ЭЛЕКТРОННАЯ СТРУКТУРА И МЕХАНИЧЕСКИЕ СВОЙСТВА Ti₅Si₃

Л. С. Чумакова^a, А. В. Бакулин^{a*}, С. Е. Кулькова^{a,b}

^а Институт физики прочности и материаловедения Сибирского отделения Российской академии наук 634055, Томск, Россия

^b Национальный исследовательский Томский государственный университет 634050, Томск, Россия

Поступила в редакцию 25 января 2022 г., после переработки 1 февраля 2022 г. Принята к публикации 2 февраля 2022 г.

Методом проекционных присоединенных волн в рамках теории функционала электронной плотности рассчитаны атомная и электронная структуры, модули упругости, вибрационные частоты и термодинамические характеристики силицида титана ${\rm Ti}_5{\rm Si}_3$. Рассчитана поверхность Ферми и оценена скорость электронов на всех ее четырех листах. Анализ пространственной зависимости линейной сжимаемости и модулей Юнга и сдвига показал их слабую анизотропию, тогда как анизотропия коэффициента Пуассона является более выраженной. Рассчитан фононный спектр силицида титана и проведена оценка термодинамических характеристик. Показано, что в целом результаты расчетов находятся в хорошем согласии с экспериментом.

DOI: 10.31857/S0044451022060116 **EDN:** DUUZAV

1. ВВЕДЕНИЕ

Повышенный интерес к изучению физико-химических и механических свойств силицидов обусловлен их технологическими приложениями. Прежде всего, это было связано с масштабным производством компьютеров на основе кремния в 80-х годах, когда силициды использовались в основном в качестве омических контактов из-за низкого электрического сопротивления и термической совместимости с кремнием [1,2]. Последняя достигается за счет использования фаз, находящихся в термодинамическом равновесии с кремнием, а именно дисилицидов, среди которых наиболее полезными свойствами обладают TiSi₂, CoSi₂ и WSi₂ [1–5].

Вторая область применения силицидов связана с ограничением использования металлических сплавов в качестве конструкционных материалов при высоких температурах. Известно, что суперсплавы, являющиеся основными материалами для данных приложений, быстро теряют сопротивление ползучести и стойкость к окислению при температурах

выше 1100 °С. Поэтому считается, что конструкционный материал, который будет выдерживать температуры от 1300 до 1600 °C, окажет такое же большое влияние на мировую экономику, как и микроэлектронная промышленность. Необходимость повышения рабочей температуры с сохранением хороших механических свойств привела к интенсивным исследованиям интерметаллических сплавов, которые продолжаются и в настоящее время. Изначально интерметаллиды привлекали такими свойствами, как высокая температура плавления (для некоторых — выше 2000 °C), низкая удельная плотность (ниже 7 г/см³) и широкие возможности легирования. Поскольку количество интерметаллических соединений очень велико, большая часть ранних исследований была связана с нахождением наиболее перспективных материалов на основе анализа ряда характеристик. Были сформулированы необходимые требования к свойствам материалов для высокотемпературных приложений, которые включали высокое сопротивление ползучести и стойкость к окислению при температурах выше 1000 °C, низкую плотность, сохранение прочности при повышенных температурах, а также возможность понижения хрупкости, присущей некоторым интерметаллическим соединениям, путем легирования. Наиболее

^{*} E-mail: bakulin@ispms.tsc.ru

перспективными в этом ключе оказались алюминиды и силициды переходных металлов. Были установлены также наиболее важные аспекты синтеза таких материалов. В частности было показано, что легирующие добавки даже в очень малых количествах, а также способ обработки могут существенно влиять на их свойства [6–8].

Известно, что γ-TiAl и сплавы на его основе обладают целым комплексом уникальных механических свойств, в том числе отмеченных выше, что делает их перспективными материалами для применения в аэрокосмической, автомобильной, судостроительной промышленности. Однако стойкость к окислению алюминидов титана при высоких температурах остается недостаточно высокой [9], что ограничивает их технологические приложения. Считается, что легирование кремнием сплава *γ*-TiAl улучшает коррозионную стойкость. Например, в работе [10] теоретическими методами было показано, что примесь кремния способствует локальному повышению концентрации титана в сплаве γ -TiAl путем образования Ті-антиструктурных атомов. Последнее приводит к повышению химической активности алюминия и, как следствие, способствует образованию защитного слоя Al₂O₃. Кроме того, в [11] было установлено, что примесь Si, а также Nb, Та и W, замещая Ті в пленке ТіО2, понижает коэффициент диффузии кислорода, что также должно повышать коррозионную стойкость TiAl. В работе [12] экспериментально было показано, что образование пленки силицида титана состава Ti₅Si₃ и слоев, обогащенных алюминием, приводит к образованию Al₂O₃, который подавляет дальнейшее окисление и, следовательно, способствует значительному повышению коррозионной стойкости сплава. Однако противоположный вывод о влиянии кремния был сделан в работе [13]. Авторы считают, что образование хрупкой фазы Ti₅Si₃ приводит к растрескиванию и отслаиванию оксидной шкалы. Недавно в работе [14] путем холодного напыления Al-40Si (масс. %) на поверхность сплава ү-TiAl было создано новое диффузионное покрытие Ti(Al,Si)₃, которое значительно повысило стойкость сплава к окислению. В процессе окисления образовался стабильный диффузионный барьер, состоящий из фазы Ti₅Si₃, который, как показали авторы [14], может тормозить интердиффузию между покрытием и подложкой и способствовать формированию оксидной шкалы Al₂O₃.

