РОЛЬ ПРОТЯЖЕННОГО ФИЛАМЕНТАЦИОННОГО ФОКУСА ПРИ АБЛЯЦИИ ПОВЕРХНОСТИ КРЕМНИЯ В ВОДНОЙ СРЕДЕ УЛЬТРАКОРОТКИМИ ЛАЗЕРНЫМИ ИМПУЛЬСАМИ

Н. А. Смирнов^{*}, С. И. Кудряшов, А. А. Ионин

Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

> Поступила в редакцию 3 марта 2022 г., после переработки 17 марта 2022 г. Принята к публикации 23 марта 2022 г.

Проводилась лазерная абляция кремниевой мишени в дистиллированной воде одиночными фемто-пикосекундными импульсами при фокусировке объективом с числовой апертурой NA = 0.25 в зависимости от положения фокуса относительно поверхности мишени. Представлена визуализация плазменного канала в воде для используемой числовой апертуры. Проведена характеризация абляционного рельефа поверхности с помощью сканирующей электронной и зондовой микроскопии. Получены и проанализированы значения максимальных глубин и объемов кратеров в зависимости от положения линейного и протяженного нелинейного фокуса.

DOI: 10.31857/S0044451022070000 **EDN**: EDFOAB сировки, которое является пороговым эффектом и рассчитывается для гауссова пучка по формуле

$$P_{cr} = \frac{3.77\lambda^2}{8\pi n_0 n_2},$$

1. ВВЕДЕНИЕ

Лазерные ультракороткие импульсы (УКИ) получили распространение при обработке поверхности широкого круга материалов, таких как металлы [1, 2], полупроводники [3–5], диэлектрики [5–7], полимеры [8]. К основным преимуществам лазерных УКИ можно отнести уменьшение зоны теплового воздействия, уменьшение загрязнения поверхности [9, 10], возможность получения субволновых поверхностных структур с периодом, значительно меньшим длины волны возбуждающего лазерного излучения, $\Lambda < \lambda_{laser}/2$ [11, 12].

В связи с тем, что пиковые мощности лазерного излучения достигают высоких значений (петаватт), при распространении УКИ в прозрачной среде могут проявляться нелинейные эффекты, такие как самофокусировка, филаментация, пробой плазмы. Рассмотрим более подробно явление самофокугде n_0 — линейный коэффициент преломления, n_2 коэффициент керровской (кубической) нелинейности среды. Как видно из данной формулы, критическая мощность зависит как от параметров лазерного излучения (длина волны), так и от среды, в которой происходит распространение лазерного излучения. Для того чтобы избежать филаментации, можно уменьшить длительность лазерного импульса, понизив тем самым пиковую мощность излучения до значений ниже критической мощности самофокусировки P_{cr}. При превышении критической мощности более чем в десять раз может возникать множественная филаментация — филаменты образуются и исчезают случайным образом как в продольном, так и в поперечном направлении. Для воды порог самофокусировки значительно ниже чем для воздушной среды: при длине волны лазерного излучения 1030 нм он равен 2-6 МВт для воды и 2-5 ГВт для воздуха [13-15]. При этом вода получила широкое распространение в качестве буферной среды при лазерной генерации коллоидных растворов [16-19]. Кроме того, при воздействии лазерных УКИ в водной среде получают модификацию по-

ÉE-mail: cna1992@mail.ru

верхности с улучшенными трибологическими и химическими свойствами по сравнению с модификацией на воздухе [20, 21].

В ряде работ продемонстрирована ключевая роль самофокусировки и филаментации при выносе вещества с поверхности материала в процессе микрообработки поверхности в водной среде [22–26]. При этом в данных работах абляция возникала в области геометрического (линейного) фокуса и не учитывалось смещение нелинейного лазерного фокуса, которое зависит от приложенной пиковой мощности [13]. Ранее в работах [27, 28] исследовалась эффективность абляции (вынос массы и оптическая плотность коллоидных растворов наночастиц) при многоимпульсной обработке фемтосекундными лазерными импульсами (120 фс) в зависимости от положения геометрического фокуса (использовались длиннофокусные линзы NA < 0.03) относительно поверхности мишени. Было показано, что наибольшая эффективность достигается при фокусировке несколько выше поверхности. Данный факт авторы связывали с возникновением нелинейного фокуса вследствие самофокусировки в воде. При этом в данных работах не проводилось сравнение с дофиламентационным режимом ($P < P_{cr}$). Также в литературе отсутствуют аналогичные эксперименты для жесткой фокусировки лазерного излучения $(NA \ge 0.2)$, когда пространственные характеристики и плотность плазмы в плазменном канале значительно меняются [11, 29, 30].

