СТРУКТУРА, ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА МЕТАСТАБИЛЬНЫХ ФАЗ ${ m Sr}_{0.8}{ m Dy}_{0.2}{ m CoO}_{3-\delta}$

В. А. Дудников^а, С. Н. Верещагин^b, Л. А. Соловьёв^b, С. Ю. Гаврилкин^c,

А. Ю. Цветков^с, М. В. Ситников^а, Ю. С. Орлов^{а,d*}

^а Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

^b Институт химии и химической технологии Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^с Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

> > ^d Сибирский федеральный университет 660041, Красноярск, Россия

> > Поступила в редакцию 19 ноября 2021 г., после переработки 6 декабря 2021 г. Принята к публикации 6 декабря 2021 г.

Методом твердофазного синтеза получены поликристаллические сложные оксиды кобальта ${\rm Sr}_{0.8}{\rm Dy}_{0.2}{\rm CoO}_{3-\delta}$ с различным содержанием кислорода ($\delta=0.26,\ 0.44,\ 0.46$). Увеличение дефицита по кислороду приводит к возникновению в структуре перовскита фазы браунмиллерита, что значительным образом влияет на их свойства. При $\delta=0.46$ содержание фазы браунмиллерита достигает 38%. Проведен сравнительный анализ магнитных и транспортных свойств синтезированных образцов. Асимптотическая температура Кюри меняет знак с положительного значения для $\delta=0.26$ на отрицательную для $\delta=0.46.$ Магнитосопротивление для образца с $\delta=0.46$ отрицательно и при T=10 K составляет более 40%. Температурные зависимости удельного электросопротивления соответствуют полупроводниковому типу, и в области низких температур абсолютные значения для образцов различаются почти в 10 раз.

DOI: 10.31857/S004445102203004X

1. ВВЕДЕНИЕ

Начиная с работ [1,2], сложные оксиды кобальта с общей формулой $Ln_{1-x}M_xCoO_{3-\delta}$ (Ln — лантаноиды, М — щелочноземельные металлы) являются объектом активных исследований в течение последних десятилетий. Являясь системами с сильными электронными корреляциями, они представляют значительный интерес с точки зрения фундаментальной науки. Изменение концентрации щелочноземельного элемента и кислородных вакансий приводит к различным зарядовым, спиновым состояниям и различному локальному окружению ионов кобальта. Отличие этих соединений от других сложных оксидов переходных металлов заключается в близости энергии двух конкурирующих взаимодействий: энергии кристаллического поля и энергии связи Хунда, что приводит к флуктуациям мультиплетности (данный термин был впервые использован в работе [3]) и необычным магнитным свойствам [4–6].

С другой стороны, потенциальное использование в качестве катодных материалов в твердооксидных топливных ячейках (SOFC) [7–9] мембран со смешанной ионно-электронной проводимостью для улавливания CO_2 при производстве энергии из ископаемого топлива [10,11], катализаторов с высоким содержанием кислородных вакансий в реакции выделения кислорода [12,13], термоэлектрических преобразователей [14] является стимулом для поиска новых и улучшения свойств известных материалов на основе сложных оксидов кобальта.

^{*} E-mail: jso.krasn@mail.ru

Соотношение ионных радиусов катионов в однофазных соединениях $Ln_{1-x}Sr_xCoO_{3-\delta}$ влияет на распределение и
онов Sr^{2+} и Ln^{3+} в кристаллической решетке. При этом в зависимости от редкоземельного элемента меняются свойства, структура и возможность регулирования и упорядочения кислородных вакансий [15, 16]. В работах [17, 18] показано, что для элементов Ln = La-Nd при всех температурах стабильна структура с полностью разупорядоченным распределением катионов $\mathrm{Sr}^{2+}/\mathrm{Ln}^{3+}$ по кристаллографическим А-позициям. Если радиус редкоземельного элемента меньше, чем у Nd³⁺, при низких температурах стабильной является структура с упорядоченным расположением катионов Sr^{2+} , Ln³⁺ и анионных вакансий. В этом случае разупорядоченные перовскиты существуют при высокой температуре и могут быть получены в виде метастабильных фаз закаливанием высокотемпературных состояний [19,20]. Для метастабильных образцов характерна высокая мобильность кислорода [21, 22], что влияет на их магнитные, транспортные и термодинамические свойства [23,24] и каталитическую активность [19,25]. Эти свойства стабильных соединений и их структура достаточно хорошо изучены [26,27], в том числе и упорядоченного по А-позициям $Dy_{1-x}Sr_{x}CoO_{3-\delta}$ [28, 29], в то время как исследование свойств метастабильных соединений обычно сводится к образцам с одним фиксированным индексом кислородной нестехиометрии [30]. Между тем, содержание кислорода в этих соединениях может меняться в достаточно широком диапазоне.

