наш подход предполагает пространственно-постоянный параметр порядка, можно исследовать его мезоскопические флуктуации. В пристутствии спин-орбитального взаимодействия находим

$$\frac{\langle (\delta \Delta)^2 \rangle}{\Delta^2} \simeq \frac{(1+\mathcal{N})t_0}{2} \ln \frac{L_{\Delta_0}}{\ell}.$$
 (56)

Подчеркнем сходство уранений (55) и (56). Однако есть принципиальное отличие: мезоскопические флуктуации сверхпроводящего параметра порядка в инфракрасном пределе контролируются длиной когерентности L_{Δ_0} . Так как $L_E^{(\phi)}\gg L_{\Delta_0}$, мы ожидаем $\langle (\delta\rho)^2\rangle/\langle\rho\rangle^2\gg\langle(\delta\Delta)^2\rangle/\Delta^2$. Для $\mathcal{N}=1$ ($\mathcal{N}=0$) мы можем оценить $\langle(\delta\Delta)^2\rangle/\Delta^2$ как $\sim \ln(t_0/|\gamma_0|)$ ($\sim \sqrt{t_0/|\gamma_0|}$), соответственно.

Представленные в статье результаты могут быть обобщены в нескольких направлениях. Наиболее интересным представляется изучение перенормировки диффузона, которое приведет к полностью самосогласованному уравнению для спектральной щели. Имея на руках такое уравнение, можно определить Δ_0 с точностью до числового множителя, чтобы сравнить его с выражением для T_c . Также такой расчет для диффузона позволяет определить длину дефазировки, которая служит отсечкой для мезоскопических флуктуаций локальной плотности состояний. Далее нашу теорию можно расширить, включив в нее кулоновское взаимодействие. Кроме того, было бы интересно выйти за рамки слабой связи для сверхпроводимости и изучить мультифрактальные эффекты в кроссовере БКШ-БЭК [52, 53]. Также наша работа может быть продолжена на рассмотрение систем с сингулярным динамическим взаимодействием между электронами при наличии беспорядка, см. [54–59]. Достигнуто это может быть с помощью подходов, описанных в работах [60,61].

Наконец, отметим, что наша теория игнорирует фазовые флуктуации параметра порядка. Последние, как известно, ответственны за переход Березинского – Костерлица – Таулесса в сверхпроводящих пленках. Такие флуктуации могут быть учтены аналогично тому, как это сделано в работах [62, 63].

Однако для слабонеупорядоченных сверхпроводящих пленок эффекты, связанные с фазовыми флуктуациями, должны быть слабыми [62,64].

Благодарности. Авторы выражают благодарность С. Brun, Т. Cren, F. Evers, И. Горному, М. Lizee, А. Мирлину, П. Носову, S. Raghu и М. Stosiek за сотрудничество в смежных проектах и полезные обсуждения.

Финансирование. Работа частично поддержана РФФИ (грант № 20-52-12013) и Программой фундаментальных исследований НИУ ВШЭ.

приложение а

В данном приложении приводятся детали формализма нелинейной сигма-модели Финкельштейна.

Действие для электронной жидкости в неупорядоченном металле со спин-орбитальным взаимодействием определяется выражением

$$S = S_{\sigma} + S_{\text{int}}^{(\rho)} + S_{\text{int}}^{(\sigma)} + S_{\text{int}}^{(c)} + S_{\text{so}},$$
 (A.1)

где первый член происходит от невзаимодействующих фермионов. Следующие три члена соответствуют электрон-электронным взаимодействиям в синглетном канале частица-дырка, $S_{\rm int}^{(\rho)}$, в триплетном канале частица-дырка, $S_{\rm int}^{(\sigma)}$, и в канале частица-частица $S_{\rm int}^{(c)}$. Последнее слагаемое появляется из-за спин-орбитального взаимодействия. Вышеупомянутые вклады имеют вид (см. [67–69])

$$S_{\sigma} = -\frac{g}{32} \int_{r} \text{Tr}(\nabla Q)^{2} + 2Z_{\omega} \int_{r} \text{Tr}\,\hat{\varepsilon}Q, \qquad (A.2a)$$

$$S_{\text{int}}^{(\rho)} =$$

$$= -\frac{\pi T}{4} \Gamma_s \sum_{r=0,3} \sum_{\alpha,n} \int_{\mathbf{r}} \text{Tr} I_n^{\alpha} t_{r0} Q \text{Tr} I_{-n}^{\alpha} t_{r0} Q, \quad (A.2b)$$

$$S_{\text{int}}^{(\sigma)} = -\frac{\pi T}{4} \Gamma_t \sum_{\substack{r=0,3\\i=1,2,3}} \sum_{\alpha,n} \int_{r} \text{Tr} I_n^{\alpha} t_{rj} Q \text{Tr} I_{-n}^{\alpha} t_{rj} Q, \quad (A.2c)$$

$$\begin{split} S_{\mathrm{int}}^{(c)} &= \\ &= -\frac{\pi T}{4} \Gamma_c \sum_{r=1,2} \sum_{\alpha,n} \int_{\boldsymbol{r}} \mathrm{Tr} t_{r0} L_n^{\alpha} Q \, \mathrm{Tr} t_{r0} L_n^{\alpha} Q, \quad (\mathrm{A}.2\mathrm{d}) \end{split}$$

$$S_{\text{so}} = \frac{\pi \nu}{2} \sum_{j=1,2,3} \frac{1}{\tau_{\text{so}}^{(j)}} \int \text{Tr}(t_{0j}Q)^2.$$
 (A.2e)

