НИЗКОЧАСТОТНАЯ ДИНАМИКА НОСИТЕЛЕЙ В ПОЛУПРОВОДНИКЕ CuAlO₂ ПО ДАННЫМ ЯМР

В. В. Оглобличев^{а*}, А. Г. Смольников^a, А. Л. Бузлуков^a, Ю. В. Пискунов^a, И. Ю. Арапова^a, А. Ф. Садыков^a, В. Л. Матухин^b

^а Институт физики металлов имени М. Н. Михеева Уральского отделения Российской академии наук

620108, Екатеринбург, Россия

^b Казанский государственный энергетический университет 420066, Казань, Россия

> Поступила в редакцию 2 июня 2021 г., после переработки 24 июня 2021 г. Принята к публикации 28 июня 2021 г.

В поликристаллическом образце $CuAlO_2$ получены спектры ЯМР на ядрах ${}^{63}Cu$ и ${}^{27}Al$ во внешнем магнитном поле $H_0 = 92.8$ кЭ в диапазоне температур 30-400 К. Анализ спектров ЯМР ${}^{27}Al$ показал, что при понижении температуры сдвиг ${}^{27}K$ линии ЯМР ядер ${}^{27}Al$ увеличивается по абсолютной величине и может быть описан законом Кюри – Вейсса. Такое поведение ${}^{27}K$ можно связать с возникновением эффективного магнитного момента на ионах меди вследствие движения дырок в подрешетке меди. В низкотемпературной области наблюдается максимум скорости спин-решеточной релаксации, T_1^{-1} , ядер ${}^{27}Al$, обусловленный, наиболее вероятно, термоактивированной диффузией дырок. Анализ экспериментальных данных по T_1^{-1} дает оценку энергии активации $E_a \approx 0.1-0.2$ эВ. Температурное поведение параметров квадрупольного взаимодействия свидетельствует о сжатии кристаллической решетки вдоль осей a и c.

DOI: 10.31857/S0044451021110055

1. ВВЕДЕНИЕ

В последнее время интенсивно изучаются квазидвумерные фрустрированные делафосситы CuMeO₂ (Me = Cr, Fe, Mn) как модельные системы со сложным магнитным порядком [1–3]. В этих соединениях конкуренция сравнимых по величине обменных взаимодействий магнитных ионов и кристаллографической магнитной анизотропии приводит к появлению богатых низкотемпературных фазовых диаграмм с различными типами магнитного порядка. Тем не менее многие особенности электронного строения и детали дефектной структуры соединений CuMeO₂ остаются невыясненными. Для исследования таких сложных магнитных структур и выявления различных вкладов в магнитную восприимчивость необходимо иметь эталонное соединение с близкой кристаллической структурой, но не содержащее магнитных ионов в решетке. Наиболее подходящим кандидатом является делафоссит CuAlO₂.

Дополнительный интерес к данному соединению вызван тем, что CuAlO₂ входит в группу прозрачных проводящих оксидов с электрической проводимостью р-типа, обладающих уникальной комбинацией оптических и электрофизических свойств. Механизмы электропроводности CuAlO₂ до сих пор остаются широко обсуждаемыми в литературе: прыжки с переменной длиной (variable-range hopping) [4], зона проводимости (conduction band) [5,6], поляроны малого радиуса (small polaron transport) [7]. Кроме того, происхождение носителей в номинально нелегированном CuAlO₂ остается также невыясненным. Проводимость в номинально нелегированном CuAlO₂ неизменно *p*-типа, мала и резко возрастает с повышением температуры. Очевидно, что этот материал склонен к спонтанному образованию акцепторных дефектов. Авторы работ [8–11] рассчитали энергию образования дефектов в CuAlO₂ и в родственных ему материалах и пришли к выводу, что вакансии Си являются наиболее

^{*} E-mail: ogloblichev@imp.uran.ru

Рис. 1. (В цвете онлайн) Фрагмент кристаллической структуры $CuAlO_2$

вероятным дефектом. С появлением данного дефекта авторы связывают также возникновение парамагнитного момента при низких температурах в результате образования на ионах меди эффективного магнитного момента, но и этот вопрос остается пока открытым.