Целью настоящей работы является более обширное и комплексное исследование метастабильных твердых растворов редкоземельных оксидов кобальта. Объектом исследования являются метастабильные твердые растворы $Sr_{0.8}Dy_{0.2}CoO_{3-\delta}$ с различным содержанием кислорода. Основная задача заключается в установлении взаимосвязи между кислородной нестехиометрией, структурой, магнитными и транспортными свойствами.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Разупорядоченные поликристаллические образцы $Sr_{0.8}Dy_{0.2}CoO_{3-\delta}$ были синтезированы по стандартной керамической технологии из стехиометрической смеси высокочистых оксидов Co_3O_4 , Dy_2O_3 и карбоната стронция $SrCO_3$. После тщательного смешивания и измельчения смесь отжигалась при температуре 1100 °C в течение 24 ч на воздухе, после чего перетиралась, прессовалась в таблетки, которые спекались при температуре 1200 °С в течение 8 ч и закалялись до комнатной температуры со скоростью β более 30 °C/с. Полученные таким образом образцы были разделены на три части. Одна часть оставалась без изменения (SDC-q), другая подвергалась прогреву в трубчатой кварцевой печи в потоке гелия марки А (парциальное давление кислорода около 10 Па) при температуре 650 °C в течение 12 ч (восстановленный, SDC-q-He), оставшаяся часть образцов прогрета в кислороде высокой чистоты (содержание O₂ 99.95%) при $P_{O_2} \approx 10^5$ Па и температуре 650 °C в течение 14 ч (окисленный, SDC-q-O) или на воздухе $P_{\rm O_2} \approx 0.2 \cdot 10^5$ Па (окисленный, SDC-q-air); образцы охлаждалась до комнатной температуры в потоке соответствующего газа со скоростью $\beta = 2 \, {}^{\circ}\mathrm{C}/\mathrm{мин}$. Для исследования транспортных свойств из полученных образцов вырезались бруски $5 \times 13 \times 1$ мм³.

Рентгенофазовый и рентгеноструктурный анализы проводились с помощью порошкового дифрактометра PANalyticalX'PertPRO (Нидерланды, CoK_{α}), съемка проводилась в интервале углов $2\theta = 10-140^{\circ}$. Уточнение кристаллической структуры проводилось по полному профилю дифрактограммы с применением метода Ритвельда [31] и минимизации производной разности (DDM) [32].

Термогравиметрия (ТГ) и дифференциальная сканирующая калориметрия (ДСК) и определение нестехиометрии проводились на анализаторе TG-DSCNETZSCHSTA 449C, оснащенном масс-спектрометром AeolosQMS 403C, в потоке смеси 20 % O₂-Ar. Содержание кислорода в образцах рассчитывалось по величине потери массы ($\Delta m, \%$) по методике, представленной в [33]. Измерения проводились в потоке смеси 5 % Н₂-Аг при нагревании до температуры 1173 К со скоростью 10 градусов в минуту. Погрешность определения δ составляет ± 0.01 . Расчет нестехиометрии перовскита в полифазной системе проводился из расчета состава браунмиллерита $(Sr_{0.8}Dy_{0.2})_2Co_2O_5$.

Измерения магнитных свойств и электросопротивления проводились в температурном диапазоне от 2 до 400 K на универсальной установке Physical Properties Measurement System (PPMS-9) Quantum Design (США), оснащенной специальными модулями для данных типов измерений, в центре коллективного пользования Физического института им. П. Н. Лебедева.

Таблица 1. Условия обработки, потеря массы при восстановлении Δm и показатель нестехиометрии δ перовскита $\operatorname{Sr}_{0.8}\operatorname{Dy}_{0.2}\operatorname{CoO}_{3-\delta}$ для образцов SDC, приготовленных различными способами. n (Co^{n+}) — зарядовое состояние ионов Co в перовските $\operatorname{Sr}_{0.8}\operatorname{Dy}_{0.2}\operatorname{CoO}_{3-\delta}$ с учетом фазового состава

r	1	1	1	1			
Образец	Среда обработки	Условия обработки	Давление кислорода, Па	$\Delta m, \%$	δ	$3 - \delta$	$n (\mathrm{Co}^{n+})$
SDC-q	Воздух	Закалка от $T = 1473 \ { m K}$	$0.2 \cdot 10^5$	-11.676	0.43	2.57	2.94
SDC-q-air [22]	Воздух	Закалка, Воздух выдержка при $T=773~{ m K}$		-12.641	0.28	2.72	3.24
SDC-q-He	Гелий	Закалка, выдержка при T = 923 К	10	-11.537	0.45	2.55	2.90
SDC-q-O	Кислород	Закалка, выдержка при T = 923 К	$1.0 \cdot 10^{5}$	-12.720	0.26	2.74	3.26

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Известно, что Sr-содержащие кобальтиты редкоземельных металлов $\operatorname{Sr}_{x}\operatorname{Ln}_{1-x}\operatorname{CoO}_{3-\delta}$ со структурой перовскита при нагреве/охлаждении обратимо теряют/поглощают кислород в соответствии с уравнениями (1), (2) [20, 22, 34]:

$$Sr_{x}Ln_{1-x}CoO_{3-\delta_{1}} \leftrightarrow Sr_{x}Ln_{1-x}CoO_{3-\delta_{2}} + (\delta_{2} - \delta_{1})/2O_{2}, \quad (1)$$
$$O^{\mathbf{x}}_{O} + 2Co^{\bullet}_{Co} \leftrightarrow V^{\bullet\bullet}_{O} + 2Co^{\mathbf{x}}_{Co} + 1/2O_{2}. \quad (2)$$