В приведенных выше выражениях g — полная друдовская проводимость (в единицах e^2/h , включая спин). Параметр Z_{ω} описывает изменение

скейлинга энергии [67]. Затравочное значение Z_{ω} равно $\pi\nu/4$. Амплитуды взаимодействия в синглетном, триплетном и частично-дырочном каналах обозначены как Γ_s , Γ_t и Γ_c , соответственно. Удобно ввести безразмерные параметры взаимодействия $\gamma_{s,t,c} \equiv \Gamma_{s,t,c}/Z_{\omega}$. $1/\tau_{\rm so}^{(j)}$ обозначают скорости спин-орбитального рассеяния.

Матричное поле Q(r) и след Tr действуют в репличном (α, β) , в мацубаровском (n, m), в спиновом (j=0,1,2,3) пространствах и в пространстве частица—дырка (r=0,1,2,3). Поле Q(r) удовлетворяет нелинейному соотношению, а также соотношению симметрии зарядового сопряжения

$$Q^2 = 1$$
, Tr $Q = 0$, $Q = Q^{\dagger} = -CQ^TC$, (A.3)

где $C=it_{12},$ а матрицы t_{rj} определяются выражениями

$$t_{rj} = \tau_r \otimes s_j, \quad r, j = 0, 1, 2, 3.$$
 (A.4)

В приведенном выше выражении индексы r и j отвечают пространству частица—дырка и спиновому пространству, соответственно. τ_r и s_j — стандартные матрицы Паул:,

$$\tau_0/s_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \tau_1/s_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
\tau_2/s_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \tau_3/s_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(A.5)

Принимая во внимание ограничения (А.3), используем следующую параметризацию для матричного поля $Q(\boldsymbol{r})$

$$Q = U^{-1}\Lambda U, \quad U^{\dagger} = U^{-1}, \quad CU^{T} = U^{-1}C,$$

$$\Lambda_{nm}^{\alpha\beta} = \operatorname{sgn} \varepsilon_{n} \delta_{\varepsilon_{n},\varepsilon_{m}} \delta^{\alpha\beta} t_{00} \tag{A.6}$$

Постоянные матрицы в действии (A.1) задаются следующими выражениями ($\omega_k = 2\pi T k$):

$$\hat{\varepsilon}_{nm}^{\alpha\beta} = \varepsilon_n \delta_{\varepsilon_n, \varepsilon_m} \delta^{\alpha\beta} t_{00},$$

$$(I_k^{\gamma})_{nm}^{\alpha\beta} = \delta_{\varepsilon_n - \varepsilon_m, \omega_k} \delta^{\alpha\beta} \delta^{\alpha\gamma} t_{00},$$

$$(L_k^{\gamma})_{nm}^{\alpha\beta} = \delta_{\varepsilon_n + \varepsilon_m, \omega_k} \delta^{\alpha\beta} \delta^{\alpha\gamma} t_{00}.$$
(A.7)

Следуя работе [29], используем описанную выше технику для описания физики низких энергий в сверхпроводящем состоянии с нарушенной симметрией. Для этого необходимо выделить статический член с n=0 в канале частица—частица, см. уравнение (A.2d), и ввести два расцепляющих

поля $\Delta_r^{\alpha}(r)$ с r=1,2. После преобразования Хаббарда – Стратоновича находим

$$S_{\text{int}}^{(c)} = \sum_{r=1,2} \int_{\mathbf{r}} \left[\frac{4Z_{\omega}}{\pi T \gamma_c} \left[\Delta_r^{\alpha}(\mathbf{r}) \right]^2 + 2Z_{\omega} \Delta_r^{\alpha}(\mathbf{r}) \operatorname{Tr} t_{r0} L_0^{\alpha} Q - \frac{\pi T}{4} \Gamma_c \sum_{n \neq 0} (\operatorname{Tr} t_{r0} L_n^{\alpha} Q)^2 \right]. \quad (A.8)$$

Вариация полного действия по Q(r) и $\Delta_r^{\alpha}(r)$ приводит к уравнению Узаделя и уравнениям самосогласования для $\Delta_r^{\alpha}(r)$, r=1,2. В свою очередь, эти уравнения генерируют множество пространственно-неоднородных решений. Чтобы учесть их, мы учитываем, что $1/g \ll 1$, и используем метод ренормализационной группы, при котором пространственно-неоднородные решения Q(r) рассматриваются как флуктуации вокруг некоторого пространственно-независимого решения Q.