Соединение CuAlO₂ имеет ромбоэдрическую кристаллическую структуру с пространственной группой $R\overline{3}m$. Структура может быть представлена как последовательное чередование вдоль оси *с* слоев Al–O–Cu–O–Al (рис. 1). Трехвалентные ионы Al³⁺ находятся в центре кислородных октаэдров AlO₆ и формируют треугольную решетку в кристаллографической плоскости *ab*. Слои AlO₆ разделены между собой ионами одновалентной меди Cu¹⁺, в ближайшее окружение которых входят два иона кислорода O^{2–}. Каждый тип ионов, входящих в состав CuAlO₂, расположен в структурно-эквивалентных позициях.

Результаты предварительного исследования методом ядерного квадрупольного резонанса (ЯКР) ⁶³Си приведены ранее в нашей работе [12]. В этой работе получено значение константы ядерного квадрупольного взаимодействия. В низкотемпературной области (ниже 276 К) на температурной зависимости скорости спин-решеточной релаксации, T_1^{-1} , обнаружен широкий максимум. Предполагая термоактивационный характер подвижности дырок, являющихся основными зарядовыми носителями в CuAlO₂, мы получили оценку энергии активации. В настоящей работе проведено изучение в температурном диапазоне T = 30-400 К спектров ЯМР на ядрах ⁶³Cu, ²⁷Al и скорости спин-решеточной релаксации ядер ²⁷Al в полупроводниковом соединении $CuAlO_2$ в магнитном поле $H_0 = 92.8$ кЭ. Целью работы являлось исследование особенностей кристаллической структуры и низкочастотной динамики носителей (дырок).

2. ОБРАЗЦЫ И ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ

Поликристаллический образец CuAlO₂ приготовлен стандартным методом твердофазного синтеза и имеет ромбоэдрическую модификацию (пространственная группа $R\overline{3}m$). Детали синтеза, химические и структурные параметры соединения аналогичны приведенным в работах [13, 14].

Измерения ЯМР на ядрах 63 Си и 27 Аl проводились на самодельном импульсном спектрометре во внешнем магнитном поле $H_0 = 92.8$ кЭ в диапазоне температур от 30 до 400 К. Для исключения ЯМР-сигналов от металлической меди использовалась резонансная катушка из серебра.

ЯМР-спектры ⁶³Си и ²⁷Al получены с использованием стандартной методики спинового эха $p-t_{del}-2p-t_{del}-echo$. Длительность первого импульса выбиралась равной p = 1.7 мкс, мощность радиочастотного усилителя — N = 400 Вт. Задержка между импульсами $t_{del} = 200$ мкс. Спектры ЯМР ⁶³Си и ²⁷Al, представленные в работе, являются суммой фурьепреобразований полученных эхо-сигналов, накопленных в требуемом частотном диапазоне с шагом $\Delta \nu = 100$ кГц. Для описания спектров ЯМР использовали оригинальную программу моделирования спектров "Simul", позволяющую численно рассчитывать форму линии на основе полного гамильтониана ядерной системы с учетом зеемановского

и квадрупольного вкладов [15–17]. Сдвиги линий ЯМР на ядре ²⁷Al, $K = (\nu - \nu_0) \cdot 10^6/\nu_0$, определялись относительно $\nu_0 = 102.95798$ МГц в оксиде алюминия Al₂O₃, который имеет при комнатной температуре сдвиг +14 ppm [18, 19].

Время спин-спиновой релаксации измеряли на центральном переходе $m_I = -1/2 \leftrightarrow +1/2$ ядер алюминия ²⁷Al на частоте $\nu = 102.955$ МГц при изменении времени задержки между импульсами t_{del} в интервале 0.05–1.5 мс в импульсной последовательности спинового эха. Зависимости эхо-сигналов от t_{del} хорошо экстраполировались выражением для ядерной намагниченности

$$M(2t_{del}) = M_0 \exp(-2t_{del}/T_2).$$
 (1)

Время спин-спиновой релаксации при T = 295 К составило $T_2 \approx 280(20)$ мкс и в пределах погрешности не зависело от температуры.

