ВЛИЯНИЕ МАЛЫХ ПРЕДВАРИТЕЛЬНЫХ ДЕФОРМАЦИЙ И НАЧАЛЬНОЙ ТЕМПЕРАТУРЫ НА СОПРОТИВЛЕНИЕ ВЫСОКОСКОРОСТНОМУ ДЕФОРМИРОВАНИЮ АРМКО-ЖЕЛЕЗА В УДАРНЫХ ВОЛНАХ И ВОЛНАХ РАЗРЕЖЕНИЯ

 $A.\ C.\ Caвuныx^*,\ \Gamma.\ B.\ Гaркушин,\ C.\ B.\ Paзopeнoв$

Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

Объединенный институт высоких температур Российской академии наук $125412,\ Mосква,\ Poccuя$

Поступила в редакцию 6 декабря 2021 г., после переработки 19 января 2022 г. Принята к публикации 19 января 2022 г.

Проведены измерения эволюции упруго-пластических волн ударного сжатия и разгрузки в Армко-железе в отожженном состоянии и после предварительной деформации сжатием на $0.6\,\%$ и $5.5\,\%$ и его откольной прочности в диапазоне давлений 2–9 ГПа при комнатной и повышенной до $600\,^{\circ}\mathrm{C}$ температуре. Показано, что предварительная деформация $0.6\,\%$ и $5.5\,\%$ приводит к существенному уменьшению динамического предела текучести и незначительному увеличению откольной прочности. Получены зависимости скорости деформирования в пластической ударной волне и откольной прочности от скорости деформирования в волне разрежения для всех исследованных состояний Армко-железа.

DOI: 10.31857/S0044451022060050

EDN: DUKXEI

1. ВВЕДЕНИЕ

Высокоскоростное пластическое деформирование твердых тел при длительностях нагрузки порядка микросекунды или менее осуществляется ударом пластины, взрывом, или воздействием мощного импульсного лазера [1–3]. Для анализа импульсов одномерного сжатия, генерируемых в образце исследуемого материала, проводится регистрация профилей массовой скорости u(t) или скорости свободной поверхности $u_{fs}(t)$ от времени t. Как правило, при ударном нагружении упруго-пластического материала происходит расщепление волны сжатия с выделением упругого предвестника. Максимальное напряжение в упругой волне сжатия — упругом предвестнике пропорционально величине предела текучести материала при соответствующей скорости деформации. Формирование упругого пред-

В ударно-волновых экспериментах с железом, имеющим ОЦК-структуру, с ростом начальной температуры образцов регистрируется падение динамического предела текучести [8–11] в отличие от металлов со структурой ГЦК [12–15] и ГПУ [16,17], у которых обнаружено его аномальное возрастание. Аномальное поведение при росте начальной температуры металлов со структурой ГЦК и ГПУ также проявляется в увеличении времени возрастания скорости свободной поверхности в пластической ударной волне, т. е. времени релаксации напряжений или характерной вязкости материала. Кроме того, на вели-

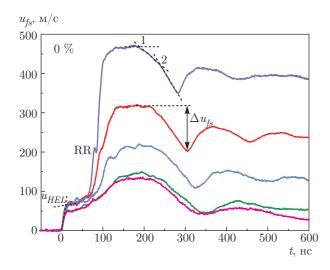
вестника наблюдается также в волне разгрузки из ударно-сжатого состояния материала после некоторой предшествующей деформации в пластической волне сжатия. В работе [4] предложен способ оценки предела текучести ударно-сжатого материала по измеренному единичному профилю скорости свободной поверхности. В работах [5–7] способ оценки предела текучести ударно-сжатого материала апробирован на алюминии, меди и титане при комнатной и повышенной температурах.