Сначала выделим пространственно-независимые и пространственно-зависимые компоненты полей $\Delta_r^{\alpha}({m r}), \ r=1,2$:

$$\Delta_r^{\alpha}(\mathbf{r}) = \underline{\Delta}_r^{\alpha} + \delta \Delta_r^{\alpha}(\mathbf{r}), \quad \int_{\mathbf{r}} \delta \Delta_r^{\alpha}(\mathbf{r}) = 0.$$
 (A.9)

Отметим, что флуктуации параметра порядка теперь содержатся в $\delta \Delta_r^{\alpha}(r)$. С другой стороны, можно выполнить формально точное интегрирование по полям $\delta \Delta_r^{\alpha}(r)$. Оно полностью переносит информацию о флуктуациях параметра порядка на поле Q(r). Таким образом, получаем

$$S_{\text{int}}^{(c)} = 2Z_{\omega}V \sum_{\alpha} \sum_{r=1,2} \left\{ \underline{\Delta}_{r}^{\alpha} \operatorname{Tr} t_{r0} L_{0}^{\alpha} \overline{Q} + \frac{2}{\pi T \gamma_{c}} \left[\underline{\Delta}_{r}^{\alpha} \right]^{2} \right\} + \hat{S}_{\text{int}}^{(c)}, \quad (A.10)$$

где V — объем сверхпроводника,

$$\overline{Q} = \frac{1}{V} \int_{\mathbf{r}} Q(\mathbf{r}), \tag{A.11}$$

И

$$\hat{S}_{\text{int}}^{(c)} = -\frac{\pi T}{4} \Gamma_c \sum_{\alpha, n} \sum_{r=1, 2} \int_{r} \left(\text{Tr} \, t_{r0} L_n^{\alpha} Q_n \right)^2. \tag{A.12}$$

Здесь $Q_n = Q - \overline{Q}\delta_{n,0}$.

Описанная выше процедура приводит к новому седловому уравнению для Q(r) и новым уравнениям самосогласования для Δ_r^{α} :

$$\begin{split} D\nabla(Q\nabla Q) - \left[\hat{\varepsilon} + \underline{\hat{\Delta}}, Q\right] + \frac{\pi T}{4} \sum_{\alpha, n} \left[\sum_{r=1,2} \gamma_c [t_{r0} L_n^{\alpha}, Q] \times \right. \\ \times \operatorname{Tr} t_{r0} L_n^{\alpha} Q_n + \sum_{r=0,3} \sum_{j=0}^3 \gamma_j [I_{-n}^{\alpha} t_{rj}, Q] \operatorname{Tr} I_n^{\alpha} t_{rj} Q \right] &= 0, \\ \underline{\Delta}_r^{\alpha} &= \frac{\pi T}{4} \left| \gamma_c \right| \operatorname{Tr} t_{r0} L_0^{\alpha} \overline{Q}, \quad r = 1, 2. \end{split} \tag{A.13}$$

Теперь можно исследовать решения этих уравнений. В приближении среднего поля мы игнорируем флуктуации и ищем пространственно-однородное решение. Это решение можно удобно параметризовать с помощью так называемого спектрального угла θ_{ε_n} , который является функцией мацубаровских энергий ε_n . С точки зрения спектрального угла решение седлового уравнения имеет вид

$$\underline{Q} = R^{-1} \Lambda R,$$

$$R_{nm}^{\alpha\beta} = \left[\delta_{\varepsilon_n, \varepsilon_m} \cos \frac{\theta_{\varepsilon_n}}{2}, -t_{\phi} \delta_{\varepsilon_n, -\varepsilon_m} \operatorname{sgn} \varepsilon_m \sin \frac{\theta_{\varepsilon_n}}{2} \right] \delta^{\alpha\beta},$$

$$t_{\phi} = \cos \phi \ t_{10} + \sin \phi \ t_{20},$$

$$\underline{\Delta}_{1}^{\alpha} = \Delta \cos \phi, \quad \underline{\Delta}_{2}^{\alpha} = \Delta \sin \phi.$$
(A.14)

Подставляя выражения для \underline{Q} и $\underline{\Delta}_r^{\alpha}$ из (A.14) в уравнение Узаделя и уравнения самосогласования, находим

$$\frac{D}{2} \nabla^2 \theta_{\varepsilon_n} - |\varepsilon_n| \sin \theta_{\varepsilon_n} + \Delta \cos \theta_{\varepsilon_n} = 0, \qquad (A.15a)$$
$$\Delta = \pi T |\gamma_c| \sum_{\varepsilon_n} \sin \theta_{\varepsilon_n}. \qquad (A.15b)$$

Пространственно-однородное решение уравнения (A.15a) приводит (A.15b) к обычному уравнению самосогласования из теории БКШ. При этом T_c становится нечувствительной к беспорядку в соответствии с «теоремой Андерсона».