Времена спин-решеточной релаксации T₁ на ядрах ²⁷Al измеряли также на центральном переходе на частоте $\nu = 102.955$ МГц методом инвертирования и последующего восстановления ядерной намагниченности. При измерении T₁ использована импульсная последовательность 2*p*-*t_{inv}-<i>p*-*t_{del}-2<i>p*-*t_{del}-echo* при постоянной задержке $t_{del} = 200$ мкс и при изменении времени задержки t_{inv} между инвертирующим импульсом 2p и последовательностью спинового эха в интервале $t_{inv} = 0.05$ –5000 мс. Количество точек измерения t_{inv} составляло не менее 35. Во всем исследованном интервале температур восстановление ядерной намагниченности отклонялось от описания экспоненциальной функцией. Следует отметить, что в случае ²⁷Al со спином I = 5/2 точный анализ кривой восстановления ядерной намагниченности M(t) возможен только для некоторых частных случаев (см., например, работы [20, 21]). Причем даже в этих простейших случаях требуется наличие как минимум трех релаксационных компонент с различными весами. В наших ЯМР-экспериментах с неселективным возбуждением спектра точная аппроксимация зависимости M(t) является крайне сложной. В этой связи мы ограничились грубыми оценками времен $T_{1,eff}$, полученными из предположения, что

$$M(t = T_{1,eff}) = M_0(1 - 1/e) \approx 0.63M_0,$$
 (2)

где M_0 — равновесное значение намагниченности системы ядерных спинов, $T_{1,eff}$ — эффективное время спин-решеточной релаксации.

Измерения магнитной восприимчивости $\chi = M/H$ выполнялись на поликристаллическом об-

разце CuAlO₂ массой m = 479 мг с использованием СКВИД-магнетометра MPMS-XL7 (Quantum Design Inc., США) в магнитном поле H = 5 кЭ в интервале температур T = 5-300 K.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 2 представлен спектр ЯМР, полученный при комнатной температуре в поликристаллическом образце полупроводникового соединения CuAlO₂ во внешнем магнитном поле $H_0 = 92.8$ кЭ. Записанный спектр представляет собой суперпозицию ЯМР-сигналов от ядер алюминия ²⁷Al и меди ⁶³Cu.

3.1. Спектр ЯМР на ядре алюминия ²⁷Al

Спектр ЯМР от ядер ²⁷Аl представляет собой узкую симметричную линию, расположенную на широком пьедестале сателлитных линий. Такая характерная структура обусловлена взаимодействием квадрупольного момента ядра ²⁷Q с градиентом электрического поля (ГЭП), создаваемым в месте расположения ядер их зарядовым окружением [22–24]. При наличии такого взаимодействия для ядер со спином I = 5/2 должно наблюдаться пять линий: центральная, соответствующая переходу $m_I = -1/2 \leftrightarrow +1/2$, и две пары сателлитных линий, соответствующих переходам $m_I =$ $= \pm 3/2 \leftrightarrow \pm 1/2$ и $m_I = \pm 5/2 \leftrightarrow \pm 3/2$. Положения резонансных частот центральной линии и са-

Рис. 2. (В цвете онлайн) Спектр ЯМР (сплошная кривая) в $CuAlO_2$ во внешнем магнитном поле $92.8 ext{ k}$ при температуре $T = 295 ext{ K}$. Штриховая (синяя) и штрихпунктирная (красная) линии — моделирование экспериментального спектра ЯМР линиями от ядер 27 Al и 63 Cu

теллитов определяется компонентами тензора ГЭП V_{ij} (i, j = x, y, z):

$$\nu_Q = \frac{3eV_{zz}Q}{2I(2I-1)h} = \frac{3Q_{CC}}{2I(2I-1)}, \quad \eta = \frac{V_{yy} - V_{xx}}{V_{zz}}, \quad (3)$$

где ν_Q — квадрупольная частота, Q_{CC} — константа ядерного квадрупольного взаимодействия, h — постоянная Планка, η — параметр асимметрии тензора ГЭП.

Как показано на рис. 2, спектр ЯМР ядер ²⁷Al при T = 295 К удовлетворительно моделируется в предположении эквивалентности всех позиций ионов алюминия. В результате моделирования определены параметры ГЭП: значения квадрупольной частоты ²⁷ $\nu_Q = 608(5)$ кГц и параметра асимметрии ²⁷ $\eta = 0$. Полученные параметры хорошо согласуются со значениями, представленными в работе [25]. Температурная зависимость квадрупольной частоты ²⁷ ν_Q представлена ниже на рис. 6 (обсуждается там же совместно с данными, полученными на ядрах ⁶³Cu).