В данной работе проводилась абляция кремниевой мишени для длительностей импульса 0.3 и 10 пс в водной среде в зависимости от положения фокуса для объектива NA = 0.25. Наличие и смещение фокуса лазерного излучения продемонстрированы с помощью визуализации плазменного канала в жидкости при разных значениях пиковой мощности излучения. Абляционный рельеф поверхности проведен с помощью сканирующего электронного микроскопа. Были получены значения максимальной глубины и объема кратера в зависимости от положения геометрического фокуса.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данном эксперименте проводилась одноимпульсная абляция свежих участков полированной пластины монокристаллического нелегированного кремния (ориентация [110]) толщиной 375 мкм с естественным оксидным слоем 2–3 нм. Абляция происходила в дистиллированной воде, слой жидкос-

Рис. 1. Схема эксперимента: *а* — абляция мишени при сканировании через весь образец; *б* — визуализация плазменного канала в дистиллированной воде

ти над поверхностью мишени составлял примерно 1 мм. В качестве источника лазерного излучения в работе был использован волоконный лазер Satsuma (Amplitude Systemes) с активной средой на ионах Yb³⁺ (длина волны основной гармоники 1030 нм, ширина спектра на полувысоте 7 нм, частота следования импульсов 1 Гц-500 кГц). Длительность лазерных УКИ изменялась с помощью выходного компрессора и составляла 0.3 и 10 пс. Длительность лазерных УКИ измерялась с помощью сканирующего интерференционного автокоррелятора AA-20DD (Авеста-проект, диапазон 0.01–30 пс). Энергия УКИ в моде ТЕМ₀₀ плавно менялась с помощью тонкопленочного отражательного ослабителя. Лазерное излучение первой гармоники фокусировалось на поверхности образца через объектив NA = 0.25 в пятно (по уровню интенсивности 1/e) радиусом около 2.5 мкм. Образец перемещался с помощью моторизированной трехкоординатной платформы с минимальным шагом 1 мкм. Визуализация топологии поверхности осуществлялась с помощью сканирующего электронного микроскопа (СЭМ) Tescan VEGA. Топология поверхности абляционного рельефа была получена на сканирующем атомно-силовом микроскопе (АСМ) с разрешением сканирования 120 нм.

Визуализация плазменного канала проводилась для фемтосекундного лазерного излучения с длительностью импульса 0.3 пс и длиной волны 1030 нм. Схема эксперимента представлена на рис. 1*а.* Лазерное излучение первой гармоники фемтосекундного волоконного лазера фокусировалось в воде через объектив с числовой апертурой NA = 0.25. В перпендикулярной (боковой) геометрии визуализировался плазменный канал через объектив с числовой апертурой NA = 0.1 на цветную CCD-камеру.

Абляция мишени проводилась для первой гармоники лазерного излучения в режиме сканирования

Рис. 2. *а*) Снимки плазменных каналов от пиковой мощности в лазерном импульсе. *б*) Смещение центра плазменного канала от пиковой мощности в импульсе (выделенная область (3.8–5 МВт) соответствует началу смещения филамента)

образца одновременно по двум координатам x и z со скоростью соответственно 25 мкм/с и 12.5 мкм/с (рис. 16). Частота следования лазерных импульсов составляла 1 Гц. В эксперименте использовались импульсы длительностью 0.3 пс с мощностью, соответствующей филаментационному режиму $(P \ge P_{cr})$, и 10 пс с $P < P_{cr}$.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для подтверждения возникновения филаментации визуализировалась продольная структура плазменного канала в зависимости от приложенной пиковой мощности в лазерном импульсе. На рис. 2а представлены изображения структуры плазменного канала для разных пиковых мощностей. Частота следования лазерных импульсов в эксперименте составляла 10 кГц, выбор которой связан с тем, что при меньшей частоте чувствительности камеры не хватает, чтобы детектировать свечение плазменного канала. Штриховой линией показано положение линейного фокуса. При увеличении энергии в лазерном импульсе мы наблюдаем смещение плазменного канала в сторону фокусирующей оптики. Данная несимметричность плазменного канала говорит о возникновении самофокусировки и результирующей филаментации. На рис. 26 показано смещение центра плазменного канала в зависимости от пиковой мощности в лазерном импульсе. Начало резкого смещения происходит в районе 2–5 MBт.

