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Theory of weak localization is developed for two-dimensional holes in the presence of in-plane magnetic field.

The Zeeman splitting even in the hole momentum results in the spin-dependent phase changing the quantum

interference. The negative correction to the conductivity is shown to decrease by a factor of two by the in-plane

magnetic field. The positive magnetoconductivity in a classically weak perpendicular field caused by the weak

localization is calculated for both quadratic and quartic in momentum Zeeman hole splittings. Calculations

show that the conductivity corrections are very close to each other in these two cases of low and high hole

density.
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Spin-dependent phenomena attract a great atten-
tion due to spin-orbit interaction allowing spin manip-
ulation by electrical or optical means. The first impor-
tant move in this way was a discovery of the Rashba
splitting of electron energy spectrum in bulk wurtzite-
type semiconductors [1]. In two-dimensional (2D) sys-
tems, this splitting is present in heterostructures made
of any material provided the structure inversion asym-
metry is present [2]. Generally, the spin-orbit interac-
tion is described by the term in the Hamiltonian which
can be presented in the form

HSO = ~σΩ, (1)

where σ = (σx, σy) is a vector of Pauli matrices, and
the spin-orbit splitting equals 2~Ω.

The spin-orbit splitting of the electron energy spec-
trum leads to many interesting optical and transport
phenomena [3]. In transport, it leads to a remark-
able beating patterns in the Shubnikov –de Haas os-
cillations, where it can be easily detected. However,
a good mobility is needed for such kind of manifes-
tation of the Rashba splitting, which should be much
larger than the level broadening. Nevertheless, even
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in low-mobility samples the Rashba splitting can be
measured. This can be done in classically low mag-
netic fields, where the magnetoresistance is caused by
the weak localization (WL) effect, see Ref. [4] for re-
view. Developed theoretical expressions for the WL
correction to the conductivity valid for arbitrary val-
ues of the Rashba splitting allow adequately extracting
the splitting value and other electron kinetic and band
parameters by fitting the experimental data.

2D holes in semiconductor heterostructures repre-
sent a system which is very different from electrons.
This happens because the holes in the ground 2D sub-
band have spin projection ±3/2 on the structure main
axis. In particular, they have a cubic in momentum
Rashba splitting [5]. Due to the same reason, the Zee-
man splitting of heavy-holes in the in-plane magnetic
field at the bottom of the 2D subband is cubic in the
field strength in the axial approximation. A small con-
tribution for free holes is present due to cubic symme-
try of the zinc-blende lattice forming the heterostruc-
ture [6] which, however, increases strongly for local-
ized holes in quantum dots [7]. At finite wavevectors
the situation changes, and the momentum-dependent
in-plane Zeeman splitting arises. In the axial approxi-
mation, the Hamiltonian of heavy holes in the ground
subband of a symmetrical quantum well in the presence

463
2*

http://dx.doi.org/10.31857/S0044451022100030
https://elibrary.ru/emyfkl


M. O. Nestoklon, L. E. Golub ЖЭТФ, том 162, вып. 4 (10), 2022

of an in-plane magnetic field B‖ is given by [8]

HSO = ~σ−(∆1B+k
2
+ +∆2B−k

4
+) + H. c. (2)

Here, k is the in-plane wavevector, σ± = (σx ± iσy)/2

with the operators σx,y coupling two Kramers-
degenerate hole states,

B± = Bx ± iBy, k± = kx ± iky,

and ∆1,2 are constants. This expression coinsides with
Eq. (1) where Ω is given by

Ωx + iΩy = B‖(∆1k
2e2iϕ +∆2k

4e4iϕ) (3)

with ϕ being an angle between k and B‖.
According to estimates given in Ref. [9], the Zeeman

splitting at B‖ = 1 T is 2~Ω ∼ 0.1 . . . 1 meV. This al-
lows us to solve the WL problem by the method used in
Refs. [4,10] assuming the ratio of the splitting and level
broadening to be arbitrary but ignoring the difference
in the Fermi wavevectors in spin subbands.