Сдвиг ²⁷ K линий ЯМР ядер ²⁷ Al при комнатной температуре равен –4 ррт и хорошо согласуется со сдвигами, наблюдаемыми для Al³⁺ в октаэдрическом окружении из атомов кислорода [26]. Температурная зависимость сдвига ²⁷ K с учетом квадрупольной поправки второго порядка представлена на рис. За. Поведение кривой ²⁷ K(T) удовлетворительно описывается зависимостью в форме закона Кюри–Вейсса

$$K(T) = K_0 + \frac{C}{T - \Theta_{nmr}}.$$
(4)

Как показано на рис. 36, изменение с температурой величины $({}^{27}K_0 - {}^{27}K)^{-1}$, обратной сдвигу, хорошо аппроксимируется линейной функцией с характерной температурой Вейсса $\Theta_{nmr} = 0$ К, константой C = -461 ppm·K и температурно-независимым членом $K_0 = -2$ ppm. Не зависящий от температуры сдвиг ${}^{27}K_0$ обусловлен орбитальным и диамагнитным вкладами электронных оболочек. Наиболее интересен вклад в K(T), зависящий от температуры, который обычно обусловлен дипольным вкладом и/или переносом спиновой поляризации от ближайших магнитных соседей. Данный вклад в K(T) пропорционален магнитной восприимчивости $\chi(T)$ [23,24].

На рис. 4 представлена зависимость магнитной восприимчивости $\chi = M/H$ от температуры во внешнем магнитном поле H = 5 кЭ, измеренной на том же поликристаллическом образце CuAlO₂, на котором проводились эксперименты по ЯМР. Пове-

Рис. 3. Температурные зависимости сдвига ${}^{27}K$ линии ЯМР ядер 27 Аl (a), обратной величины сдвига (${}^{27}K_0 - {}^{27}K)^{-1}$ (δ), полуширины линии ЯМР 27 Аl на половине высоты, Δ (a) в CuAlO₂. Прямые линии — результат аппроксимации данных законом Кюри – Вейсса

дение $\chi(T)$ удовлетворительно описывается законом Кюри – Вейсса

$$\chi(T) = \chi_0 + \frac{C}{T - \Theta} \tag{5}$$

с константой C=0.017(2) см $^3\cdot {\rm K}/{\rm моль}, \Theta=-2(1)$ K, $\chi_0=4.9\cdot 10^{-4}~{\rm cm}^3/{\rm моль}.$ Соответствующий эффективный магнитный момент

$$\mu_{eff} = \sqrt{\frac{3Ck_B}{\mu_B^2 N_A}},\tag{6}$$

где k_B — константа Больцмана, N_A — число Авогадро, составил 0.369 μ_B . Полученные значения удовлетворительно согласуются с данными, полученными в работах [11,27,28].

При понижении температуры величина Δ — полуширина на половине высоты линии центрального перехода спектра ЯМР ²⁷Al, также растет (рис. 3*6*).

Рис. 4. (В цвете онлайн) Магнитная восприимчивость $\chi = M/H$ поликристаллического образца $CuAlO_2$ в зависимости от температуры, измеренная в магнитном поле H = 5 кЭ. Сплошная линия — результат аппроксимации данных законом Кюри-Вейсса

Увеличение ширины линии ЯМР обусловлено, наиболее вероятно, возникновением сверхтонких полей на ядрах алюминия, наводимых магнитными соседями. В полностью стехиометрическом соединении CuAlO₂, свободном от магнитных примесей, существуют только ионы Cu¹⁺, Al³⁺ и O²⁻, ни один из которых не имеет неспаренных электронов, и, следовательно, не должно существовать парамагнетизма. Однако в ряде работ [7-9] авторы рассчитали энергии образования дефектов в CuAlO₂ и родственных материалах и пришли к выводу, что вакансии в подрешетке Cu¹⁺ являются наиболее вероятным дефектом. При возникновении данного дефекта для сохранения электронейтральности вещества в CuAlO₂ (при условии стехиометрии по кислороду) должны возникать ионы Cu²⁺, которые можно рассматривать как ионы Cu¹⁺ с одной дыркой в заполненной 3д-орбитали меди. Поскольку эти дырки подвижны, их наличие приводит к возникновению эффективного момента на каждой позиции ионов меди, которые, посредством наводимых сверхтонких полей [16, 29, 30], являются причиной сдвига и уширения линии ЯМР на ядрах ²⁷Al. Наблюдаемые различия в свойствах CuAlO₂ будут зависеть от концентрации вакансий в подрешетке ионов меди и, как следствие, носителей (дырок) в конкретном образце [28].