Начало движения можно интерпретировать как превышение над критической мощностью самофокусировки. Движение начинается в области 3.8–5 МВт. Полученные результаты хорошо согласуются с литературными значениями критической мощности для воды ($P_{cr} \approx 2-5$ МВт для данной

длины волны). Длина плазменного канала в нашем эксперименте составляет 50–350 мкм в зависимости от энергии в лазерном импульсе.

На рис. 3 представлены снимки абляционного рельефа на поверхности мишени кремния в зависимости от положения фокуса. Эксперименты проводились при энергиях 0.8, 1.6, 3.4 мкДж и длительностях импульса 0.3 и 10 пс. Штриховыми линиями отмечены две длины Рэлея для данной фокусировки, равные приблизительно 50 мкм. Отрицательные значения, отложенные сверху рисунка, соответствуют положению геометрического фокуса над поверхностью мишени; положительные значения соответствуют случаю, когда фокус находится ниже поверхности мишени. Все полученные кратеры имеют округлую форму. При этом для абляции при длительности лазерного импульса 0.3 пс и фокусировке выше поверхности мишени наблюдаются точечная структура внутри кратера и внешняя кольцевая структура, которая больше себя проявляет при большей энергии лазерных импульсов. Данная морфология кратеров может быть связана с возникновением филаментации и конической эмиссии [31].

Рассмотрим глубины и объемы полученных кратеров в зависимости от положения геометрического фокуса (рис. 4). Пиковая мощность используемых импульсов длительности 10 пс составляет 0.08-0.34 MBr, что значительно меньше, чем мощность самофокусировки в жидкости ($P_{cr} = 2-5$ MBr

Рис. 4. (В цвете онлайн) Глубины и объемы кратеров в случаях длительности импульса 0.3 пс (*a*,*e*) и 10 пс (*б*,*e*)

для длины волны 1030 нм). В связи с этим подразумевается лишь геометрический фокус, положение которого не меняется от мощности в выбранном диапазоне. На рис. 4 геометрический фокус по оси абсцисс находится в нулевой точке (отмечен синей областью). Наблюдается симметричное убывание глубины кратера, что связано с уменьшением пиковой мощности в фокальном пятне; максимум находится в области геометрического фокуса.

Объемы кратеров при энергиях 1.6 и 0.8 мкДж ведут себя аналогичным образом: для большей энергии наблюдается смещение максимальной глубины кратера влево, что соответствует ситуации, когда фокус находится выше мишени. Данный факт можно связать с тем, что, как показано в работах [22,32], оптимальная плотность энергии имеет небольшую величину. При больших энергиях в импульсе более выгодным для выноса вещества с поверхности материала является увеличение фокального пятна.

При абляции лазерными УКИ длительностью 0.3 пс глубины и объемы полученных кратеров значительно меньше, чем для импульсов длительностью 10 пс. При этом область, где глубина и объем кратеров остаются практически постоянными, увеличивается, что, по всей видимости, связано с проявлением филаментации. Полученные данные хорошо коррелируют с результатами работы [23], где наблюдали аналогичные зависимости для глубин и объемов.