К аналогичному результату приводит изменение парциального давления кислорода при постоянной температуре. Поэтому стехиометрия кобальтита (т. е. величина δ) сильно зависит от его предыстории — времени пребывания образца в атмосфере с заданным парциальным давлением кислорода при определенной температуре. Ранее нами было показано, что медленное охлаждение Sr_{0.8}Dy_{0.2}CoO_{3-δ} от температуры 1473 К на воздухе формирует образец, равновесный (стационарный) относительно давления $P_{\Omega_2} \approx 0.2 \cdot 10^5$ Па со стехиометрией Sr_{0.8}Dy_{0.2}CoO_{2.72} (SDC-q-air) [22]. В случае дополнительных обработок (в кислороде, инертном газе, закалка) содержание кислорода в полученных образцах будет отличаться от стационарного образца (табл. 1), и, соответственно, их стабильность при нагревании также будет различной. По данным терми-

Рис. 1. ТГ- и ДСК-кривые окисления образцов SDC-q-O (синие кривые) и SDC-q (красные). Смесь $20\,\%{
m O_2-Ar}$, $\beta=10^\circ/{
m MuH}$

ческого анализа SDC-q-air (Sr_{0.8}Dy_{0.2}CoO_{2.72}) стабилен до температур около 650 К при нагревании в потоке смеси с $P_{O_2} = 0.2 \cdot 10^5$ Па; при более высоких температурах наблюдался процесс выделения кислорода, сопровождающийся потерей массы (рис. 1, синяя кривая); аналогично вел себя образец SDC-q-O Sr_{0.8}Dy_{0.2}CoO_{2.73}.

Поведение образцов SDC-q и SDC-q-Не отличалось от поведения образцов, подвергнутых обра-

Рис. 2. Порошковая рентгеновская дифракция образцов SDC-q-He (1) и SDC-q-O (2). Положение пиков фазы $(Sr,Dy)_2Co_2O_5$ отмечены тиками

ботке в окислительных условиях. При нагревании в смеси 20 % O_2 -Ar ($P_{O_2} \approx 0.2 \cdot 10^5$ Па) уже с температуры 425 К наблюдалось заметное поглощение O_2 , которое протекало в две четко выраженные стадии при температурах 425–550 К и 550–650 К (рис. 1, красная кривая). Сложный характер окисления SDC-q и SDC-q-Не указывает на существенную неоднородность стабильности катионов кобальта в структуре, что, в свою очередь, может быть связано с фазовой неоднородностью образцов.

Рентгеноструктурный анализ показал (рис. 2), что образцы SDC-q-air и SDC-q-O представляют собой нестехиометрический кубический перовскит (P) с разупорядоченным распределением кислородных вакансий, в то время как в закаленном SDC-q и обработанном в гелии SDC-q-He наряду с кубическим перовскитом присутствует фаза браунмиллерита (Sr,Dy)₂Co₂O₅ (B) с упорядоченным расположением вакансий в кислородной подрешетке (рис. 3), причем в SDC-q-He ее содержание существенно выше; обнаружены также следовые количества CoO. Количественный фазовый состав образцов и кристаллографические параметры фаз (P) и (B) представлены в табл. 2.

Стабилизация содержания кислорода в образцах SDC-q-He и SDC-q (дополнительный отжиг на воздухе при $T \leq 1123$ K (850 °C)) приводил к исчезновению фазы браунмиллерита и образованию кубического перовскита $Sr_{0.8}Dy_{0.2}CoO_{3-\delta}$, стехиометрия которого зависела от температуры, но структура оставалась неизменной после циклов нагрев–охлаждение. Таким образом, все образцы SDC относительно стабильны на воздухе до температур 400–425 К.

Рис. 3. Схематическое изображение структуры фазы браунмиллерита с упорядоченным расположением кислородных вакансий. Октаэдры и пирамиды соответствуют катионам Co, красные сферы соответствуют положению анионов O^{2-} , зеленые — позициям катионов Sr^{2+} и Dy^{3+}

SDC-q-air и SDC-q-O, подвергавшиеся обработке в окислительной среде, содержат практически чистый кубический перовскит, а SDC-q-He и SDC-q являются полифазными метастабильными смесями перовскита (P) и браунмиллерита (B).