3.2. Температурная зависимость скорости спин-решеточной релаксации ядер ²⁷Al

Температурная зависимость скорости спин-решеточной релаксации ядер ²⁷Al в соединении

Рис. 5. Температурные зависимости скорости T_1^{-1} спин-решеточной релаксации ядер $^{27}\mathrm{Al}$ в соединении $\mathrm{CuAlO_2}.$ Прямые линии — результат аппроксимации данных в модели БПП. На вставке — частоты τ_d^{-1} дырочных перескоков, полученные по данным для T_1^{-1} для ядер $^{27}\mathrm{Al}$ и $^{63}\mathrm{Cu}$ [12]; прямая линия — аппроксимация данных выражением (8)

CuAlO₂ представлена на рис. 5. На зависимости $T_1^{-1}(T)$ обнаруживается ярко выраженный максимум при $T \approx 200$ К. Аномальный рост скорости ядерной спин-решеточной релаксации обычно наблюдается в районе существования структурных фазовых переходов. Однако какие-либо структурные превращения в CuAlO₂ в исследованном температурном диапазоне, по-видимому, отсутствуют, поскольку на температурных зависимостях сдвигов ЯМР ²⁷Al (см. рис. 3) и линии ЯКР ⁶³Cu [12] не наблюдаются заметные особенности и они носят монотонный характер.

Качественно аналогичные зависимости $T_1^{-1}(T)$ наблюдались ранее для ядер меди ⁶³Си в целом ряде магнитных полупроводниковых соединений [31, 32] и рассматривались как доказательства замораживания движения дырок в медно-кислородных плоскостях. Можно предположить, что значительный вклад в скорость релаксации ядер ²⁷Al в исследуемом CuAlO₂ также определяется термоактивированными дырочными перескоками.

Простейший феноменологический подход для описания вклада в скорость спин-решеточной релаксации, обусловленного термоактивированной диффузией, был в свое время предложен Бломбергеном, Парселлом и Паундом (БПП) [33]. В рамках модели БПП предполагается, что корреляционная функция затухает как $\exp(-t/\tau_c)$. В простейшем случае одинаковых ядер и флуктуирующего диполь-дипольного межъядерного взаимодействия зависимость скорости спин-решеточной релаксации определяется выражением вида

$$T_1^{-1} = \frac{2\gamma^2}{3\omega_L} M_2 \left[\frac{y}{1+y^2} + \frac{4y}{1+4y^2} \right], \quad y = \omega_L \tau_c, \quad (7)$$

где γ — гиромагнитное отношение ядра-зонда, M_2 — второй момент линии «жесткой решетки», ω_L — ларморовская частота, τ_c — так называемое время корреляции, определяющее длительность корреляции между двумя конфигурациями ядерного окружения в два разных момента времени. В случае термоактивированных перескоков время корреляции можно, как правило, приравнять к времени жизни атома в определенном состоянии: т.е. $\tau_c^{-1} = \tau_d^{-1}$, где частота атомных перескоков подчиняется закону Аррениуса

$$\tau_d^{-1} = \tau_{d0}^{-1} \exp(-E_a/k_B T).$$
 (8)

Здесь E_a — энергия активации термоактивированной диффузии, а величина τ_{d0}^{-1} определяет частоту атомных перескоков при максимальной температуре.

В модели БПП зависимость $\ln T_1^{-1}$ от T^{-1} представляет собой симметричный пик. Максимум T_1^{-1} наблюдается при температуре, при которой частота атомных перескоков становится сравнимой с ларморовской частотой, $\tau_d^{-1} \approx \omega_L = 2\pi\nu_L$. При этом углы наклона прямых, соответствующих зависимостям $\ln T_1^{-1}$ от T^{-1} , в областях высоких и низких температур равны соответственно E_a/k_B и $-E_a/k_B$.