Однако нас интересует более сложная картина, при которой учитываются флуктуации Q(r) вокруг седлового решения \underline{Q} . Она соответствует взаимодействию диффузионных мод. Мы используем корневую параметризацию, чтобы получить пертурбативное разложение поля Q(r) вокруг перевального решения

$$Q = R^{-1} \left(W + \Lambda \sqrt{1 - W^2} \right) R,$$

$$W = \begin{pmatrix} 0 & w \\ \overline{w} & 0 \end{pmatrix}.$$
(A.16)

Здесь поле W удовлетворяет ограничениям зарядового сопряжения:

$$\overline{w} = -Cw^T C, \quad w = -Cw^* C.$$
 (A.17)

Прежде чем перейти к флуктуациям, нам также необходимо знать пропагаторы для диффузионных мод. Ограничимся низшим порядком по остаточному электрон-электронному взаимодействию, что соответствует малым значениям затравочных параметров взаимодействия $|\gamma_{s0,t0,c0}| \ll 1$. В этом приближении находим

$$\left\langle \left[w_{rj}(\boldsymbol{p}) \right]_{n_{1}n_{2}}^{\alpha_{1}\beta_{1}} \left[\overline{w}_{rj}(-\boldsymbol{p}) \right]_{n_{4}n_{3}}^{\beta_{2}\alpha_{2}} \right\rangle =
= \frac{2}{g} \delta^{\alpha_{1}\alpha_{2}} \delta^{\beta_{1}\beta_{2}} \delta_{\varepsilon_{n_{1}},\varepsilon_{n_{3}}} \times
\times \delta_{\varepsilon_{n_{2}},\varepsilon_{n_{4}}} \mathcal{D}_{p}(i\varepsilon_{n_{1}},i\varepsilon_{n_{2}}),
\mathcal{D}_{p}(i\varepsilon_{n_{1}},i\varepsilon_{n_{2}}) = \frac{1}{p^{2} + E_{\varepsilon_{n_{1}}}/D + E_{\varepsilon_{n_{2}}}/D},$$
(A.18)

где $E_{\varepsilon_n} = |\varepsilon_n| \cos \theta_{\varepsilon_n} + \Delta \sin \theta_{\varepsilon_n}$. Здесь важно помнить, что результат (A.18) игнорирует спин-орбитальный член в действии, $S_{\rm so}$. Он приводит к появлению дополнительного массового члена (пропорционального $1/\tau_{\rm so}$) в знаменателе диффузионных пропагаторов (A.18). Соответствующие моды будут подавлены в диффузионном пределе. Другими словами, в приведенных выше уравнениях j учитывает только бесщелевые моды, т. е. j=0 при $\mathcal{N}=0$ и j=0,3 при $\mathcal{N}=1$.

Итак, теперь у нас все готово для изучения влияния флуктуаций Q на классическое действие. В низшем порядке по беспорядку аппроксимируем Q как $Q \simeq \underline{Q} + R^{-1}WR$. Это дает следующую флуктуационную поправку от взаимодействующей части действия (в канале часица – дырка):

$$S_{\text{int}}^{(\rho)} + S_{\text{int}}^{(\sigma)} \to$$

$$\to -\frac{\pi T}{4} \int_{\mathbf{r}} \sum_{\alpha,n} \sum_{r=0,3} \sum_{j} \Gamma_{j} \langle \text{Tr} \left[R I_{n}^{\alpha} t_{rj} R^{-1} W \right] \times$$

$$\times \text{Tr} \left[R I_{-n}^{\alpha} t_{rj} R^{-1} W \right] \rangle. \quad (A.19)$$

Здесь и далее суммирование идет по j=0 при $\mathcal{N}=0$ и по j=0,3 при $\mathcal{N}=1$. Учитывая выражение для пропагаторов (А.18), получаем (подробности см. в [29])

$$S_{\rm int}^{(\rho)} + S_{\rm int}^{(\sigma)} \to \frac{32\pi T N_r V}{g} \left(\Gamma_s - \mathcal{N}\Gamma_t\right) \times \sum_{\varepsilon, \varepsilon' > 0} \sin \theta_{\varepsilon} \sin \theta_{\varepsilon'} \int_q \mathcal{D}_q(i\varepsilon, -i\varepsilon'), \quad (A.20)$$

где

$$\int_{a} \equiv \int d^2 \mathbf{q} / (2\pi)^2.$$

В свою очередь взаимодействие в куперовском канале перенормируется следующим образом

$$\hat{S}_{\rm int}^{(c)} \to -\frac{32\pi T \Gamma_c N_r}{g} \sum_{\varepsilon > 0} \mathcal{D}_{q=0}(i\varepsilon, -i\varepsilon) \sin^2 \theta_{\varepsilon}. \quad (A.21)$$

В совокупности уравнения (A.20) и (A.21) дают следующее модифицированное действие

$$S[\underline{Q}] \rightarrow \\ \rightarrow 16\pi T Z_{\omega} N_{r} V \left\{ \frac{\Delta^{2}}{4\pi T \gamma_{c}} + \sum_{\varepsilon>0} \left[\varepsilon \cos \theta_{\varepsilon} + \Delta \sin \theta_{\varepsilon} \right] + \\ + \frac{2\pi T (\gamma_{s} - \mathcal{N} \gamma_{t})}{g} \times \\ \times \sum_{\varepsilon, \varepsilon'>0} \sin \theta_{\varepsilon} \sin \theta_{\varepsilon'} \int_{q} \mathcal{D}_{q} (i\varepsilon, -i\varepsilon') \right\}. \quad (A.22)$$

Наконец, вариация уравнения (A.22) относительно θ_{ε} и Δ приводит к уравнениям (1) и (2), соответственно.