Ранее было показано, что система $SrCoO_{3-\delta}$, не содержащая катионов редкоземельных элементов, при T > 1193 K (920 °C) существует в виде кубического нестехиометрического перовскита. Закалка от T = 1473 K в восстановительной атмосфере сохраняла кубическую структуру со стехиометрией $SrCoO_{2.29}$ [35]. Закалка от T = 1473 K (1200 °C) на воздухе в жидкий азот приводила к формированию метастабильного орторомбического браунмиллерита o- $Sr_2Co_2O_5$ [36], который при нагреве на воздухе выше температур 926 K (653 °C) переходил в стабильную гексагональную перовскитоподобную фазу. В нашем случае добавка катиона Dy^{3+} приводила к стабилизации кубического разу-

Образец	Перовскит Sr _{0.8} Dy _{0.2} CoO _{3-δ}		Б	CoO			
	вес. %	$a, \mathrm{\AA}$	вес. %	$a, b, c, \text{\AA}$			вес. %
SDC-q-He	61	3.8539(1)	38	15.7156(6)	5.5146(6)	5.4017(4)	1.0
SDC-q-O	~ 100	3.8311(1)					
SDC-q-air [22]	100	3.82955(6)					
SDC-q	83	3.8558(1)	15.5	15.716(5)	5.511(3)	5.402(1)	1.5

Таблица 2. Кристаллографические параметры и содержание фаз в образцах SDC

Рис. 4. Температурные зависимости статической магнитной восприимчивости $Sr_{0.8}Dy_{0.2}CoO_{2.58}$ (SDC-q) в режимах ZFC (красная кривая) и FC (синяя) в поле $5 \cdot 10^3$ Э. На вставке показаны изотермы намагниченности при различных температурах

порядоченного перовскита $Sr_{0.8}Dy_{0.2}CoO_{3-\delta}$ при закалке на воздухе и к снижению стабильности фазы о- $(Dy_{0.2}Sr_{0.8})_2Co_2O_5$ (В), который начинал превращаться уже выше температуры 450 K, причем вместо гексагональной модификации при окислении формировался кубический разупорядоченный перовскит $Sr_{0.8}Dy_{0.2}CoO_{3-\delta}$.

На рис. 4 представлены температурные зависимости статической магнитной восприимчивости $Sr_{0.8}Dy_{0.2}CoO_{2.58}$ (SDC-q), закаленного от температуры синтеза. Зависимости $\chi(T)$, полученные в режимах ZFC (охлаждение в нулевом магнитном поле) и FC (охлаждение в магнитном поле) в поле $5 \cdot 10^3$ Э, совпадают во всем исследуемом температурном диапазоне. С ростом температуры магнитная восприимчивость монотонно убывает, аномалии в поведении отсутствуют. Отсутствие петель гистерезиса на изотермах намагниченности (рис. 4, вставка) свидетельствует об отсутствии ферромагнитного упорядочения.

На рис. 5 представлены температурные зависимости магнитной восприимчивости и полевые зависимости для $Sr_{0.8}Dy_{0.2}CoO_{2.56}$ (SDC-q-He) и $Sr_{0.8}Dy_{0.2}CoO_{2.74}$ (SDC-q-O) в поле $5 \cdot 10^3$ Э. Несмотря на слабое различие в показателе кислородной нестехиометрии ($\delta = 0.42$ для SDC-q и $\delta = 0.44$ для SDC-q-He), магнитные свойства восстановленного образца SDC-q-He существенным образом отличаются от свойств образца SDC-q, который не подвергался дополнительной обработке.

На вставках к рис. 4 и рис. 5 показаны зависимости M(H) при различных температурах в полях до $9 \cdot 10^4$ Э. При T = 2 К для всех образцов насыщения не наблюдается.

На рис. 6*а* зависимости $\chi(T)$ представлены в температурном диапазоне от 25 до 200 К и измерены в поле 5 · 10³ Э. Для SDC-q-Не в режиме ZFC характерна ярко выраженная аномалия в виде горба с максимумом при температуре 75 К (рис. 6*a*). Вблизи этой температуры на полевых зависимостях магнитного момента наблюдается петля гистерезиса (рис. 5*a*, вставка). Для удобства показана только часть петли гистерезиса в первой четверти плоскости M-H.

Для образца SDC-q-O ярко выраженный горб отсутствует, однако формируется плечо и наблюдается расхождение в режимах ZFC и FC.

С уменьшением поля максимумы на зависимостях M(T) смещаются в область более высоких температур (рис. 7). Внимательный анализ температурных зависимостей магнитной восприимчивости показал, что для SDC-q-He температура перехода в парамагнитное состояние ($T_C = 195$ K) не совпадает с температурой расхождения T_{div} зависимостей M(T) в режимах FC и ZFC, в то время как для

Рис. 5. Температурные зависимости статической магнитной восприимчивости $Sr_{0.8}Dy_{0.2}CoO_{2.56}$ (SDC-q-He) (*a*) и $Sr_{0.8}Dy_{0.2}CoO_{2.74}$ (SDC-q-O) (*b*) в режимах ZFC (красные кривые) и FC (синие) в поле $5 \cdot 10^3$ Э. На вставках показаны изотермы намагниченности при различных температурах

SDC-q-O совпадает, $T_C = T_{div} = 165$ К. В качестве температуры фазового перехода ферромагнетик– парамагнетик взята температура отклонения температурной зависимости обратной магнитной восприимчивости от прямой линии (рис. 66), соответствующей закону Кюри–Вейсса $\chi = C/(T - T_C)$, где $C = \mu_{eff}^2 N_A/3k_B (N_A - число Авогадро, k_B - по$ $стоянная Больцмана) и <math>T_C$ – соответственно постоянная Кюри и температура Кюри.