^{*} E-mail: savas@ficp.ac.ru

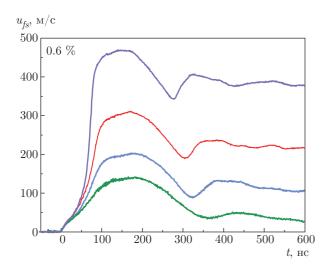
чину динамического предела текучести влияет увеличение плотности дислокаций, связанное, например, с пластической деформацией материала. Так, в работе [18] предварительная пластическая деформация титана ВТ1-0 0.6 % радикально изменила кинетику деформирования и понизила величину динамического предела текучести. В работе [19] показано, что предел текучести алюминия в зависимости от увеличения плотности дислокаций увеличивается на полтора порядка. Эксперименты с медью М1 и аустенитной нержавеющей сталью [20] показали рост динамического предела текучести и откольной прочности с увеличением плотности дислокаций при ударно-волновом нагружении.

Откольная прочность железа и стали при повышенных начальных температурах до 1000 К измерялась в работах [21, 22], где было показано, что с ростом температуры откольная прочность убывает.

С целью изучения влияния предварительной деформации и связанное с ней увеличение плотности дислокаций проведены измерения откольной прочности, напряжений пластического течения в процессе ударного сжатия и при разгрузке из ударносжатого состояния Армко-железа при комнатной и повышенной температурах, а также в отожженном состоянии и в состоянии после предварительной деформации сжатия. Данная информация будет полезной для построения детальных физических моделей и определяющих соотношений о поведении материалов при сжатии и разгрузке из ударно-сжатого состояния [23, 24].


2. МАТЕРИАЛ И ПОСТАНОВКА ЭКСПЕРИМЕНТОВ

Эксперименты проведены с образцами Армко-железа толщиной 2 ± 0.01 мм, имеющими форму прямоугольных плоскопараллельных размером 13×22 мм². Для снятия деформационного упрочнения заготовки образцы диаметром 100 мм предварительно отжигались в вакууме при температуре 700°C в течение двух часов. После отжига материал остывал вместе с печью. Кроме того, отжиг проводился для того, чтобы материал имел одну и ту же структуру в экспериментах при комнатной и повышенной до 600°C температурах. После отжига из одной заготовки с помощью электроэрозионного метода вырезались образцы, две другие до изготовления образцов предварительно подвергались деформационной осадке на 0.6 % и 5.5 %. Образцы шлифовались и


полировались для обеспечения необходимой отражательной способности в экспериментах с лазерным интерферометром. Плотность образцов, измеренная методом гидростатического взвешивания, составила $\rho_0 = 7.880 \text{ г/см}^3$. Измеренная продольная скорость звука c_l для образцов после отжига составила 5883 ± 10 м/с, после деформационной осадки 0.6%и 5.5% соответственно 5772 ± 10 м/с и 5675 ± 10 м/с. Эти измерения косвенно указывают на увеличение концентрации деформационных дефектов в объеме деформированного материала. Для обработки экспериментальных данных при комнатной температуре использовалась ударная адиабата Армко-железа в виде $U_S = 4.63 + 1.33 u_p$. Эксперименты при повышенной до 600°C температуре проводились только с недеформированными образцами. При их обработке использовалась ударная адиабата в виде $U_S = 4.314 + 1.33 u_p$. Значения объемной скорости звука c_b при температуре $600\,^{\circ}\mathrm{C}$ (первый член ударной адиабаты), плотности $\rho_0 = 7.68 \text{ г/см}^3$ и продольной скорости звука $c_l = 5441 \text{ м/c}$ получены с использованием данных [25].