We study two limits of low and high hole densities
where ∆1k

2
F prevails over ∆2k

4
F or vice versa. Here

kF is the Fermi wavevector. In both cases, the Zee-
man splitting is isotropic in the k-space, and the WL
problem can be solved analytically. The hole Hamilto-
nian (2) is even in k, and therefore the WL correction to
conductivity and the anomalous magnetoresistance are
negative. We consider diffusive and ballistic regimes
of WL [11], where the interference contribution to the
conductivity occurs on large and small trajectories, re-
spectively.

In the low-density limit, the Hamiltonian (1) with
Ω from Eq. (3) has the same form as that of exciton-
polaritons in microcavities with Ω = ∆1k

2
FB‖ instead

of the longitudinal-transverse splitting, see Ref. [12].
Therefore the negative WL correction to conductivity
in the diffusion approximation is given by the expres-
sion following from Ref. [12], see full paper [13] for de-
tails.

At high density the results for both zero-field cor-
rection and the magnetoconductivity are the same, the
only difference is that Ω = ∆2k

4
FB‖. Differences in the

functional forms of the WL contribution to the con-
ductivity at low and high densities appear in stronger
perpendicular fields Bz ∼ Btr. Here Btr = ~/(2|e|l2)

is the “transport” magnetic field with l being the mean
free path. In this case the ballistic trajectories with
a few, three or more, impurities contribute to the con-
ductivity, therefore this is called ballistic regime of WL.

In the ballistic regime, we take into account non-
logarithmic corrections to the conductivity as well as

the non-backscattering contribution [14, 15]. For nu-
merical calculations of the conductivity corrections, we
extend the approach used in Ref. [16], see full paper for
details. In Fig. 1, the conductivity correction is shown
as a function of Bz for various values of a product of
the spin-orbit splitting Ω ∝ B‖k

2 and the momentum
scattering time τ . The zero-Bz value at large Ωτ is
twice smaller than at Ω = 0. At large Bz ≫ Btr all
curves tend to the same dependence because of absence
of spin rotations at characteristic trajectories with the
size ∼ lB ≪ l. The conductivity at k4-splitting is very
close to these dependencies. Therefore the results of
Fig. 1 are valid for the k4-type of splitting as well.

Fig. 1. Conductivity correction at k2-splitting as a function

of Bz/Btr for various Ωτ ∝ B‖. The dephasing time

τφ/τ = 10
3. Diffusion approximation results are shown by

dashed lines

The WL correction to conductivity at Bz = 0 is
analyzed in Fig. 2. We see that the size of the WL cor-
rection is a little bit larger in the case of k2-splitting.
However, the difference is very small.

To summarize, the theory of WL of 2D holes in
the presence of an in-plane magnetic field is developed.
The momentum-dependent Zeeman splitting is taken
into account which can be squared or quartic in k. The
WL conductivity correction, which is negative, is de-
rived for both cases. Calculations show that the results
are very close to each other. The k-dependent Zeeman
splitting suppresses the WL correction up to factor of
two at large splitting. The positive magnetoconductiv-
ity in classically-weak perpendicular magnetic fields is
calculated for arbitrary values of the Zeeman splitting.
The developed theory is valid for arbitrary values of the
product Ωτ , but with the spin splitting 2~Ω assumed
much smaller than the Fermi energy. For higher spin
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Fig. 2. Conductivity correction at Bz = 0 as a function of Ωτ ∝ B‖ at τφ/τ = 10
3. The total conductivity correction, backscat-

tering and non-backscattering contributions are shown in the left, upper right and lower right panels, respectively. Solid and

dashed cureves correspond to the k2- and k4-splittings

splittings, when they are comparable, one should take
into account the difference of the Fermi wavevectors
in two spin-splitted subbands, as it has been done for
large Rashba splittings in Ref. [17].
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