Хорошая аппроксимация прямой линией температурных зависимостей обратной магнитной восприимчивости (рис. 6*б*) позволяет определить асимптотические температуры Кюри, постоянные Кюри и оценить эффективные магнитные моменты образцов на формульную единицу. Температуры

Рис. 6. Температурные зависимости статической магнитной восприимчивости образцов $Sr_{0.8}Dy_{0.2}CoO_{3-\delta}$ в режимах ZFC (толстые линии) и FC (тонкие линии) в поле $5 \cdot 10^3$ Э в диапазоне от 25 до 200 К (*a*) и обратной магнитной восприимчивости в диапазоне от 2 до 300 К (*б*). Прямыми черными линиями на рис. *б* показаны аппроксимации по закону Кюри–Вейсса

 $T_C, \ T_{div},$ асимптотические температуры Кюр
и $T_{as},$ константы Кюри и эффективные магнитные моменты для образцов SDC-q-He и SDC-q-O представлены в табл. 3.

Для определения природы магнитного состояния образца SDC-q-He (спиновое стекло или ферромагнетик) дополнительно были проведены измерения динамической восприимчивости при разных частотах ω , аналогично проведенным в работах [37,38]. На рис. 8*a* и 9*a*,*c* показаны температурные зависимости действительной части динамической восприимчивости $\chi'(T)$ на частотах 13, 113 и 1013 Гц, которые

Таблица 3. Температуры $T_{\rm C}$, T_{div} , T_{as} , константы Кюри и эффективные магнитные моменты для образцов SDC-q-He и SDC-q-O

	δ	$C, cm^3 \cdot K/моль$	μ_{eff}, μ_B	$T_{\rm C},{ m K}$	$T_{max}, \mathbf{K} \ (H = 100 \ \Im)$	T_{div}, K	T_{as}, K
SDC-q-He	0.44	4.0	5.66	195	110	125	-45
SDC-q-O	0.26	3.6	5.37	165	_	165	70

Рис. 7. Температурные зависимости намагниченности образцов $Sr_{0.8}Dy_{0.2}CoO_{2.56}$ (SDC-q-He) (*a*) и $Sr_{0.8}Dy_{0.2}CoO_{2.74}$ (SDC-q-O) (*б*) в режимах ZFC (толстые линии) и FC (тонкие линии) в полях сверху вниз: 100, 500 и 1000 Э

при понижении температуры демонстрируют выраженный максимум, за которым следует падение и последующее монотонное возрастание при $T \to 0$, связанное со значительным вкладом в магнетизм от парамагнитных ионов Dy^{3+} (μ_{eff} (Dy^{3+}) = 10.6 μ_B).

ЖЭТФ, том 161, вып. 3, 2022

Рис. 8. Температурные зависимости действительной $\chi'(T)$ (*a*) и мнимой $\chi''(T)$ (*b*) частей динамической магнитной восприимчивости $\mathrm{Sr}_{0.8}\mathrm{Dy}_{0.2}\mathrm{CoO}_{2.56}$ (SDC-q-He) в переменном поле $H_{ac}=2$ Э при различных частотах в отсутствие фиксированного поля, $H_{dc}=0$

Отсутствие зависимости положения максимумов $\chi'(T)$ от частоты (рис. 8, 9) и несовпадение температур максимумов на зависимостях $\chi(T)$ и $\chi'(T)$ свидетельствует в пользу того, что магнитные свой-

Рис. 9. Температурные зависимости действительной $\chi'(T)$ (*a*,*b*) и мнимой $\chi''(T)$ (*б*,*r*) частей динамической магнитной восприимчивости Sr_{0.8}Dy_{0.2}CoO_{2.56} (SDC-q-He) в переменном поле $H_{ac} = 2$ Э при частотах 113 и 1013 Гц и различных значениях фиксированного поля H_{dc}

ства SDC-q-Не обусловлены формированием ферромагнитного состояния и доменной структуры внутри рассматриваемого образца. Стоит отметить, что в отличие от соединения $Eu_{0.5}Sr_{0.5}CoO_3$ [37], сдвиг максимумов на зависимостях $\chi'(T)$ не наблюдается (рис. 9a, b).

Косвенным признаком ферромагнитного упорядочения также является симметричность пиков на температурных зависимостях мнимой части динамической восприимчивости $\chi''(T)$ (рис. 86). Температуры максимумов кривых $\chi''(T)$ (рис. 96,2) для восстановленного SDC-q-He совпадают не с температурами расхождения кривых, полученных в режимах ZFC и FC, а с максимумами на зависимостях M(T) (рис. 7*a*). Измерение динамической магнитной восприимчивости для окисленного SDC-q-O при тех же условиях эксперимента, что и для SDC-q-He ($H_{ac} = 2$ Э, $\omega/2\pi = 13, 113, 1013$ Гц, $H_{dc} = 0, 100, 500, 1000$ Э) не позволило определить характер магнитного упорядочения в области аномального поведения M(T)(рис. 76) из-за малости полученного сигнала и большого уровня шумов.