Эксперименты по ударно-волновому нагружению образцов проводились с использованием пневматической пушки калибром 50 мм. Скорость ударников измерялась электроконтактными датчиками и составила 155 ± 10 м/с, 244 ± 10 м/с, 335 ± 10 м/с и 490 ± 10 м/с. Для предотвращения прогиба в процессе разгона ударники, изготовленные из меди толщиной 0.47 мм и диаметром 48 мм, наклеивались на диск из полиметилметакрилата толщиной 5 мм, располагаемый на торце метаемого алюминиевого цилиндрического снаряда. Предварительный нагрев образцов примерно до 600°C осуществлялся с помощью резистивных нагревателей, размещенных у тыльной стороны образца. Контроль температуры осуществлялся с помощью двух хромельалюмелевых термопар, установленных на торцевых поверхностях образца. Скорость нагрева составляла около 1 °C/с, разница показаний термопар не превышала 2-3 °C. Максимальное давление ударного сжатия в железе при комнатной температуре и скорости ударника $490 \pm 10 \text{ м/c}$ не превышало $9.2 \Gamma\Pi a$, что ниже α – ε -фазового превращения, наблюдающегося примерно при 13 ГПа [10, 26, 27]. При начальной температуре образца 600 °C и скорости ударника 335 ± 10 м/с максимальное давление сжатия составило 5.9 ГПа, что ниже α – ε -фазового превращения, проходящего при температуре 630°C при давлении 8 ГПа [9].

Информацию о сопротивлении образцов Армко-железа высокоскоростному деформированию и

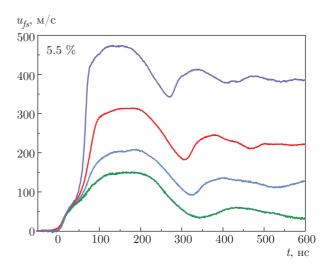


Рис. 1. Профили скорости свободной поверхности образцов Армко-железа толщиной 2 мм после отжига при нагружении медным ударником толщиной 0.47 мм со скоростями (снизу вверх) 155 ± 10 м/с, 244 ± 10 м/с, 335 ± 10 м/с и 490 ± 10 м/с

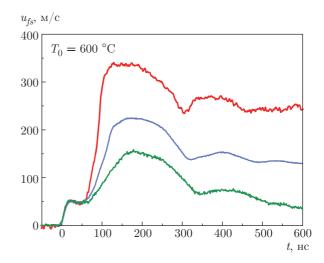


Рис. 2. Профили скорости свободной поверхности образцов Армко-железа толщиной 2 мм после деформационной осадки $0.6\,\%$ при нагружении медным ударником толщиной 0.47 мм со скоростями (снизу вверх) 155 ± 10 м/с, 244 ± 10 м/с, 335 ± 10 м/с и 490 ± 10 м/с

разрушению получали из регистрации и анализа эволюции (формоизменения) волны сжатия при ее распространении по образцу. Во всех экспериментах регистрировалась скорость свободной поверхности образца как функция времени $u_{fs}(t)$ в процессе выхода на поверхность волн сжатия. Измерения проводились с использованием лазерного доплеровского интерферометрического измерителя ско-

Рис. 3. Профили скорости свободной поверхности образцов Армко-железа толщиной 2 мм после деформационной осадки $5.5\,\%$ при нагружении медным ударником толщиной 0.47 мм со скоростями (снизу вверх) 155 ± 10 м/с, 244 ± 10 м/с, 335 ± 10 м/с и 490 ± 10 м/с

Рис. 4. Профили скорости свободной поверхности образцов Армко-железа толщиной 2 мм при температуре $600\,^{\circ}\mathrm{C}$ при нагружении медным ударником толщиной 0.47 мм со скоростями (снизу вверх) 155 ± 10 м/с, 244 ± 10 м/с и 335 ± 10 м/с

рости VISAR [28] с временным разрешением примерно $1-1.5~\rm hc.$

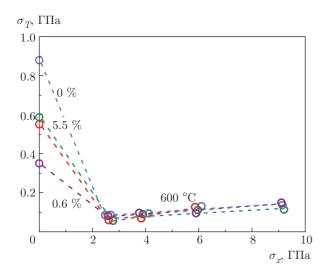
3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