Силициды со стехиометрией M₅Si₃ обладают многими преимуществами по сравнению с другими силицидами. Кристаллическая структура является гексагональной, если M = Sc, Y, Ti, Mn, и объемно-центрированной тетрагональной в случае M = V, Mo, W. В отличие от других силицидов возможности легирования этих структур выражены в большей степени. Кроме того, гексагональная структура может вместить до 11 ат.% небольших атомов, таких как В, С, О и др., т. е. эти соединения также обладают значительными возможностями междоузельного легирования, которые не наблюдаются для силицидов любой другой стехиометрии. Другие преимущества включают более высокую температуру плавления (например, 2130 °C в случае Ti₅Si₃) и потенциал для вязкого упрочнения [15, 16].

К недостаткам идеальных соединений M_5Si_3 следует отнести недостаточную стойкость к окислению, низкую вязкость разрушения и высокую анизотропию свойств. Последние являются результатом анизотропной кристаллической структуры, что приводит к появлению при обработке остаточных напряжений и микротрещин [7]. Следует отметить, что обработка силицидов затруднена, поскольку углерод, кислород, азот и другие примеси стремятся заполнить междоузельное пространство.

Для того чтобы понять на микроскопическом уровне влияние формирования фазы Ti₅Si₃ на диффузию кислорода и интерфейсную прочность, необходимо, прежде всего, изучить его электронную и фононную структуру, а также физико-химические и механические свойства, что и является целью настоящей работы. Кроме того, проводятся оценки ряда термодинамических характеристик силицида титана, а также коэффициент теплового расширения.

2. МЕТОД РАСЧЕТА

Расчеты атомной и электронной структур соединения Ti₅Si₃ проводились методом проекционных присоединенных волн (PAW) в плоско-волновом базисе [17, 18] с обобщенным градиентным приближением для обменно-корреляционного функционала в форме PBE [19]. Энергия обрезания была равна 550 эВ. Оптимизация электронной структуры проводилась с точностью 10^{-6} эВ. Релаксация атомной структуры проводилась методом сопряженных градиентов с использованием полной оптимизационной схемы, допускающей изменение положения атомов, формы и размера ячейки. Сходимость считалась достигнутой, когда силы, действующие на атомы, не превышают 10^{-4} эВ/Å. В расчетах использовалась Г-центрированная сетка *k*-точек 7 × 7 × 9.

Зарядовые состояния атомов и заселенность перекрывания орбиталей оценивались с помощью

Рис. 1. Равновесная атомная структура соединения ${
m Ti}_5{
m Si}_3$ (*a*), локальное окружение атомов ${
m Ti}_{4d}$, ${
m Ti}_{6g}$ и Si (б)

Таблица 1. Параметры решетки соединения ${\rm Ti}_5{\rm Si}_3$ в сопоставлении с имеющимися экспериментальными и теоретическими данными. В скобках приведено отличие от экспериментальных значений в процентах

Структурные параметры	$a, \mathrm{\AA}$	$c, \mathrm{\AA}$	c/a	x_{Ti}	$x_{\rm Si}$
Hactorium population (PAW PBF)	7.466	5.108	0.684	0.2502	0.6081
пастоящие результаты (г Ам т БЕ)	(+0.07)	(-0.83)	(-0.87)	(+1.17)	(+0.30)
Эксперимент [23]	7.461	5.151	0.690	0.2473	0.6063
Теория (NCPP LDA) [24]	7.377	5.084	0.689	0.2473	0.6063
Теория (PP GGA) [25]	7.472	5.132	0.687	_	_

метода DDEC6 [20], который представляет собой уточнение электростатического химического метода, основанного на электронной плотности (Density Derived Electrostatic and Chemical approach). Заселенность кристаллических орбиталей Гамильтона (COHP) рассчитывалась с помощью программы LOBSTER [21, 22].

Функция локализации электронов (ELF) рассчитывалась по следующей формуле:

ELF =
$$\frac{1}{1 - (D/D_h)^2}$$
, (1)

где *D* — плотность кинетической энергии Паули электронного газа со спином «вверх»:

$$D = \frac{1}{2} \sum_{i} |\nabla \varphi_i|^2 - \frac{1}{8} \frac{|\nabla \rho_{\uparrow}|^2}{\rho_{\uparrow}}, \qquad (2)$$

где φ_i — орбитали Кона–Шема, ρ_{\uparrow} — плотность электронов со спином «вверх»; а D_h — плотность кинетической энергии однородного газа электронов со спином «вверх»:

$$D_h = \frac{3}{10} (2\pi^2 \rho_{\uparrow})^{5/3}.$$
 (3)

Необходимо отметить, что по определению функция ELF может принимать значения от 0 до 1, при этом в области ELF $\rightarrow 1$ наблюдается локализация электронных пар, кинетическая энергия которых стремится к нулю. Области ELF = 1/2 соответствуют полной делокализации электронов, например, в случае однородного электронного газа. Наконец, значения ELF $\rightarrow 0$ характерны для областей, разделяющих электронные пары, где плотность кинетической энергии высока.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Атомная и электронная структуры

Соединение Ti_5Si_3 имеет гексагональную структуру $D8_8$ и характеризуется пространственной группой $P6_3/mcm$ (№ 193). Атомы титана занимают два типа позиций Вайкоффа (Wyckoff positions) 4d (1/3, 2/3, 0) и 6g (x, 0, 1/4), атомы кремния также занимают 6g-позиции (рис. 1a). Равновесные параметры решетки и смещения атомов Ті и Si в 6g-позициях приведены в табл. 1. Видно, что рассчитанные структурные параметры Ti_5Si_3 находятся в согласие с результатами ранних теоретических и экспериментальных работ.