приложение в

В данном приложении приведена оценка критической температуры T_c с помощью уравнений ренормализационной группы, описывающих перенормировку удельного сопротивления и взаимодействий в нормальной фазе. Полный набор однопетлевых ренормгрупповых уравнений (в низшем порядке по беспорядку) был получен из перенормировки нелинейной сигма-модели Финкельштейна с помощью фонового поля, см. уравнения (47)–(51), в работе [23]. Разлагая эти уравнения по $|\gamma_{s,t,c}| \ll 1$ и выбирая $\mathcal{N}=1$, находим

$$\frac{dt}{dy} = -t^2(\gamma_s + \gamma_t + 2\gamma_c])/2, \tag{B.1a}$$

$$\frac{d}{dy} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix} = \tag{B.1b}$$

$$= -\frac{t}{2} \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & -2 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 2\gamma_c^2 \end{pmatrix}. \quad (B.1c)$$

Из уравнения (В.1а) следует, что безразмерное сопротивление t остается постоянным и равно сво-

ему затравочному значению t_0 . Проецируя систему (В.1с) на линию БКШ $-\gamma_s=\gamma_t=\gamma_c=\gamma,$ получаем

$$\frac{d\gamma}{dy} = t_0 \gamma - \gamma^2,$$

$$\gamma_0 = (\gamma_{t0} - \gamma_{s0} + 2\gamma_{c0})/4 < 0.$$
(B.2)

Решив это уравнение, находим, что ренормгрупповой поток расходится при $y_c = t_0^{-1} \ln(1+t_0/|\gamma_0|)$. При $|\gamma_0| \ll t_0 \ll 1$ мы наблюдаем значительное усиление сверхпроводимости, $T_c \sim (1/\tau)e^{-2y_c}$, см. уравнение (8). Отметим, что при $|\gamma_0| \ll t_0 \ll 1$ притягивающее взаимодействие γ достигает значения t_0 на масштабе длины $y_c - \ln 2$ и затем очень быстро расходится.

Таким же образом разберем случай $\mathcal{N}=0$. Сильное спин-орбитальное взаимодействие полностью подавляет все триплетные моды, а уравнения для взаимодействий $\gamma_s,\,\gamma_c$ и удельного сопротивления t имеют вид

$$\frac{dt}{dy} = -t^2/2, (B.3a)$$

$$\frac{d}{dy} \begin{pmatrix} \gamma_s \\ \gamma_c \end{pmatrix} = -\frac{t}{2} \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \gamma_s \\ \gamma_c \end{pmatrix} - \begin{pmatrix} 0 \\ 2\gamma_c^2 \end{pmatrix}. \quad (B.3b)$$

Проекция этой системы на линию БКШ $-\gamma_s = \gamma_c = \gamma$ дает

$$\frac{d\gamma}{dy} = (t/2)\gamma - (4/3)\gamma^2,$$

$$\gamma_0 = (2\gamma_{c0} - \gamma_{s0})/3 < 0.$$
(B.4)

Аналогично рассмотренному выше случаю в режиме $|\gamma_0| \ll t_0 \ll 1$ $|\gamma|$ растет с увеличением y и достигает t. После этого $|\gamma|$ очень быстро расходится на масштабе $y_c \sim 1/\sqrt{|\gamma_0|t_0}$. Ему соответствует критическая температура $T_c \sim (1/\tau)e^{-2y_c}$, см. уравнение (34).

приложение с

В данном приложении приведены некоторые детали численного вычисления критической температуры с помощью степенного метода и размерной подгонки.

Как упоминалось в основном тексте, линеаризованное уравнение самосогласования (9) можно рассматривать как задачу о нахождении старшего собственного значения. Однако трудность с численной точки зрения заключается в том, что матрицы, определенные в уравнениях (10) и (36) имеют параметрически большую размерность. Действительно, $n_{\rm max} \simeq 1/2\pi\tau T_c$ дает $n_{\rm max} \propto (t_0/|\gamma_0|)^{2/t_0} \gg 1$ для

 $\mathcal{N}=1$ и $n_{\max}\propto \exp(4/t_c-4/t_0)\gg 1$ при $\mathcal{N}=0$. Ниже мы рассмотрим оба случая по отдельности.

В случае изинговского спин-орбитального взаимодействия мы подгоняем ведущий собственный вектор выражением

$$\lambda_M = c_1/t_0 + c_2, \tag{C.1}$$

где c_1 и c_2 — подгоночные параметры. Такое выражение оправдано следующей аналитической оценкой:

$$\lambda_{M} = \sum_{n' \geqslant 0}^{n_{\text{max}}} \frac{\Delta_{n'}/\Delta_{0}}{(n'+1)^{t_{0}/2}(n'+1/2)} \simeq$$

$$\simeq \frac{2}{t_{0}} \int_{u_{\infty}}^{u_{0}} \frac{du}{u_{0}} f(u) + c_{2} = c_{1}/t_{0} + c_{2}. \quad (C.2)$$

Она показывает функциональную зависимость старшего собственного значения λ_M от параметра $t_0 \ll 1$. В приведенном выше выражении мы использовали асимптотическое выражение для правого собственного вектора r_n в виде $r_n = f(u_n)$ и заменили (n+n'+1) на $\max\{(n+1/2)^{t_0/2}, (n'+1/2)^{t_0/2}\}$, что оправдывается малостью параметра t_0 и дает поправку порядка $O(t_0)$. Сопоставляя численные результаты с аналитическим выражением (C.1), мы получаем $c_1 \approx 1.38$ и $c_2 \approx 1.50$, что приводит к ответу (11).