На рис. 1—4 представлены профили скорости свободной поверхности образцов Армко-железа после отжига, предварительной деформационной осадки $0.6\,\%$ и $5.5\,\%$ и при температуре $600\,^{\circ}$ С. На всех профилях фиксируется выход на поверхность упругого предвестника с амплитудой u_{HEL} и затем пластической волны сжатия. После достижения максимальных значений скорости свободной поверхности регистрируется выход на поверхность волны разрежения и процессы, связанные с откольным разрушением образца. Поскольку соотношение толщины ударника и образца в этих экспериментах составляло около 1/4, затухание ударной волны на этих толщинах образцов не происходит, волна имеет трапециевидную форму с плато при максимальной скорости, а регистрируемое время между выходом на поверхность пластической волны и выходом волны разгрузки от тыльной стороны ударника составляет примерно 100 нс. На рис. 1 видно, что в пластической волне сжатия фиксируется небольшой скачок скорости в виде ступеньки RR, которая является следствием отражения упругого предвестника от свободной поверхности и взаимодействия образовавшейся отраженной упругой волны разгрузки с пластической ударной волной. Такое формирование переотраженной упругой волны наблюдается не у всех материалов и связано с релаксационными свойствами материала в состоянии перед пластической ударной волной, более детальный анализ этого явления можно найти в работе [29]. В экспериментах с деформированными образцами и при начальной температуре образцов 600°C выход на свободную поверхность переотраженной упругой волны не регистрируется.

Сравнение волновых профилей показывает, что с увеличением предварительной деформационной осадки и повышением начальной температуры форма и амплитуда упругого предвестника (см. рис. 1-4) значительно изменяются. В экспериментах при комнатной температуре с образцами после отжига регистрируется отчетливо выраженная упругая волна сжатия с волновым фронтом 8–10 нс. Амплитуда упругого предвестника составляет $u_{HEL} = 67 \text{ м/c}$ за исключением экспериментов со скоростью удара 155 ± 10 м/с, когда ее величина была несколько ниже — $u_{HEL} = 49$ м/с. В экспериментах с другими исходными состояниями Армко-железа зависимости амплитуды упругого предвестника от давления ударного сжатия не выявлено. В опытах с образцами после деформационной осадки на 0.6% наблюдается уменьшение амплитуды упругого предвестника до $u_{HEL}=29~{\rm m/c}$ и значительное увеличение времени нарастания параметров в упругой волне. Деформационная осадка 5.5% приводит к росту амплитуды упругого пред-

Таблица. Динамический предел упругости и динамический предел текучести Армко-железа в различных состояниях

Состояние материала	$σ_{HEL}$, ΓΠα	σ_T , $\Gamma\Pi a$
Отжиг	1.54	0.88
Отжиг, 600°C	0.99	0.55
Осадка 0.6 %	0.65	0.35
Осадка 5.5 %	1.17	0.59


вестника в сравнении с образцами, подвергнутыми деформационной осадке $0.6\,\%$, до $u_{HEL}=52$ м/с. Нагрев образцов до $600\,^{\circ}\mathrm{C}$ уменьшает амплитуду упругого предвестника до 48 м/с.

По измеренной амплитуде упругого предвестника определяется динамический предел упругости материала HEL (Hugoniot elastic limit): $\sigma_{HEL}=0.5u_{HEL}\rho_0c_l$, который связан при этих условиях нагружения с динамическим пределом текучести соотношением

$$\sigma_T = \frac{3}{2} \, \sigma_{HEL} \left(1 - \frac{c_b^2}{c_l^2} \right). \tag{1}$$

Рассчитанные таким образом параметры упругопластического перехода в Армко-железе представлены в таблице. В таблице представлены средние значения по трем или четырем экспериментам, проведенным при различных давлениях. Наибольшие значения динамического предела текучести у отожженного Армко-железа можно объяснить наименьшим значением плотности дислокаций. Предварительная деформация до 0.6 % увеличивает плотность подвижных дислокаций и приводит к значительному уменьшению регистрируемого динамического предела текучести. Увеличение предварительной деформации образцов до 5.5% приводит к еще большей плотности дислокаций, когда подвижные дислокации начинают блокировать друг друга, что проявляется в увеличении регистрируемого предела текучести по сравнению с образцами после предварительной деформации 0.6%.