На рис. 16 показано локальное окружение атомов каждого типа и приведены обозначения для межатомных связей, которые будут использоваться далее. Видно, что атомы Ti_{4d} образуют две связи d_1 (2.55 Å) с соседними атомами Ti_{4d} и шесть связей d_2 (2.63 Å) с атомами кремния. Другие атомы Ti_{6g} пятикратно координированы атомами кремния, при этом две связи d_3 , лежащие в плоскости (0001), имеют наименьшую длину 2.57 Å. Связь d_4 (2.67 Å) также расположена в плоскости (0001), но ориентирована вдоль кристаллографического направления $\langle \overline{2}110 \rangle$ или $\langle 1\overline{1}00 \rangle$. Только две связи d_5 (2.76 Å) обусловливают взаимодействие Ti_{6g} -Si между атомными слоями. Таким образом, каждый атом кремния образует четыре связи d_2 с атомами Ti_{4d} и пять связей с атомами Ti_{6g} : две из них d_3 -типа, одна — d_4 и две — d_5 .

На рис. 2а, на котором приведен электронный энергетический спектр Ti₅Si₃, видно, что соединение является проводником, поскольку кривые дисперсии пересекают уровень Φ ерми (E_F) вдоль разных направлений в неприводимой части зоны Бриллюэна. Отметим, что приведенные состояния вблизи E_F позволяют интерпретировать рассчитанные листы поверхности Ферми, которые обсуждаются ниже. На рис. 2б видно, что валентная зона состоит из двух подзон: первая, расположенная при энергиях от -10.2 до -6.3 эВ, образована преимущественно s-состояниями Si, вторая, расположенная выше -5.0 эВ, обусловлена преимущественно p-состояниями Si, а при энергиях выше –3.6 эВ – *d*-состояниями Ті. При этом электронная структура атомов Ti_{4d} и Ti_{6g} отличается только высотой отдельных пиков, тогда как их расположение на энергетической шкале совпадает. Кроме того, положение пиков на кривых плотности электронных состояний атомов Ті двух типов хорошо коррелирует с соответствующими пиками на кривой плотности электронных состояний Si, что указывает на сильное взаимодействие этих атомов. На рис. 26 видно, что на кривой полной плотности электронных состояний уровень Ферми находится в локальном минимуме, что, согласно критерию Ямашиты [26], указывает на стабильность силицида. На рис. 26 приведены кривые СОНР для всех пяти типов связей в соединении Ті₅Sі₃. Видно, что только в случае d₁-связи между атомами Ti_{4d} связующие орбитали являются частично заполненными, тогда как для остальных типов связей уровень Ферми отделяет связующие состояния от разрыхляющих. Последнее указывает на ковалентный вклад в механизм химической связи.

Все характеристики связей, включая зарядовое состояние взаимодействующих атомов, приведены в табл. 2. Площадь под кривой СОНР (–ICOHP), так

Рис. 2. Электронный энергетический спектр соединения ${
m Ti}_5{
m Si}_3(a)$, полная и локальные плотности электронных состояний (δ), а также кривые СОНР для всех типов связей (e)

же как и заселенность перекрывания орбиталей (θ) , рассчитанная методом DDEC6, могут служить мерой ковалентности химической связи. Однако первая величина измеряется в электронвольтах, тогда как вторая в электронах, что делает невозможным их прямое сопоставление, хотя корреляция между

Характеристика	$d_1, \mathrm{\AA}$	$d_2, \mathrm{\AA}$	$d_3, \mathrm{\AA}$	$d_4, { m \AA}$	$d_5, \mathrm{\AA}$
Связь Х-У	${\rm Ti}_{4d} - {\rm Ti}_{4d}$	${\rm Ti}_{4d}$ -Si	${ m Ti}_{6g}-{ m Si}$	${ m Ti}_{6g}-{ m Si}$	${ m Ti}_{6g}-{ m Si}$
Ориентация	[0001]	mix	(0001)	$\langle \overline{2}110 \rangle, \langle 1\overline{1}00 \rangle$	mix
Длина, Å	2.55	2.63	2.57	2.67	2.76
–ІСОНР, эВ	1.50	1.84	2.15	1.55	1.44
heta, эл.	0.24	0.34	0.45	0.33	0.30
q(X), эл.	0.74	0.74	0.63	0.63	0.63
q(Y), эл.	0.74	-1.12	-1.12	-1.12	-1.12

Таблица 2. Характеристики связей в соединении ${\rm Ti}_5{
m Si}_3$

Рис. 3. Распределение разности зарядовой плотности (*a*): области аккумуляции и ухода заряда показаны соответственно синим и красным цветом; функции локализации электронов (б): области локализации электронных пар и их разделения показаны соответственно фиолетовым и зеленым цветом

ними имеет место. Из табл. 2 следует, что уменьшение длины связи Ti–Si коррелирует с увеличение значений –ICOHP и θ . В то же время атомы Ti_{6g} отдают меньший заряд атомам Si, чем Ti_{4d}, что указывает на бо́льшую ионность связей в последнем случае. Очевидно, что d_1 -связь (Ti_{4d}–Ti_{4d}) является преимущественно металлической с незначительной примесью ковалентности. Поскольку она может формироваться с помощью только d_{z^2} -орбиталей Ti, которые практически не заполнены, то заселенность перекрывания орбиталей в этом случае минимальна.