Следует отметить, что $\lambda_M \approx 1.38/t_0$ лежит в пределах неравенства Перрона – Фробениуса,

$$\lambda_M \leqslant \max_n \sum_{n'=0}^{n_{\text{max}}} M_{nn'} \simeq \frac{2}{t_0}.$$
 (C.3)

Далее мы переходим к случаю $\mathcal{N}=0$. Сильное спин-орбитальное взаимодействие соответствует матрице $M_{nn'}(\ln n_{\max})$. Снова можно найти функциональную зависимость λ_M от размера матрицы n_{\max} с помощью приближения $\ln(n+n'+1) \rightarrow \ln(\max\{n+1/2,n'+1/2\})$,

$$\lambda_{M} = \sum_{n' \geqslant 0}^{n_{\text{max}}} \frac{\ln(n_{\text{max}}) - \ln(n'+1)}{n'+1/2} \frac{\Delta_{n'}}{\Delta_{0}} \simeq$$

$$\simeq \int_{u_{\infty}}^{u_{0}} du \, u f(u) + c_{2} \ln n_{\text{max}}. \quad (C.4)$$

С помощью уравнений (39) и (42), а также используя $\pi^2/(|\gamma_0|t_0)=\ln^2 n_{\max}$, получаем следующую размерную подгонку:

$$\lambda_M = c_1 \ln^2 n_{\text{max}} + c_2 \ln n_{\text{max}}.$$
 (C.5)

Используя приведенное выше выражение для фитирования численных данных, получаем $c_1 \approx 0.406$, $c_2 \approx 1.57$. Аналогично предыдущему случаю, можно проверить, что $c_1 = 0.406$ удовлетворяет неравенству Перрона–Фробениуса,

$$\lambda_M \leqslant \max_n \sum_{n'=0}^{n_{\text{max}}} M_{nn'}(\ln n_{\text{max}}) \simeq \frac{\ln^2 n_{\text{max}}}{2}.$$
 (C.6)

приложение о

В данном приложении обсуждаются детали нахождения усредненной по беспорядку парной корреляционной функции локальной плотности состояний. В рамках нашего подхода мезоскопические флуктуации локальной плотности состояний могут быть выражены через Q-матрицы следующим образом (см. [65,66]):

$$K_{2}(E, E', \mathbf{r}) = \langle \delta \rho(E, \mathbf{r}) \delta \rho(E', \mathbf{r}) \rangle =$$

$$= \langle \rho(E, \mathbf{r}) \rho(E', \mathbf{r}) \rangle - \langle \rho(E, \mathbf{r}) \rangle \langle \rho(E', \mathbf{r}) \rangle =$$

$$= \frac{\nu^{2}}{32} \operatorname{Re} \left[P_{2,irr}^{\alpha_{1}\alpha_{2}}(i\varepsilon_{1}, i\varepsilon_{3}) - P_{2,irr}^{\alpha_{1}\alpha_{2}}(i\varepsilon_{1}, i\varepsilon_{4}) \right]. \quad (D.1)$$

Здесь $\alpha_1 \neq \alpha_2$ — некоторые фиксированные репличные индексы, и предполагается аналитическое продолжение согласно $i\varepsilon_{n_1} \to E+i0, \ i\varepsilon_{n_3} \to E'+i0, \ i\varepsilon_{n_4} \to E'-i0. \ P_{2,irr}^{\alpha_1\alpha_2}(i\varepsilon_n,i\varepsilon_m)$ — неприводимая часть билинейного по Q оператора:

$$P_2^{\alpha_1\alpha_2} = \langle \operatorname{sp} Q_{nn}^{\alpha_1\alpha_1} \operatorname{sp} Q_{mm}^{\alpha_2\alpha_2} - 2\operatorname{sp} Q_{nm}^{\alpha_1\alpha_2} Q_{mn}^{\alpha_2\alpha_1} \rangle. \quad (\mathrm{D.2})$$

Чтобы найти мезоскопические флуктуации локальной плотности состояний, аппроксимируем $P_{2.irr}^{\alpha_1\alpha_2}(i\varepsilon_n, i\varepsilon_m)$ с помощью

$$P_{2,irr}^{\alpha_1\alpha_2} \simeq -2\operatorname{sp}\langle (R^{-1}WR)_{nm}^{\alpha_1\alpha_2}(R^{-1}WR)_{mn}^{\alpha_2\alpha_1}\rangle. \text{ (D.3)}$$

Используя уравнение (А.18), находим

$$P_{2}(i\varepsilon, i\varepsilon') =$$

$$= -\frac{32(1+\mathcal{N})}{g} \left[1 - \frac{\varepsilon}{\sqrt{\varepsilon^{2} + \Delta^{2}}} \frac{\varepsilon'}{\sqrt{\varepsilon'^{2} + \Delta^{2}}} \right] \times$$

$$\times \int \frac{d^{2}\mathbf{q}}{(2\pi)^{2}} \frac{D}{Dq^{2} + \sqrt{\varepsilon^{2} + \Delta^{2}} + \sqrt{\varepsilon'^{2} + \Delta^{2}}}, \quad (D.4)$$