На профилях скорости свободной поверхности, представленных на рис. 1–4, не наблюдается четкого выделения упругого предвестника конечной амплитуды при разгрузке. Вместо этого регистрируется квазиупругая волна разгрузки, в которой скорость распространения возмущения плавно уменьшается от продольной скорости звука c_l до скорости звука c_b , соответствующей объемной сжимаемости ма-

Рис. 5. Результаты расчета предела текучести Армко-железа в упругом предвестнике и в ударно-сжатом состоянии в волне разгрузки после отжига после предварительной деформации $0.6\,\%$ и $5.5\,\%$ и при повышенной температуре

териала. В работах [4,5] предложен и реализован упрощенный способ оценки напряжения пластического течения при разгрузке. Данный способ оценки основан на приближении простой волны и включает аппроксимацию квазиупругой части волны прямой линией 1—2, как показано на рис. 1, предположение о постоянстве коэффициента Пуассона и линейное соотношение между скоростью звука в лагранжевых координатах и массовой скоростью. Разность в величинах сдвиговых напряжений, соответствующих значениям массовой скорости на фронте квазиупругой волны разгрузки u_{p1} (точка 1 на рис. 1) и в ее конце u_{p2} (точка 2) в приближении простой волны описывается соотношением [30]

$$\tau(u_{p1}) - \tau(u_{p2}) =$$

$$= \frac{3}{4} \rho_0 \int_{u_{p2}}^{u_{p1}} \left[a^2(u_p) - a_b^2(u_p) \right] \frac{du_p}{a(u_p)}, \quad (2)$$

где a — скорость распространения возмущений в квазиупругой волне в координатах Лагранжа (т. е. отнесена к начальной плотности материала ρ_0), a_b — объемная скорость звука.

Соотношение (2) фактически определяет предел текучести ударно-сжатого материала, так как при разгрузке из ударно-сжатого состояния сдвиговое напряжение переходит через нуль и выходит на напряжение пластического течения с обратным знаком. На рис. 5 значение пределов текучести в упругом предвестнике, рассчитанные с помощью соотно-

шения (1), сопоставлены со значениями напряжения пластического течения в волне разгрузки, полученными из анализа ее квазиупругой части. На рисунке видно, что наблюдается резкое уменьшение предела текучести непосредственно за ударной волной для всех исследованных состояний, включая эксперименты при температуре 600°C. Причиной такого падения предела текучести Армко-железа за ударной волной является пластическая деформация при сжатии в ударной волне. Полученные значения напряжения пластического течения за ударной волной практически не зависят от исходного состояния материала и находятся в диапазоне 50-80 МПа при 2.5 ГПа. Подобное падение предела текучести было зарегистрировано для титанового сплава ВТ1-0 в работе [7]. В данной работе получено десятикратное уменьшение предела текучести ударно-сжатого отожженного и предварительно деформированного до 5.5 % Армко-железа. В экспериментах с предварительной деформацией 0.6 % и начальной температурой 600°C наблюдалось уменьшение предела текучести в ударно-сжатом состоянии соответственно в 4 и 8 раза. С ростом давления имеет место возрастание предела текучести ударно-сжатого Армко-железа во всех исследованных состояниях. Возрастание предела текучести как отожженных, так и предварительно деформированных образцов и образцов Армко-железа при температуре 600°C приблизительно одинаково и объясняется как непосредственно действием давления, так и деформационным упрочнением.