На рис. За приведено распределение разности зарядовой плотности ($\Delta \rho$), которое рассчитывалось как разность между суммой атомных электронных плотностей ρ_{at} всех атомов и самосогласованной электронной плотностью соединения ρ_{sc} :

$$\Delta \rho(\mathbf{r}) = \sum \rho_{at}(\mathbf{r}) - \rho_{sc}(\mathbf{r}). \tag{4}$$

Отметим, что отрицательные значения $\Delta \rho$ соответствуют областям пространства, где происходит аккумуляция заряда при образовании соединения, а положительные — областям его ухода. Видно, что электронная плотность локализуется в области вокруг атомов кремния, при этом она имеет наибольшую ширину на связях d_2 между атомами Si и $\mathrm{Ti}_{4d}.$ Это указывает на больший зарядовый перенос к кремнию именно от этих атомов титана, что согласуется с данными из табл. 2. Напротив, d₄-связи (Si-Ti_{6q}, ориентированные вдоль кристаллографических направлений $\langle \overline{2}110 \rangle$ и $\langle 1\overline{1}00 \rangle$) демонстрируют лишь небольшие области ухода заряда вблизи атомов Ті_{6q}. Отметим, что области с высокими значениями функции локализации электронов, ELF (более 0.75), показанные на рис. 36, соответствуют локализации обобществленных электронов атомов Ті и Si. Их смещение в сторону кремния отражает наличие ионного вклада в химическую связь. Значения за-

Рис. 4. Полная поверхность Ферми ${
m Ti}_5{
m Si}_3(a)$ и ее четыре отдельных листа (б-d) с указанием значений скорости Ферми на термометре

Модель	$C_{11},$ ГПа	$C_{12},$ ГПа	$C_{13},$ ГПа	$C_{33},$ ГПа	$C_{44}, \Gamma \Pi a$	P_1 , ГПа	P_2 , ГПа
Настоящий расчет	283.9	109.2	57.4	265.8	91.8	21.9	-33.4
Эксперимент [29]	285	106	53	268	93	16.7	-39.6
Teopия [25] US PBE	282.6	107.9	54.0	271.6	94.2	_	_

Таблица 3. Упругие константы соединения Ti₅Si₃

рядов, ушедших с атомов титана к кремнию, приведены в табл. 2, а сам факт такого переноса обусловлен большей электроотрицательностью кремния по сравнению с титаном: Si — $1.90 \ \text{sB}^{1/2}$, Ti — $1.54 \ \text{sB}^{1/2}$ [27]. Области, где значения функции ELF ниже 0.05, также показанные на рис. 36, локализованы вокруг атомов титана и соответствуют высоким значениям кинетической энергии валентных *d*-электронов. В целом расчеты показали, что химическая связь в силициде титана имеет сложный характер.

Представленная на рис. 4а поверхность Ферми образована четырьмя листами. Первые два листа, соответствующие 31 и 32 зонам, являются дырочными замкнутыми поверхностями, локализованными вокруг точки А неприводимой части зоны Бриллюэна (рис. 46,6). Третий лист представляет собой многосвязную поверхность, при этом электроны локализованы вокруг точек М и К, тогда как области в центре зоны Бриллюэна (точка Г) и вокруг точек А, L и Н заполнены дырками (рис. 4г). Наконец, четвертый лист, образованный 34 зоной, является замкнутой электронной поверхностью типа гантели (рис. 4*d*). На рис. 4*б*-*д* видно, что скорость Ферми (v_F) достигает наибольшего значения порядка 15 эВ·Å на первом и втором листах поверхности Ферми, тогда как низкие значения $v_F \sim 5 \ \mathrm{sB} \cdot \mathrm{\AA}$ соответствуют некоторым областям на втором и четвертом листах. Скорость электронов, чей волновой вектор соответствует третьему листу поверхности Ферми, практически везде равна среднему значению 9–11 эВ·Å и достигает 13 эВ·Å лишь в отдельных областях вблизи границы зоны Бриллюэна.

3.2. Механические свойства

Известно, что в случае гексагонального кристалла имеются пять независимых упругих постоянных (модулей податливости) [28], результаты расчетов которых приведены в табл. 3. Полученные результаты находятся в хорошем согласии с экспериментальными и теоретическими данными [25,29], что позволяет также воспроизвести корректно ряд упругих характеристик Ti_5Si_3 на их основе. Несмотря на то, что упругие постоянные рассчитываются для монокристалла, они позволяют оценить поликристаллические модули упругости. Объемный модуль упругости и модуль сдвига для поликристаллического образца, согласно теориям Фойгта, Ройсса и Хилла [30–32], могут быть записаны следующим образом:

$$B_{V} = (2C_{11} + 2C_{12} + 4C_{13} + C_{33})/9,$$

$$G_{V} = (3.5C_{11} + C_{33} - 2.5C_{12} - 2C_{13} + 6C_{44})/15,$$

$$B_{R} = 1/(2S_{11} + S_{33} + 2S_{12} + 4S_{13}),$$

$$G_{R} = 15/(14S_{11} + 4S_{33} - 10S_{12} - 8S_{13} + 6S_{44}),$$

$$B_{H} = (B_{V} + B_{R})/2,$$

$$G_{H} = (G_{V} + G_{R})/2.$$

(5)