которое верно для любых знаков ε и ε' . Отметим, что это выражение справедливо только при условии (51), когда зависимостью спектральной щели Δ_{ε} от энергии можно пренебречь. Тогда для

 $K_2(E,E',{\bm r})$, где $E,E'\gg \Delta$, находим следующее выражение:

$$K_2 = \frac{\nu^2 (1 + \mathcal{N})}{g} \sum_{s=\pm} s \left(1 + \frac{sEE'}{\sqrt{E^2 - \Delta^2} \sqrt{E'^2 - \Delta^2}} \right) \times \operatorname{Re} \int_{q} \frac{D}{Dq^2 + i\sqrt{E^2 - \Delta^2} - is\sqrt{E'^2 - \Delta^2}}. \quad (D.5)$$

Ясно, что когда E=E', мы получаем уравнение (52).

Перейдем к мезоскопическим флуктуациям локальной плотности состояний на различных энергиях $E \neq E'$. Прежде всего отметим, что когда E и E' близки, парная корреляционная функция $K_2(E,E',r)$ слабо отличается от $K_2(E,E,r)$. Поэтому особый интерес представляет случай, когда энергии разнесенных далеко друг от друга. Предположим, что $E' = E + \omega$, где ω велико по сравнению с E. Тогда, разложив (D.5) по малому аргументу $E/\omega \ll 1$ и проинтегрировав по импульсу q, получим уравнение (55).

ЛИТЕРАТУРА

- A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP 8, 1090 (1959).
- A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP 9, 220 (1959).
- **3**. P. W. Anderson, J. Phys. Chem. Solids **11**, 26 (1959).
- 4. P. W. Anderson, Phys. Rev. 109, 1492 (1958).
- L. N. Bulaevskii and M. V. Sadovskii, JETP Lett. 39, 640 (1984).
- 6. M. Ma and P. A. Lee, Phys. Rev. B 32, 5658 (1985).
- A. Kapitulnik and G. Kotliar, Phys. Rev. Lett. 54, 473 (1985).
- 8. G. Kotliar and A. Kapitulnik, Phys. Rev. B 33, 3146 (1986).
- S. Maekawa and H. Fukuyama, J. Phys. Soc. Jpn. 51, 1380 (1982).
- H. Takagi and Y. Kuroda, Solid State Comm. 41, 643 (1982).
- **11**. S. Maekawa, H. Ebisawa, and H. Fukuyama, J. Phys. Soc. Jpn. **53**, 2681 (1984).
- **12**. P. W. Anderson, K. A. Muttalib, and T. V. Ramakrishnan, Phys. Rev. B **28**, 117 (1983).

- L. N. Bulaevskii and M. V. Sadovskii, J. Low Temp. Phys. 59, 89 (1985).
- 14. A. M. Finkel'stein, JETP Lett. 45, 46 (1987).
- 15. A. M. Finkel'stein, Physica B 197, 636 (1994).
- D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989).
- A. M. Goldman and N. Marković, Phys. Today 51, 39 (1998).
- **18**. V. F. Gantmakher and V. T. Dolgopolov, Physics-Uspekhi **53**, 1 (2010).
- B. Sacépé, M. Feigel'man, T. M. Klapwijk, Nat. Phys. 16, 734 (2020).
- 20. M. V. Feigel'man, L. B. Ioffe, V. E. Kravtsov, and E. A. Yuzbashyan, Phys. Rev. Lett. 98, 027001 (2007).
- 21. M. V. Feigel'man, L. B. Ioffe, V. E. Kravtsov, and E. Cuevas, Ann. Phys. 325, 1390 (2010).
- I. S. Burmistrov, I. V. Gornyi, A. D. Mirlin, Phys. Rev. Lett. 108, 017002 (2012).
- **23**. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B **92**, 014506 (2015).
- 24. M. N. Gastiasoro and B. M. Andersen, Phys. Rev. B 98, 184510 (2018).
- B. Fan and A. M. García-García, Phys. Rev. B 101, 104509 (2020).
- **26**. M. Stosiek, B. Lang, and F. Evers, Phys. Rev. B **101**, 144503 (2020).
- 27. K. Zhao, H. Lin, X. Xiao, W. Huang, W. Yao, M. Yan, Y. Xing, Q. Zhang, Z.-X Li, S. Hoshino, J. Wang, S. Zhou, L. Gu, M. S. Bahramy, H. Yao, N. Nagaosa, Q.-K. Xue, K. T. Law, X. Chen, and S.-H. Ji, Nat. Phys. 15, 904 (2019).
- C. Rubio-Verdú, A. M. García-García, H. Ryu, D.-J. Choi, J. Zaldívar, S. Tang, B. Fan, Z.-X. Shen, S.-K. Mo, J. I. Pascual, and M. M. Ugeda, Nano Lett. 20, 5111 (2020).
- I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Ann. Phys. (N. Y.) 435, 168499 (2021).
- **30**. M. Stosiek, F. Evers, and I. S. Burmistrov, Phys. Rev. Research **3**, L042016 (2021).
- **31**. B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R. Baklanov, and M. Sanquer, Phys. Rev. Lett. **101**, 157006 (2008).