По измеренным профилям скорости свободной поверхности, представленных на рис. 1-4, определялись максимальные скорости сжатия в пластических ударных волнах. На рис. 6 показаны результаты оценки скорости сжатия в зависимости от максимального напряжения сжатия σ_x на «плато» за пластической ударной волной для Армко-железа в отожженном и предварительно деформируемом до $0.6\,\%$ и $5.5\,\%$ состояниях и при повышенной до 600°C температуре. Скорость сжатия определялась как $\dot{\varepsilon}_x = \dot{u}_{fs}/2U_S$, где \dot{u}_{fs} — максимальное ускорение поверхности в пластической ударной волне, U_S — скорость распространения пластической ударной волны. Предполагалось, что пластическая ударная волна стационарна или близка к стационарности. Как видно на рисунке, с ростом давления ударного сжатия в пластической волне для всех исследованных состояний Армко-железа скорость сжатия изменяется подобным образом и может быть описана степенной зависимостью от давления $\dot{\varepsilon}_x = A(\sigma_{peak}/\sigma_0)^{\beta}$ ($\sigma_0 = 1$ ГПа). Для Армко-же-

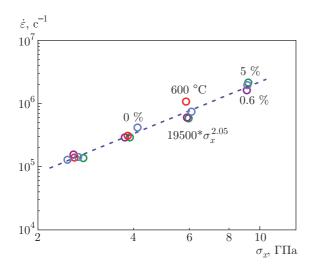


Рис. 6. Зависимость скорости сжатия Армко-железа в пластической ударной волне от конечного напряжения сжатия за волной. Представлены данные для отожженного, предварительно деформированного до $0.6\,\%$ и $5.5\,\%$ и при начальной температуре $600\,^{\circ}\mathrm{C}$. Аппроксимационная прямая построена для Армко-железа после отжига

леза после отжига в диапазоне давлений 2–9 ГПа коэффициент $\beta=2.05,$ а A=19500. Для предварительно деформированных состояний и при повышенных температурах коэффициенты β и A изменяются незначительно.

После отражения импульса сжатия от свободной поверхности внутри образца генерируются растягивающие напряжения, в результате чего инициируется его разрушение — откол. Декремент скорости поверхности Δu_{fs} (рис. 1) при ее убывании от максимума до значения перед фронтом откольного импульса пропорционален величине разрушающего напряжения — откольной прочности материала. В линейном (акустическом) приближении откольная прочность материала рассчитывается как

$$\sigma_{sp} = \frac{1}{2}\rho_0 c_b (\Delta u_{fs} + \delta), \tag{3}$$

где δ — поправка на искажение профиля скорости вследствие различия скоростей упругого фронта откольного импульса и скорости пластической части падающей волны разгрузки перед ним [31].

На рис. 7 представлены зависимости откольной прочности Армко-железа от скорости деформирования в различных начальных состояниях. Расчет откольной прочности осуществлялся с помощью соотношения (3). Скорость деформирования в волне разрежения рассчитывалась как $\dot{V}/V_0 = \dot{u}_{fsr}/2c_b$ [3], где \dot{u}_{fsr} — измеренная скорость уменьшения скорости свободной поверхности испытуемого образца

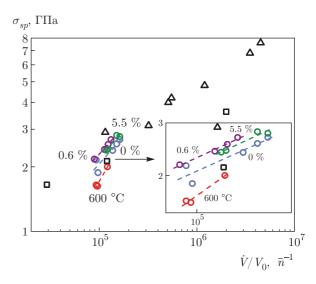


Рис. 7. Зависимость откольной прочности Армко-железа после отжига, после деформационной осадки $0.6\,\%$ и $5.5\,\%$ и при начальной температуре $600\,^{\circ}\mathrm{C}$ от скорости деформирования в волне разрежения падающего импульса сжатия. На рисунке представлены данные [32] для монокристаллического железа (треугольники) и Армко-железа в состоянии поставки (квадраты)