Модель	B, ГПа	G, ГПа	$E, \Gamma \Pi a$	ν	$A^B, \%$	$A^G, \%$	$A^E, \%$	A^U
Теория [30]	144.6	93.2	230.1	0.23				
Теория [31]	142.6	91.4	226.0	0.24	0.70	0.95	0.91	0.11
Теория [32]	143.6	92.3	228.0	0.24				
Эксперимент [29]	140	96	234	0.22	_	_	_	_
Эксперимент [34]	_	_	146	_	_	_	_	_
Эксперимент [35]	_	_	268	_	_	_	_	_
Теория [25] US PBE	140.32	95.82	237.16	0.36	_	_	_	_

Таблица 4. Изотропные (поликристаллические) модули упругости, коэффициент Пуассона и коэффициенты анизотропии для ${
m Ti}_5{
m Si}_3$

Модуль Юнга и коэффициент Пуассона можно рассчитать по следующим формулам:

$$E = \frac{9BG}{3B+G}, \quad \nu = \frac{3B-2G}{6B+2G}.$$
 (6)

где B и G берутся в соответствие с одним из трех приближений. Упругая анизотропия объемного модуля, модулей сдвига и Юнга, а также универсальный коэффициент анизотропии рассчитывались по формулам

$$A^{B} = \frac{B_{V} - B_{R}}{B_{V} + B_{R}} \cdot 100 \%,$$

$$A^{G} = \frac{G_{V} - G_{R}}{G_{V} + G_{R}} \cdot 100 \%,$$

$$A^{E} = \frac{E_{V} - E_{R}}{E_{V} + E_{R}} \cdot 100 \%,$$

$$A^{U} = \frac{B_{V}}{B_{R}} + 5 \frac{G_{V}}{G_{R}} - 6.$$
(7)

Значения давления Коши могут быть оценены как

$$P_1 = C_{12} - C_{66}, \quad P_2 = C_{13} - C_{44}. \tag{8}$$

Из табл. 3 следует, что в целом рассчитанные характеристики хорошо согласуются с экспериментальными значениями и результатами ранних расчетов. Отметим, что отрицательное значение давления Коши (P_2 в случае Ti₅Si₃) указывает на направленность химических связей в соединении [33]. Поликристаллические модули упругости, рассчитанные по формулам (5), (6), приведены в табл. 4. Видно, что полученные значения находятся в хорошем согласии с данными из работы [29], в которой упругие константы измерялись методом резонанса прямоугольного параллелепипеда. Отметим, что значения модуля Юнга из работ [34,35] существенно отличаются как от полученных в настоящей работе, так и значений из [29]. В работе [34] модуль Юнга измерялся путем сжатия образца, тогда как в [35] он определялся методом наноиндентирования. В последнем случае авторы предположили, что переоценка модуля Юнга может быть обусловлена микропористостью образца. Авторы [29] объяснили наблюдаемое в некоторых экспериментальных работах занижение модуля Юнга поликристаллического Ti₅Si₃ образованием межзеренных мягких фаз, например Ті. Кроме отмеченных выше работ имеются также другие экспериментальные статьи, в которых изучались упругие свойства Ti₅Si₃. В целом имеет место достаточно большой разброс экспериментальных значений модуля Юнга — от 146 ГПа до 268 ГПа. Напомним, что в настоящей работе поликристаллические модули упругости оценивались по упругим константам, рассчитанным для монокристалла, поэтому значения, приведенные в табл. 4, относятся к идеальному поликристаллическому Ti₅Si₃ без дополнительных фаз и включений.

Близкие к единице значения коэффициентов A^G и A^E , рассчитанных по формулам (7), отражают слабую анизотропию модулей сдвига и Юнга. В то же время анизотропия объемного модуля упругости более выражена, что, в свою очередь, отражается на зависимости линейной сжимаемости β от направления (рис. 5*a*). Отметим, что низкое значение коэффициента Пуассона (0.22) указывает на хрупкость данного соединения. Кроме того, отношение B/Gравно 1.56, что меньше критического значения 1.75, и, согласно критерию Пью [36], также свидетельствует о хрупком характере разрушения силицида титана. В целом теоретические значения хорошо согласуются с экспериментальными данными.