Полевые зависимости магнитосопротивления образца, отожженного в кислороде $Sr_{0.8}Dy_{0.2}CoO_{2.74}$ (SDC-q-O), представлены на рис. 10. В области гелиевых температур магнитосопротивление демонстрирует полевой гистерезис, который исчезает вблизи температуры 55 K, с повышением температуры магнитосопротивление уменьшается. Аналогичные за-

4 ЖЭТФ, вып. 3

Рис. 10. Полевые зависимости магнитосопротивления окисленного образца $\mathrm{Sr}_{0.8}\mathrm{Dy}_{0.2}\mathrm{CoO}_{2.74}$ (SDC-q-O) при различных температурах

висимости магнитосопротивления наблюдались для соединения La_{0.45}Ba_{0.55}CoO_{2.8} [39]. Магнитосопротивление восстановленного образца SDC-q-He и закаленного SDC-q мало и фиксируется на уровне измерительных шумов, не превышая в максимуме 4 %. Так же как и в [39], особенности в поведении магнитосопротивления в области максимумов на температурных зависимостях намагниченности для восстановленного SDC-q-He и выступов для окисленного SDC-q-O отсутствуют.

Измерения электрического сопротивления проводились в области температур от 50 до 400 К (рис. 11*a*). Для всех образцов наблюдается качественное соответствие температурных зависимостей удельного электросопротивления полупроводниковому типу $(d\rho/dT < 0)$. Значение удельного электросопротивления вблизи T = 50 К для окисленного образца SDC-q-O почти на 10 порядков ниже сопротивления восстановленного SDC-q-He. Анализ зависимостей $\rho(T)$ (рис. 116) показал, что в области низких температур поведение $\rho(T)$ подчиняется закону трехмерной прыжковой проводимости Мотта

$$\rho\left(T\right) = \rho_{\infty} \exp\left(T_0/T\right)^{1/n},$$

 ρ_{∞} — значение ρ при $T \to \infty$, $T_0 = \gamma_p \alpha^3 / N_F$, α — радиус локализации, N_F — плотность состояний на уровне Ферми, γ_p — численный коэффициент, n = 4 — показатель степени, соответствующий трехмерной прыжковой проводимости Мотта, для всех исследуемых образцов [40]. Отличительными особенностями образцов являются температуры

Рис. 11. Температурные зависимости удельного электросопротивления образцов $Sr_{0.8}Dy_{0.2}CoO_{3-\delta}$ (*a*) и обработка зависимостей $\rho(T)$ в координатах, соответствующих трехмерной прыжковой проводимости Мотта (δ)

переходов T_a в состояния, описываемые стандартным термоактивационным законом

$$\rho\left(T\right) = \rho_{\infty} \exp\left(E_a/k_B T\right),$$

 E_a — энергия активации прыжковой проводимости, k_B — постоянная Больцмана. Для образца SDC-q-O смена проводимости наблюдается уже при T_a = = 140 K, в то время как для SDC-q-He прыжковая проводимость сохраняется вплоть до T = 360 K. Данное отличие связано с вкладом в проводимость образцов SDC-q-O ионов кислорода, который обусловлен их высокой мобильностью, характерной для метастабильных разупорядоченных образцов [22].

В заключение обсудим причину, обусловливающую столь разительное отличие магнитных свойств закаленных, восстановленных и окисленных образцов $Sr_{0.8}Dy_{0.2}CoO_{3-\delta}$. Прежде всего, отметим уста-

новленный факт сильной взаимосвязи кристаллической структуры замещенных твердых растворов редкоземельных оксидов кобальта и содержанием в них кислорода. Как видно из рентгеноструктурных данных и магнитных измерений, изменение кислородной нестехиометрии δ критическим образом влияет на содержание в образце различных фаз. В нашем случае изменение δ на 0.7% приводит к существенному изменению содержания фазы браунмиллерита. Этот факт необходимо учитывать при исследовании различных свойств твердых растворов редкоземельных оксидов кобальта и более щепетильно и аккуратно подходить к вопросу определения их кристаллической структуры, формирующейся в образцах в процессе различных оказываемых на них воздействий (закалки, окисления, восстановления и т. д.)

Из сравнения рис. 7a и 76 можно сделать вывод о том, что и в фазе браунмиллерита при $T_C = 113$ K, и в фазе кубического перовскита при $T_C = 170$ K имеет место переход в магнитоупорядоченное (по всей видимости, ферромагнитное) состояние. Поскольку в обоих случаях (рис. 7) мы наблюдаем рост намагниченности, полученной в режиме ZFC, ниже T_C с уменьшением температуры этот переход происходит в подсистеме ионов кобальта, при этом ионы диспрозия обусловливают парамагнитный вклад в намагниченность во всем исследуемом температурном диапазоне. Магнитный переход в фазе браунмиллерита происходит при более низкой температуре и более ярко выражен.