в разгрузочной части импульса ударного сжатия. На рис. 7 видно, что полученные данные согласуются с ранними измерениями откольной прочности монокристаллов железа и Армко-железа в состоянии поставки при давлениях не превышающих давление фазового превращения α – ε [32]. Представленные значения откольной прочности монокристаллов железа лежат выше, чем измеренные для поликристаллов в данной работе, что объясняется практически бездефектной структурой монокристалла. В работе [32] варьирование скорости деформирования проводилось изменением толщины образца и ударника, но при одном давлении. В данной работе толщина образцов и ударников не менялась, изменялось только максимальное давление. С ростом максимального давления увеличивалась скорость деформирования в волне разгрузки. Судя по наклонам зависимостей откольной прочности от скорости деформирования отожженного и деформированного Армко-железа в сравнении с Армко-железом в состоянии поставки [32] и монокристаллическим железом [32], в скорость роста откольной прочности от скорости деформирования вносит существенный вклад увеличение давления. Подобные измерения откольной прочности от давления проводились для титанового сплава [33] и стали [34], где были выявлены более крутые зависимости откольной прочности от скорости деформирования от давления в

сравнении с зависимостью откольной прочности от скорости деформирования при одном давлении.

На вставке рис. 7 видно, что наименьшие значения откольной прочности реализуются у образцов Армко-железа после отжига. Максимальные значения откольной прочности среди исследованных состояний регистрируются у образцов после предварительной деформации 0.6 %. Рост значений откольной прочности в сравнении с отожженным материалом при тех же скоростях деформирования составил примерно 10 %. Значения откольной прочности после предварительного деформирования 5.5 % расположены между отожженным материалом и после предварительной деформации 0.6 %. Поскольку механизмом откольного разрушения пластического материала является зарождение и рост микротрещин или пор [35], то возможно, что при повышенной плотности дислокаций, наведенных в результате предварительной деформации, они начинают блокировать друг друга, тем самым образование пор в плоскости откола инициируется при более высоких растягивающих напряжениях.

4. ЗАКЛЮЧЕНИЕ

Проведены измерения эволюции упруго-пластических волн ударного сжатия и разгрузки Армко-железа в отожженном и предварительно деформированном до 0.6% и 5.5% состояниях в диапазоне давлений 2-9 ГПа. Показано, что предварительная пластическая деформация 0.6% значительно понижает величину динамического предела текучести и в то же время незначительно увеличивает откольную прочность Армко-железа. При росте предварительной деформации до 5.5% образцы демонстрируют промежуточные значения динамического предела текучести и откольной прочности между отожженным состоянием и после предварительной деформации 0.6%. Изменение начальной плотности дислокаций практически не повлияло на скорость сжатия в пластической ударной волне и на предел текучести ударно-сжатого материала. При разгрузке от 2.5 ГПа как в отожженном состоянии, так и после предварительной пластической деформации 0.6% и 5.5% наблюдалось резкое падение динамического предела текучести до значений примерно 70 МПа. При дальнейшем росте давления до 9 ГПа регистрировалось незначительное увеличение динамического предела текучести ударно-сжатого Армко-железа, которое можно связать с деформационным упрочне-

нием и действием давления. Увеличение начальной температуры образцов Армко-железа до температуры 600°C ожидаемо привело к уменьшению его динамического предела текучести и откольной прочности. Динамический предел текучести ударносжатого Армко-железа при температуре 600°C с ростом давления меняется так же, как и в отожженном материале при комнатной температуре. Не выявлено влияние амплитуды ударного сжатия на динамический предел упругости и текучести во всех исследованных состояниях Армко-железа, за исключением экспериментов с отожженным материалом при наименьшем давлении. Регистрируется незначительный рост откольной прочности с увеличением давления во всех исследованных начальных состояниях Армко-железа. Наибольшие значения откольной прочности получены у образцов после предварительной деформации $0.6\,\%$.

Финансирование. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-02-00416A), а также в рамках Госзадания, номер госрегистрации ААА-А19-119071190040-5. Эксперименты проведены с использованием оборудования Московского регионального взрывного центра коллективного пользования Российской академии наук.