Рис. 5. Зависимость линейной сжимаемости (β), модуля Юнга (E), модуля сдвига (G) и коэффициента Пуассона (ν) от направления деформации. Нижние индексы «1» и «2» в случае двух последних характеристик соответствуют наименьшему и наибольшему их значению при фиксированном направлении

Кроме упомянутых выше поликристаллических упругих характеристик нами были рассчитаны их значения в зависимости от направления в кристалле. Соответствующие формулы и детальное описание можно найти, например, в [28, 37]. Рассчитанные упругие модули как функции направления приведены на рис. 5. Соответствующие проекции на базальную и призматическую плоскости показаны на рис. 6. Напомним, что базальная плоскость является плоскостью изотропии, поэтому модули упругости не зависят от направления в этой плоскости. Видно, что наибольшее значение линейной сжимаемости β (2.87 ТГц) соответствует направлению [0001]. Этому же направлению соответствует максимальное значение модуля Юнга Е (249.4 ГПа). При этом минимальное значение β (2.07 ТГц) соответствует деформации в базальной плоскости (0001), а E (219.7 ГПа) — в направлении около 52° к оси c, что согласуется с экспериментом [29]. Минимальное значение модуля сдвига G в плоскости (0001), равное 82.4 ГПа, соответствует одной из плоскостей скольжения, характерной для соединения Ti₅Si₃ [29]. Наибольшее значение G (105.2 ГПа) получено для направления, ориентированного под углом около 45° к оси с. В отличие от других упругих параметров коэффициент Пуассона существенно зависит от направления и изменяется в три раза: от минимального значения 0.13 до максимального 0.39, при этом оба значения достигаются для направления в плоскости (0001). Таким образом, расчеты показывают, что анизотропия упругих свойств силицида титана с гексагональной структурой выражена в меньшей степени, чем ожидалось, что является положительным фактором для его технологического применения.

3.3. Вибрационные, термодинамические и тепловые свойства

На рис. 7 приведены фононный энергетический спектр и локальные фононные плотности состояний. Видно, что структура Ti_5Si_3 является динамически стабильной, поскольку на спектре отсутствуют мнимые вибрационные частоты. Поскольку атомы кремния легче атомов титана, частоты выше 8.4 ТГц обусловлены преимущественно ими, тогда как низкие частоты соответствуют колебаниям атомов Ti_{6g} , а частоты колебаний атомов Ti_{4d} являются промежуточными и находятся в диапазоне 5.5–10.7 ТГц.

На рис. 8 показаны рассчитанные термодинамические характеристики Ti₅Si₃ в сопоставлении с экспериментальными данными. Видно, что теплоем-

Рис. 6. Зависимость β (*a*), *E* (*b*), *G* (*b*), ν (*c*) Ti₅Si₃ от направления в плоскости {2110} (верхний полукруг) и (0001) (нижний полукруг)

Рис. 7. Энергетический спектр (слева) и плотность фононных состояний (справа) ${\rm Ti}_5{\rm Si}_3$

Рис. 8. Зависимость теплоемкости (a), энтропии (б), энтальпии (в) и свободной энергии (г) Ti₅Si₃ от температуры

кость при постоянном давлении (C_P) хорошо согласуется с экспериментом [38, 39], проведенным для разных интервалов температур, при этом низкотемпературное поведение теплоемкости при постоянном объеме (C_V) имеет зависимость пропорциональную T^3 . Напомним, что в рамках гармонической теории кристалла данные характеристики рассчитывались по следующим формулам:

$$C_V = \left(\frac{\partial E}{\partial T}\right)_V, \quad C_P = C_V + \alpha^2 BVT,$$

$$S = -\frac{\partial F}{\partial T}, \quad F = -k_B T \ln(Z),$$

(9)

где Е — энергия фононов, равная

$$E = \sum_{\mathbf{q},s} \hbar\omega(\mathbf{q},s) \left[\frac{1}{2} + \frac{1}{\exp(\hbar\omega(\mathbf{q},s)) - 1} \right], \quad (10)$$

 α_V — объемный коэффициент теплового расширения, F — свободная энергия, S — энтропия, а Z —

статистическая сумма, которая оценивалась по формуле

$$Z = \prod_{\mathbf{q},s} \frac{\exp(-\hbar\omega(\mathbf{q},s)/2k_BT)}{1 - \exp(-\hbar\omega(\mathbf{q},s)/k_BT)}.$$
 (11)

Температурные зависимости энтальпии (H), свободной энергии и вибрационного вклада в энтропию также находятся в хорошем согласии с экспериментом [38]. Известно, что существует противоречие между теоретическими и экспериментальными результатами, заключающееся в предсказании фазы силицида, которая должна находиться в термодинамическом равновесии с твердым раствором Si в матрице α -Ti. Согласно фазовой диаграмме Ti–Si, основанной на экспериментальных данных, тетрагональная фаза Ti₃Si должна находиться в термодинамическом равновесии с твердым раствором ниже температуры эвтектоидной реакции [40]. С другой стороны, теоретические расчеты показывают, что фаза Ti₃Si может распадаться на Ti₅Si₃ [41] или Ti₂Si и

Рис. 9. Зависимость коэффициента линейного теплового расширения (*a*) и полного параметра Грюнайзена (*б*) ${
m Ti}_5{
m Si}_3$ от температуры

 α -Ті [42,43]. Причиной этих расхождений может являться пренебрежение вкладом колебательных степеней свободы в термодинамические свойства фаз. Как видно на рис. 8*г*, вибрационная свободная энергия действительно достаточно быстро меняется с ростом температуры, особенно при *T* выше примерно 100 К. В этой связи, полученные термодинамические характеристики могут быть полезны в дальнейших исследованиях фазовой стабильности в силицидах титана.