Из сравнения рис. 4 и 7 а можно сделать вывод о том, что в образце SDC-q фаза браунмиллерита содержится в виде отдельных несвязанных между собой кристаллических включений, что обусловливает в целом парамагнитное поведение SDC-q во всем исследуемом температурном диапазоне. В то же время в случае образца SDC-q-He, где содержание браунмиллерита достигает 40%, эта фаза формирует более крупные поликристаллические включения. Наличие таких анизотропных слоистых поликристаллических областей приводит к более заметному отличию ZFC- и FC-измерений намагниченности, чем в случае SDC-q-О и обусловливает смещение максимума ZFC-намагниченности в область низких температур с ростом напряженности магнитного поля. Действительно, связанная с анизотропией коэрцитивная сила увеличивается при понижении температуры, поэтому с ростом напряженности внешнего магнитного поля, стремящегося выстроить магнитные моменты вдоль направления поля, требуется все более низкие температуры для сопротивления внешнему полю. Температура максимума определяется конкуренцией двух вкладов: энергии магнитных моментов в поле и энергии анизотропии. Критическая температура T_C , которую можно определить по максимуму производной dM/dT, не зависит от внешнего поля и определяется микроскопическими взаимодействиями внутри системы.

Для редкоземельных оксидов кобальта, легированных щелочноземельными металлами, очень часто встает вопрос о формировании в них состояния спинового стекла. Характерными признаками наличия спин-стекольного состояния являются расхождение ZFC- и FC-измерений намагниченности ниже характерной температуры T_{div} (необратимость измерений) и смещение максимума динамической магнитной восприимчивости в сторону высоких температур при увеличении частоты внешнего магнитного поля. В нашем случае для фазы браунмиллерита температура максимума χ' не зависит от частоты (рис. 8а) и напряженности внешнего постоянного магнитного поля (рис. 86, в) и практически совпадает с критической температурой T_C. Температура максимума χ'' уменьшается с ростом напряженности внешнего стационарного магнитного поля (рис. 96, в) вслед за уменьшением температуры максимума ZFC-измерений намагниченности. Различие ZFC- и FC-измерений можно объяснить наличием анизотропии и связанной с ней коэрцитивной силы. Таким образом, наблюдаемый при T_C магнитный переход в SDC-q-Не является, по всей видимости, переходом в ферромагнитное состояние в подсистеме ионов кобальта.

4. ВЫВОДЫ

Проведенный сравнительный анализ свойств полученных методом твердофазного синтеза замещенных оксидов кобальта Sr_{0.8}Dy_{0.2}CoO_{3-δ} с различным содержанием кислорода ($\delta = 0.26$, 0.44, 0.46), показал, что увеличение дефицита по кислороду приводит к возникновению в структуре перовскита фазы браунмиллерита. При $\delta=0.46$ фазы браунмиллерита содержание достигает 38%. При $\delta = 0.26$ образец имеет структуру разупорядоченного по А-позициям перовскита и разупорядоченными кислородными вакансиями. Асимптотическая температура Кюри меняет знак с положительного значения для $\delta = 0.26$ на отрицательную для $\delta = 0.46$. Магнитосопротивление для образца с δ = 0.46 отрицательно и при T = 10 K составляет более 40%. Температурные зависимости

ЖЭТФ, том **161**, вып. 3, 2022

удельного электросопротивления соответствуют полупроводниковому типу и в области низких температур абсолютные значения для образцов различаются почти в 10 раз.

Финансирование. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 19-03-00017), часть работ по термическому и РФА-анализу выполнена в рамках государственного задания Института химии и химической технологии Сибирского отделения Российской академии наук 0287-2021-0013.

ЛИТЕРАТУРА

- G. H. Jonker and J. H. Van Santen, Physica 19, 120 (1953).
- 2. J. B. Goodenough, J. Phys. Chem. Sol. 6, 287 (1958).
- С. В. Вонсовский, М. С. Свирский, ЖЭТФ 47, 1354 (1964).
- 4. A. K. Kundu and B. Raveau, arXiv:1005.5426 (2010).
- D. N. H. Nam, K. Jonason, P. Nordblad, N. V. Khiem, and N. X. Phuc, Phys. Rev. B 59, 4189 (1999).
- S. Y. Istomin, O. A. Drozhzhin, G. Svensson, and E. V. Antipov, Sol. St. Sci. 6, 539 (2004).
- C. R. Dyck, Z. B. H. Yu, and V. D. Krstic, Sol. St. Ionics 171, 17 (2004).
- Q. Zhang, Y. Guo, J. Ding, and M. He, J. Sol. St. Electrochem. 24, 1487 (2020).
- J. W. Choi, J. H. Kang, H. J. Kim, and K. S. Yoo, J. Korean Ceramic Society 43, 758 (2006).
- 10. Y. W. Zhang, F. L. Zeng, C. C. Yu, C. Z. Wu, W. Z. Ding, and X. G. Lu, Rare Metals 35, 723 (2016).
- A. V. Kovalevsky, A. V. Kharton, V. N. Tikhonovich, E. N. Naumovich, A. A. Tonoyan, O. P. Reut, and L. S. Boginsky, Mater. Sci. Engin. B 52, 105 (1998).
- Y. Lu, A. Ma, Y. Yu, R. Tan, C. Liu, P. Zhang, D. Liu, and J. Gui, ACS Sustainable Chemistry Engineering 7, 2906 (2018).
- V. V. Kharton, A. A. Yaremchenko, A. V. Kovalevsky, A. P. Viskup, E. N. Naumovich, and P. F. Kerko, J. Membrane Sci. 163, 307 (1999).
- Y. H. Lin, J. Lan, and C. Nan, Oxide Thermoelectric Materials, Wiley-VCH (2019).