Необходимо отметить, что в нашем случае записать в явном виде выражение для $T_1^{-1}(T)$, аналогичное (7), представляется крайне затруднительным. Термоактивированные перескоки в электронной подсистеме CuAlO₂ вызывают флуктуации целого ряда взаимодействий на ядрах ²⁷Al: межъядерного диполь-дипольного взаимодействия ²⁷Al-²⁷Al и ²⁷Al-^{63,65}Cu, диполь-дипольного электрон-ядерного взаимодействия, флуктуации ГЭП (что, естественно, приводит к возникновению квадрупольных механизмов спин-решеточной релаксации). Однако для всех этих случаев асимптотика поведения зависимости $\ln T_1^{-1}$ от T^{-1} должна сохраняться [22, 23]. Из этого следует, что полученные экспериментальные данные по скорости спин-решеточной релаксации ядер ²⁷Al позволяют нам оценить величину энергии активации для дырочных перескоков в CuAlO₂. Результаты этой оценки показаны на рис. 5, где приведен «аррениусовский» (полулогарифмический) график T_1^{-1} от T^{-1} .

Как видно на рис. 5, значения E_a , полученные на низко- и высокотемпературном склонах зависи-

мости T_1^{-1} от T^{-1} различаются более чем в три раза. Подобные «асимметричные» зависимости неоднократно наблюдались для атомного движения. Для их описания был разработан ряд моделей, использующих более сложный вид корреляционных функций или распределение по E_a (как правило гауссовой формы) [34–39]. Следует отметить, что оценки энергии активации в рамках таких усовершенствованных моделей дают значения E_a , близкие к тем, что получаются при «линейной» аппроксимации на высокотемпературном склоне зависимости $\ln T_1^{-1}$ от T^{-1} . Учитывая сказанное выше и анализируя данные по скорости спин-решеточной релаксации ядер ²⁷ Al, получаем оценку $E_a \approx 0.1$ эВ.

Параметры подвижности носителей (дырок) в CuAlO₂ можно оценить также из анализа данных по T_1^{-1} для ядер ²⁷Al и ⁶³Cu [12]. Зависимость ⁶³ $T_1^{-1}(T)$ для ядра меди также имеет максимум при $T \approx 175$ К на резонансной частоте 28 МГц. Предполагая, что условие $\tau_d \omega_L \approx 1$ для максимума скорости релаксации выполняется в обоих случаях, мы можем оценить величины $\tau_d^{-1} \approx 1.6 \cdot 10^8 \text{ c}^{-1}$ и $\tau_d^{-1} \approx 6.5 \cdot 10^8 \text{ c}^{-1}$ соответственно при 175 К и 200 К (вставка на рис. 5). Аппроксимация данных для τ_d^{-1} выражением (8) дает значения $E_a \approx 0.17$ эВ при $\tau_{d0}^{-1} \approx 1 \cdot 10^{13} \text{ c}^{-1}$.

Таким образом, температурное поведение скорости релаксации ядер ²⁷Al обусловлено, наиболее вероятно, диффузией дырок, являющихся основными зарядовыми носителями в образцах CuAlO₂. Следует отметить, что ранее такой вывод был получен при анализе спин-решеточной релаксации в родственном соединении CuYO₂: Ca, также имеющем кристаллическую структуру делафоссита [40].

Величина энергии активации для данного вида диффузионного движения составляет по нашим данным около 0.1–0.2 эВ, что значительно меньше не только ширины запрещенной зоны (E_{Δ} = = 3–3.5 эВ), но и энергии акцепторного уровня (E_a = 750 мэВ) в соединении CuAlO₂ [11]. Это свидетельствует о том, что активация дырок в низкотемпературном диапазоне происходит с дефектных уровней. Следует отметить, что в том же температурном диапазоне, где наблюдается максимум скорости релаксации, происходит заметное изменение характера поведения температурной зависимости коэффициента Зеебека [11].