ЛИТЕРАТУРА

- 1. Я. Б. Зельдович, Ю. П. Райзер, Физика ударных волн и высокотемпературных гидродинамических явлений, Наука, Москва (1966).
- **2**. Г. И. Канель, Е. Б. Зарецкий, С. В. Разоренов и др., УФН **187**, 525 (2017).
- 3. Г. И. Канель, Ударные волны в физике твердого тела, Физматлит, Москва (2018).
- **4**. Г. И. Канель, А. С. Савиных, Доклады РАН. Физика, технические науки **490**, 29 (2020).
- G. I. Kanel, A. S. Savinykh, G. V. Garkushin et al., J. Appl. Phys. 127, 035901 (2020).
- G. I. Kanel, A. S. Savinykh, G. V. Garkushin et al., J. Appl. Phys. 128, 115901 (2020).
- 7. Г. И. Канель, А. С. Савиных, Г. В. Гаркушин и др., ЖЭТФ **159**, 524 (2021).
- 8. B. Gurrutxaga-Lerma, M. A. Shehadeh, D. S. Balint et al., Int. J. Plasticity 96, 135 (2017).

- E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 117, 195901 (2015).
- 10. E. B. Zaretsky, J. Appl. Phys. 106, 023510 (2009).
- 11. P. L. Hereil, J. Phys. Colloques 49, C3-77 (1988).
- E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 114, 083511 (2013).
- E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 110, 073502 (2011).
- H. Shu, S. Fu, X. Huang et al., J. Appl. Phys. 116, 033506 (2014).
- B. Zuanetti, S. D. McGrane, C. A. Bolme et al., J. Appl. Phys. 123, 195104 (2018).
- G. I. Kanel, G. V. Garkushin, A. S. Savinykh et al., J. Appl. Phys. 116, 143504 (2014).
- G. I. Kanel, S. V. Razorenov, and G. V. Garkushin, J. Appl. Phys. 119, 185903 (2016).
- Г. И. Канель, Г. В. Гаркушин, А. С. Савиных и др., ЖЭТФ 154, 392 (2018).
- 19. М. А. Мейерс, Л. Е. Мурр, Ударные волны и явления высокоскоростной деформации металлов, Металлургия, Москва (1984).
- **20**. С. В. Разоренов, Г. В. Гаркушин, Е. Г. Астафурова и др., Физическая мезомеханика **20**, 43 (2017).
- **21**. T. de Resseguier, E. Lescoute, and D. Loison, Phys. Rev. B **86**, 214102 (2012).
- **22**. Zhuowei Gu, Xiaogang Jin, and Guoqing Gao, J. Mater. Sci. **35**, 2347 (2000).

- A. E. Mayer, K. V. Khishchenko, P. R. Levashov et al., J. Appl. Phys. 113, 193508 (2013).
- Songlin Yao, Xiaoyang Pei, Zhanli Liu et al., Mech. Mater. 140, 103211 (2020).
- **25**. M. W. Guinnan and D. J. Steinberg, J. Phys. Chem. Sol. **35**, 1501 (1974).
- D. Bancroft, E. L. Peterson, and S. Minshall, J. Appl. Phys. 27, 291 (1956).
- L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 45, 4872 (1974).
- L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
- **29**. Г. И. Канель, А. С. Савиных, Г. В. Гаркушин и др., Доклады РАН. Физика, технические науки **496**, 5 (2021).
- J. L. Brown, C. S. Alexander, J. R. Asay et al., J. Appl. Phys. 114, 223518 (2013).
- **31**. Г. И. Канель, ПМТФ **42**, 194 (2001).
- 32. S. V. Razorenov, G. I. Kanel, A. S. Savinykh et al., in Shock Compression of Condensed Matter — 2005, ed. by M. D. Furnish, M. Elert, T. P. Russell et al., AIP CP 845, 650 (2006).
- R. L. Whelchel, D. S. Mehoke, K. A. Iyer et al., J. Appl. Phys. 119, 115901 (2016).
- **34**. C. Li, B. Li, J. Y. Huang et al., Mater. Sci. Eng. A **660**, 139 (2016).
- M. A. Meyers and C. T. Aimone, Prog. Mater. Sci. 28, 1 (1983).