В заключение, на рис. 9 приведены зависимости коэффициентов линейного теплового расширения (α_a , α_c) и полного параметра Грюнайзена (γ), которые рассчитывались по следующим формулам:

$$\alpha_l = \frac{1}{l_{298}} \left(\frac{\partial l}{\partial T}\right)_P,\tag{12}$$

$$\gamma = \frac{\sum_{\mathbf{q},s} \gamma_{\mathbf{q},s} C_V(\mathbf{q},s)}{\sum_{\mathbf{q},s} C_V(\mathbf{q},s)},\tag{13}$$

где l_{298} — линейный размер (параметр *a* или *c*) при $T = 298 \text{ K}; C_V(\mathbf{q}, s)$ — вклад в теплоемкость C_V нормальной моды \mathbf{q}, s , а $\gamma_{\mathbf{q},s}$ — параметр Грюнайзена для фононной моды моды \mathbf{q}, s , равный

$$\gamma_{\mathbf{q},s} = -\frac{\partial(\ln\omega(\mathbf{q},s))}{\partial(\ln V)}.$$
(14)

Из рис. 9*a* видно, что теоретические значения параметра α_c согласуются с экспериментальными значениями [44] в интервале температур от 300 K до 900 K, но превышают их при T > 900 K. Отметим,

что в [45] коэффициент α_c в отличие от результатов, полученных в работе [44], практически не зависит от температуры. Коэффициент теплового расширения вдоль оси *a* существенно меньше, чем α_c , при этом его функциональная зависимость от температуры согласуется с экспериментом: как и в работах [44, 45] он практически не зависит от температуры и слегка понижается при T > 900 K, как и в эксперименте [44]. В то же время, теоретические значения α_a примерно на $2 \cdot 10^{-6} \text{ K}^{-1}$ меньше экспериментальных [44,45]. Оценка анизотропии теплового расширения α_c/α_a достигает 3.55–4.36 в интервале температур 200-1000 К, что превышает экспериментальное значение 2.7 [44,45]. Такое расхождение обусловлено преимущественно недооценкой коэффициента α_a . Коэффициент линейного теплового расширения для поликристаллического образца при этих же температурах равен $(6.61–9.76)\cdot 10^{-6}~{\rm K}^{-1},$ тогда как экспериментальное значение, приведенное в работе [46], составляет $7.1 \cdot 10^{-6} \text{ K}^{-1}$.

Полный параметр Грюнайзена (рис. 9*6*), который в среднем характеризует зависимость фононных частот от объема, может быть также рассчитан по формуле

$$\gamma = \frac{\alpha_V B}{C_V \rho},\tag{15}$$

где α_V , *B*, C_V и ρ — соответственно коэффициент объемного теплового расширения, объемный модуль упругости, теплоемкость при постоянном объеме и плотность силицида, которые зависят от температуры. Отметим, что в случае гексагональной структуры $\alpha_V \approx 2\alpha_a + \alpha_c$. Поскольку все четыре множителя в формуле (15) зависят от температуры $(1/f \ \partial f/\partial T \approx 10^{-4} - 10^{-3})$, где $f = \alpha_V$, B, C_V или ρ), то γ также меняется с температурой даже в высокотемпературной области. Теоретические значения параметра Грюнайзена равны 1.40 - 1.46 в интервале температур от 300 K до 1300 K, что согласуется с экспериментальным значением 1.44 [46]. В целом тепловые свойства идеального силицида титана Ti₅Si₃ воспроизводятся удовлетворительно в настоящих расчетах, что позволит в дальнейшем использовать данную методику для оценки этих характеристик в случае легированного силицида.

4. ЗАКЛЮЧЕНИЕ

Методом проекционных присоединенных волн рассчитана атомная и электронная структуры, механические и термодинамические свойства силицида титана Ti₅Si₃. Анализ особенностей химических связей между атомами показал, что взаимодействие Ti-Si носит металло-ковалентный характер с существенным ионным вкладом. При этом атомы кремния выступают в роли анионов и получают заряд порядка 1.12 эл. Только связи Ti-Ti , ориентированные вдоль оси [0001], демонстрирует ярко выраженный металлический характер. Рассчитана поверхность Ферми силицида титана и оценены скорости электронов на ее листах. Показано, что скорости электронов на поверхности Ферми зависят от направления, а ее сложная структура указывает на анизотропию электронных транспортных свойств. Рассчитаны упругие константы и поликристаллические модули упругости. Проведен расчет упругих характеристик Ti₅Si₃ в зависимости от направления в кристалле. Показано, что наибольшие значения модуля Юнга и линейной сжимаемости соответствуют деформации вдоль оси (0001), тогда как наименьшее значение модуля сдвига получено для деформации в базальной плоскости. Коэффициент Пуассона при деформации в базальной плоскости может принимать значение в диапазоне от 0.13 до 0.39, что указывает на его анизотропию, тогда как анизотропия упругих свойств Ti₅Si₃ выражена в меньшей степени. Низкие значения коэффициента Пуассона и отношения B/G < 1.75 указывают на хрупкое поведение материала при разрушении. Расчет фононного спектра подтвердил динамическую стабильность Ti₅Si₃ и позволил рассчитать термодинамические характеристики, такие как теплоемкость, энтропия, энтальпия и свободная энергия и другие. Показано,

что свободная энергия существенно изменяется с температурой, что указывает на необходимость учета вибрационного вклада в энергию Гиббса при изучении стабильности силицидов титана. Теоретические коэффициенты линейного теплового расширения находятся в хорошем согласии с экспериментом, хотя значения α_a в рассмотренном интервале температур недооцениваются. В целом получена значительная анизотропия коэффициента теплового расширения, что согласуется с экспериментом. Параметр Грюнайзена также находится в согласии с экспериментальным значением и имеет несущественную зависимость от температуры.