4. ЗАКЛЮЧЕНИЕ

В работе изучена лазерная абляция кремниевой мишени в дистиллированной воде фемто-пикосекундными импульсами длительностью 0.3 и 10 пс при фокусировке объективом с числовой апертурой NA = 0.25 в режиме одноимпульсного воздействия в зависимости от положения геометрического фокуса относительно поверхности мишени. С помощью визуализации в боковой геометрии обнаружена филаментация фемтосекундных лазерных импульсов в виде плазменного канала вблизи геометрического фокуса. Продемонстрирован отрицательный вклад филаментации на процесс абляции, выраженный в уменьшении максимальных глубин и объемов кратеров в 2–3.5 раза по сравнению с дофиламентаци-

ЛИТЕРАТУРА

- K. M. Ahmmed, C. Grambow, and A. M. Kietzig, Micromachines 5, 1219 (2014).
- A. A. Nastulyavichus, S. I. Kudryashov, I. N. Saraeva et al., Laser Phys. Lett. 17, 016003 (2019).
- 3. N. H. Rizvi, RIKEN Rev. No. 50 (2003).
- L. Rihakova and H. Chmelickova, Adv. Mater. Sci. and Engin. 2015(2), 1 (2015).
- S. Singh and G. L. Samuel, Application of Lasers in Manufacturing, Springer, Berlin (2019).
- R. R. Gattass and E. Mazur, Nature Photon. 2(4), 219 (2008).
- П. А. Данилов, С. И. Кудряшов, А. Е. Рупасов и др., Письма в ЖЭТФ 113, 650 (2021).
- L. Ding, R. Blackwell, J. F. Künzler et al., Opt. Express 14, 11901 (2006).
- А. А. Ионин, С. И. Кудряшов, А. А. Самохин, УФН 187, 159 (2017).
- K. H. Leitz, B. Redlingshöfer, Y. Reg et al., Phys. Proc. 12, 230 (2011).
- 11. Z. Li, Q. Wu, X. Jiang et al., Appl. Surf. Sci. 580, 152107 (2022).
- P. Nürnberger, H. M. Reinhardt, H. C. Kim et al., Appl. Surf. Sci. 425, 682 (2017).
- A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

- 14. S. Butkus, E. Gaižauskas, D. Paipulas et al., Appl. Phys. A 114, 81 (2014).
- I. N. Saraeva, S. I. Kudryashov, A. A. Rudenko et al., Appl. Surf. Sci. 470, 1018 (2019).
- S. I. Kudryashov, A. A. Nastulyavichus, A. K. Ivanova et al., Appl. Surf. Sci. 470, 825 (2019).
- Н. А. Иногамов, В. В. Жаховский, В. А. Хохлов, Письма в ЖЭТФ 115, 20 (2022).
- D. Zhang, B. Gokce, and S. Barcikowski, Chem. Rev. 117, 3990 (2017).
- Н. А. Иногамов, В. В. Жаховский, В. А. Хохлов, ЖЭТФ 154, 92 (2018).
- M. Trtica, J. Stasic, and D. Batani, Appl. Surf. Sci. 428, 669 (2018).
- H. Wang, F. Pöhl, and K. Yan, Appl. Surf. Sci. 471, 869 (2019).
- 22. Н. А. Смирнов, С. И. Кудряшов, П. А. Данилов и др., Письма в ЖЭТФ 108, 393 (2018).
- 23. N. A. Smirnov, S. I. Kudryashov, A. A. Rudenko et al., Appl. Surf. Sci. 562, 150243 (2021).
- 24. A. Nastulyavichus, N. Smirnov, and S. Kudryashov, Chin. Phys. B (2022), https://doi.org/10.1088/ 1674-1056/ac5602.
- 25. P. A. Danilov, A. A. Ionin, S. I. Kudryashov et al., Opt. Mater. Express 10, 2717 (2020).
- 26. N. A. Smirnov, S. I. Kudryashov, P. A. Danilov et al., Opt. Quant. Electron. 52, 1 (2020).
- 27. J. P. Sylvestre, A. V. Kabashin, E. Sacher et al., Appl. Phys. A 80, 753 (2005).
- 28. A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, J. Phys. Chem. C 115, 5108 (2011).
- 29. Ю. Э. Гейнц, А. А. Землянов, А. А. Ионин и др., ЖЭТФ 138, 822 (2010).
- 30. F. V. Potemkin, E. I. Mareev, A. A. Podshivalov et al., New J. Phys. 17, 053010 (2015).
- 31. Q. Cui, J. Yao, J. Ni et al., J. Mod. Opt. 59, 1569 (2012).
- 32. G. Raciukaitis, M. Brikas, P. Gecys et al., J. Laser Micro/Nanoengin. 4, 186 (2009).