- **32**. B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R. Baklanov, and M. Sanquer, Nat. Commun. **1**, 140 (2010).
- 33. B. Sacépé, Th. Dubouchet, C. Chapelier, M. Sanquer, M. Ovadia, D. Shahar, M. Feigel'man, and L. Ioffe, Nat. Phys. 7, 239 (2011).
- 34. D. Sherman, B. Gorshunov, S. Poran, N. Trivedi, E. Farber, M. Dressel, and A. Frydman, Phys. Rev. B 89, 035149 (2014).
- 35. M. Mondal, A. Kamlapure, M. Chand, G. Saraswat, S. Kumar, J. Jesudasan, L. Benfatto, V. Tripathi, and P. Raychaudhuri, Phys. Rev. Lett. 106, 047001 (2011).
- 36. Y. Noat, V. Cherkez, C. Brun, T. Cren, C. Carbillet, F. Debontridder, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and D. Roditchev, Phys. Rev. B 88, 014503 (2013).
- I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 93, 205432 (2016).
- 38. C. Brun, T. Cren, V. Cherkez, F. Debontridder, S. Pons, L. B. Ioffe, B. L. Altshuler, D. Fokin, M. C. Tringides, S. Bozhko, and D. Roditchev, Nat. Phys. 10, 444 (2014).
- M. Kim, Y. Kozuka, C. Bell, Y. Hikita, and H. Y. Hwang, Phys. Rev. B 86, 085121 (2012).
- 40. K. Ueno, T. Nojima, S. Yonezawa, M. Kawasaki, Y. Iwasa, and Y. Maeno, Phys. Rev. B 89, 020508(R) (2014).
- 41. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature 456, 624 (2008).
- **42**. J. A. Sulpizio, S. Ilani, P. Irvin, and J. Levy, Annu. Rev. Mater. Res. **44**, 117 (2014).
- 43. J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and Y. Iwasa, Science 338, 1193 (2012).
- J. T. Ye, Y. J. Zhang, M. Yoshida, Y. Saito, and Y. Iwasa, J. Supercond. Nov. Magn. 27, 981 (2014).
- 45. K. Taniguchi, A. Matsumoto, H. Shimotani, and H. Takagi, Appl. Phys. Lett. 101, 042603 (2012).
- 46. K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
- **47**. M. A. Skvortsov and M. V. Feigel'man, Phys. Rev. Lett. **95**, 057002 (2005).
- **48**. M. V. Feigel'man and M. A. Skvortsov, Phys. Rev. Lett. **109**, 147002 (2012).

- 49. P. A. Lee, J. Non-Cryst. Solids, 35, 21 (1980).
- T. P. Devereaux and D. Belitz, Phys. Rev. B 44, 4587 (1991)
- W. Brenig, M.-Ch. Chang, E. Abrahams, and P. Wölfle Phys. Rev. B 31, 7001 (1985).
- Y. L. Loh, M. Randeria, N. Trivedi, Ch.-Ch. Chang, and R. Scalettar, Phys. Rev. X 6, 021029 (2016).
- 53. M. Yu. Kagan, E. A. Mazur, JETP 159, 696 (2021).
- A. Abanov, A. V. Chubukov, Phys. Rev. B 102, 024524 (2020).
- Y. Wu, A. Abanov, Y. Wang, A. V. Chubukov, Phys. Rev. B 102, 024525 (2020).
- Y.-M. Wu, A. Abanov, A. V. Chubukov, Phys. Rev. B 102, 094516 (2020).
- 57. Y.-M. Wu, Sh.-Sh. Zhang, A. Abanov, A. V. Chubukov, Phys. Rev. B 103, 024522 (2021).
- 58. Y.-M. Wu, Sh.-Sh. Zhang, A. Abanov, A. V. Chubukov, Phys. Rev. B 103, 184508 (2021).
- 59. Y.-M. Wu, Sh.-Sh. Zhang, A. Abanov, A. V. Chubukov, Phys. Rev. B 104, 144509 (2021).

- P. A. Nosov, I. S. Burmistrov, and S. Raghu, Phys. Rev. Lett. 125, 256604 (2020).
- 61. T. Ch. Wu, Y. Liao, M. S. Foster, arXiv:2206.01762.
- 62. E. J. König, A. Levchenko, I. V. Protopopov, I. V. Gornyi, I. S. Burmistrov, and A. D. Mirlin, Phys. Rev. B 92, 214503 (2015).
- 63. E. J. König, I. V. Protopopov, A. Levchenko, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 104, 100507 (2021).
- 64. M. R. Beasley, J. E. Mooij, and T. P. Orlando, Phys. Rev. Lett. 42, 1165 (1979).
- I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett. 111, 066601 (2013).
- I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 91, 085427 (2015).
- 67. A. M. Finkel'stein, Electron Liquid in Disordered Conductors, vol. 14 of Soviet Scientific Reviews, ed. by I. M. Khalatnikov, Harwood Academic Publishers, London, (1990).
- D. Belitz and T. R. Kirkpatrick, The Anderson-Mott transition, Rev. Mod. Phys. 66, 261 (1994).
- **69**. I. S. Burmistrov, JETP, **129**, 669 (2019).