- M. James, T. Tedesco, D. J. Cassidy, and R. L. Withers, Mater. Research Bulletin 40, 990 (2005).
- I. O. Troyanchuk, D. V. Karpinsky, M. V. Bushinsky, V. Sikolenko, V. Efimov, A. Cervellino, and B. Raveau, J. Appl. Phys. **112**, 013916 (2012).
- M. James et al., Physica B: Condensed Matter 385, 199 (2006).
- 18. M. James, D. Cassidy, D. J. Goossens, and R. L. Withers, J. Sol. St. Chem. 177, 1886 (2004).
- 19. S. N. Vereshchagin, L. A. Solovyov, E. V. Rabchevskii, V. A. Dudnikov, S. G. Ovchinnikovbc, and A. G. Anshits, Chem. Commun. 50, 6112 (2014).
- 20. V. A. Dudnikov, Yu. S. Orlov, S. Yu. Gavrilkin, M. V. Gorev, S. N. Vereshchagin, L. A. Solovyov, N. S. Perov, and S. G. Ovchinnikov, J. Phys. Chem. C 120, 13443 (2016).
- S. N. Vereshchagin, V. A. Dudnikov, N. N. Shishkina, and L. A. Solovyov, Thermochimica Acta 655, 34 (2017).
- S. Vereshchagin, V. Dudnikov, Yu. Orlov, and L. Solovyov, J. Alloys Comp. 860, 158257 (2021).
- 23. S. Fukushima, T. Sato, D. Akahoshi, and H. Kuwahara, J. Phys. Soc. Jpn. 78, 064706 (2009).
- 24. V. A. Dudnikov, Yu. S. Orlov, N. V. Kazak, A. S. Fedorov, L. A. Solov'yov, S. N. Vereshchagin, A. T. Burkov, S. V. Novikov, S. Y. Gavrilkin, and S. G. Ovchinnikov, Ceramics International 44, 10299 (2018).
- 25. S. N. Vereshchagin, L. A. Solov'yov, E. V. Rabchevskii, V. A. Dudnikov, and S. G. Ovchinnikov, A. G. Anshits, Kinetics and Catalysis 56, 640 (2015).
- 26. B. Raveau and M. Seikh, Cobalt Oxides: from Crystal Chemistry to Physics, John Wiley & Sons (2012).
- 27. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).
- 28. A. Hassen, A. I. Ali, B. J. Kim, Y. S. Wu, S. H. Park, and B. G. Kim, J. Appl. Phys. **102**, 123905 (2007).
- V. A. Dudnikov, Yu. S. Orlov, M. V. Bushinsky, L. A. Solovyov, S. N. Vereshchagin, S. Yu. Gavrilkin, A. Yu. Tsvetkov, M. V. Gorev, S. V. Novikov, O. S. Mantytskaya, and S. G. Ovchinnikov, J. Alloys Comp. 830, 154629 (2020).
- 30. A. V. Maklakova, A. S. Baten'kova, M. A. Vlasova, N. E. Volkova, L. Y. Gavrilova, and V. A. Cherepanov, Sol. St. Sci. 110, 106453 (2020).
- **31**. H. M. Rietveld, J. Appl. Crystall. **2**, 65 (1969).

- 32. L. A. Solovyov, J. Appl. Crystall. 37, 743 (2004).
- 33. K. Conder, E. Pomjakushina, A. Soldatov, and E. Mitberg, Mater. Research Bulletin 40, 257 (2005).
- **34**. V. Cherepanov, T. Aksenova, E. Kiselev, and L. Gavrilova, Sol. St. Sci. **10**, 438 (2008).
- 35. Y. Takeda, R. Kanno, T. Takada, O. Yamamoto, M. Takano, and Y. Bando, Z. Anorg. Allg. Chem. 540–541, 259 (1986).
- 36. C. de la Calle, A. Aguadero, J. A. Alonso, and M. T. Fernandez-Diaz, Sol. St. Sci. 10, 1924 (2008).

- 37. F. Li and J. Fang, J. Magn. Magn. Mater. 324, 2664 (2012).
- 38. J. Wu and C. Leighton, Phys. Rev. B 67, 174408 (2003).
- 39. I. O. Troyanchuk, A. N. Chobot, A. V. Nikitin, O. S. Mantytskaya, L. S. Lobanovskii, and V. M. Dobryanskii, Phys. Sol. St. 57, 2427 (2015).
- 40. B. I. Shklovskii and A. L. Efros, *Electronic Properties of Doped Semiconductors*, Springer-Verlag, Berlin (1984).