Финансирование. Работа выполнена при поддержке Российского научного фонда (проект № 22-23-00078). Численные расчеты проводились на суперкомпьютере СКИФ Cyberia в Томском государственном университете.

ЛИТЕРАТУРА

- J. P. Gambino and E. G. Colgan, Mater. Chem. Phys. 52, 99 (1998).
- 2. L. J. Chen, Silicide Technology for Integrated Circuits, IEE, London (2009).
- L. N. Lie, W. A. Tiller, and K. C. Saraswat, J. Appl. Phys. 56, 2127 (1984).
- H. Jeon, C. A. Sukow, J. W. Honeycutt et al., J. Appl. Phys. 71, 4270 (1992).
- F. La Via, F. Mammoliti, G. Corallo et al., Appl. Phys. Lett. 78, 1864 (2001).
- T. Takasugi, Mater. Res. Soc. Symp. Proc. 213, 403 (1991).
- H. J. Grabke and G. H. Meier, Oxid. Met. 44, 147 (1995).
- M. K. Meyer and M. Akinc, J. Amer. Ceram. Soc. 79, 938 (1996).
- Z. Li and W. Gao, in *Intermetallics Research Prog*ress, ed. by Y. N. Berdovsky, Nova Sci. Publ., New York (2008), p. 1.
- А. В. Бакулин, С. Е. Кулькова, ЖЭТФ 154, 1136 (2018).
- А. В. Бакулин, Л. С. Чумакова, С. Е. Кулькова, ЖЭТФ 160, 206 (2021).
- X. Y. Li, S. Taniguchi, Y. Matsunaga et al., Intermetallics 11, 143 (2003).

- 13. H. R. Jiang, Z. L. Wang, W. S. Ma et al., Trans. Nonferrous Met. Soc. China 18, 512 (2008).
- 14. J. Huang, F. Zhao, X. Cui et al., Appl. Surf. Sci. 582, 152444 (2022).
- 15. Z. Tang, A. J. Thom, and M. Akinc, Intermetallics 14, 537 (2006).
- 16. L. Zhang and J. Wu, Acta Mater. 46, 3535 (1998).
- 17. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- 18. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- 19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- 20. T. A. Manz and N. G. Limas, RSC Adv. 6, 47771 (2016).
- 21. R. Dronskowski and P. E. Blöchl, J. Phys. Chem. 97, 8617 (1993).
- 22. S. Maintz, V. L. Deringer, A. L. Tchougreeff et al., J. Comput. Chem. 37, 1030 (2016).
- 23. P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, OH (1985).
- 24. J. J. Williams, Y. Y. Ye, M. J. Kramer et al., Intermetallics 8, 937 (2000).
- 25. P. F. Zhang, Y. X. Li, and P. K. Bai, IOP Conf. Series: Mater. Sci. Eng. 284, 012013 (2017).
- 26. J. Yamashita and S. Asano, Prog. Theor. Phys. 48, 2119 (1972).
- 27. W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th Edition, CRC Press/Taylor and Francis, Boca Raton, FL (2015), p. 9-97.
- F. J. Nye, *Physical Properties of Crystals*, Clarendon Press, Oxford (1985).

- 29. K. Kishida, M. Fujiwara, H. Adachi et al., Acta Mater. 58, 846 (2010).
- W. Voigt, *Physical Properties of Crystals*, 2nd ed., Teubner, Leipzig (1928), p. 716.
- 31. A. Reuss and Z. Angew, Math. Mech. 9, 49 (1929).
- 32. R. Hill, Proc. Phys. Soc. London, Sect. A 65, 349 (1952).
- 33. D. G. Pettivor, Mater. Sci. Technol. 8, 345 (1992).
- 34. L. Zhang and J. Wu, Scr. Mater. 38, 307 (1998).
- 35. K. Kasraee, M. Yousefpour, and S. A. Tayebifard, J. Alloys Compd. 779, 942 (2019).
- 36. S. F. Pugh, Philos. Mag. 45, 823 (1954).
- 37. T. C. T. Ting, J. Elast. 81, 271 (2005).
- 38. D. G. Archer, J. Chem. Eng. Data 41, 571 (1996).
- 39. S. Agarwal, E. J. Cotts, S. Zarembo et al., J. Alloys Compd. 314, 99 (2001).
- 40. H. Seifert, H. Lukas, and G. Petzow, Z. Metallkd. 87, 2 (1996).
- D. O. Poletaev, A. G. Lipnitskii, A. I. Kartamyshev et al., Comput. Mater. Sci. 95, 456 (2014).
- 42. C. Colinet and J. C. Tedenac, Intermetallics 18, 1444 (2010).
- 43. C. Colinet and J. C. Tedenac, Calphad 37, 94 (2012).
- 44. T. Nakashima and Y. Umakoshi, Philos. Mag. Lett. 66,317 (1992).
- 45. G. Rodrigues, C. A. Nunes, P. A. Suzuki et al., Intermetallics 14, 236 (2006).
- 46. G. Frommeyer and R. Rosenkranz, in *Metallic Materials with High Structural Efficiency*, ed. by O. N. Senkov, D. B. Miracle, S. A. Firstov, Kluwer Academic Publishers, New York (2004), p. 287.