3.3. Спектр ЯМР на ядре меди ⁶³Cu

Спектр ЯМР на изотопе меди 63 Си, обладающем спином I = 3/2 (см. рис. 2), представляет

Рис. 6. Температурные зависимости квадрупольных частот ${}^{63}\nu_Q$ меди и ${}^{27}\nu_Q$ алюминия в ${\rm CuAlO}_2$

собой центральный переход $m_I = -1/2 \leftrightarrow +1/2$. Сателлитные линии не записывались из-за широкого (более 50 МГц) спектра ЯМР ядер ⁶³Си. Такой вид центрального перехода меди, расщепленного на два пика, возникает из-за вклада в полный сдвиг линии во втором порядке теории возмущений в результате взаимодействия большого квадрупольного момента ⁶³Q ядер меди с градиентом электрического поля [22–24]. Спектр можно описать квадрупольно-расщепленной линией с параметрами $^{63}\nu_{Q} = 28.46(4)$ МГц и $^{63}\eta = 0$. Эти величины хорошо согласуются с параметрами, полученными из анализа спектров ЯКР на ⁶³Си в нашей работе на этом же образце [12]. Сдвиг ^{63}K линий ЯМР на ядре меди при комнатной температуре равен 1100 ррт. Выделить температурную зависимость сдвига ^{63}K проблематично из-за большой ширины спектра и, как следствие, большой погрешности определения сдвига линии.

Зависимости квадрупольной частоты от температуры для 63 Cu, ${}^{63}\nu_Q$, и алюминия 27 Al, ${}^{27}\nu_Q$, представлены на рис. 6. С понижением температуры происходит увеличение параметра ${}^{63}\nu_Q$ и уменьшение параметра ${}^{27}\nu_Q$. Моделирование такого поведения квадрупольных параметров было сделано в модели точечных зарядов. В этой модели каждый атом представлен материальной точкой с определенным зарядом: ион Al имеет заряд +3e; ион Cu — заряд +1e; ион O — заряд -2e. Модель точечных зарядов подразумевает вычисление вторых производных потенциала V = e/r, создаваемого атомами с зарядом e на расстоянии r от точки, где вычисляется ГЭП. Для построения кристаллической решетки использовались координаты атомов в элементарной ячейке и элементарные трансляции. При искусственном увеличении или уменьшении параметра решетки *с* наблюдалось уменьшение или увеличение обоих параметров, ${}^{63}\nu_Q$ и ${}^{27}\nu_Q$. При искусственном уменьшении параметра решетки *a* наблюдалось уменьшение параметра ${}^{27}\nu_Q$, а параметр ${}^{63}\nu_Q$ не изменялся. При увеличении *a* наблюдался рост параметра ${}^{27}\nu_Q$, а параметр ${}^{63}\nu_Q$ также не изменялся. Из анализа такого поведения квадрупольных параметров можно сделать вывод, что наши экспериментальные данные свидетельствуют о сжатии кристаллической решетки вдоль осей *a* и *c*. Это вывод согласуется с данными по дифракции рентгеновский лучей на этом соединении [41].

4. ЗАКЛЮЧЕНИЕ

В поликристаллическом образце CuAlO₂ зарегистрированы спектры ЯМР на ядрах 63 Си и 27 Аl во внешнем магнитном поле $H_0 = 92.8$ кЭ в диапазоне температур 30-400 К. Анализ ЯМР-спектров показал, что сдвиги линий ЯМР алюминия (²⁷K) и меди (^{63}K) при температуре T = 295 K равны соответственно -4 ррт и 1100 ррт. При понижении температуры сдвиг линии ЯМР ^{27}K увеличивается по абсолютной величине и может быть описан законом Кюри-Вейсса. Значение квадрупольной частоты для ионов алюминия ${}^{27}\nu_Q = 612(5)$ кГц при $T = 400 {\rm K}$ и при понижении температуры уменьшается на 3.1 %. В то же время значение квадрупольной частоты для ионов меди, $^{63}\nu_Q = 28.372$ МГц (при T = 400 K), увеличивается на 1%. Такое поведение квадрупольных параметров свидетельствует о сжатии кристаллической решетки вдоль осей а и с. В области T = 200 К на температурной зависимости скорости T_1^{-1} спин-решеточной релаксации ядер ²⁷Al обнаруживается широкий максимум. Его появление обусловлено термоактивированной диффузией дырок (с энергией активации $E_a \approx 0.1-0.2$ эВ), являющихся основными зарядовыми носителями в соединении CuAlO₂. Мы интерпретируем полученные экспериментальные ЯМР-данные: максимум на температурной зависимости T_1^{-1} при $T \approx 200$ K, а также поведение сдвига и ширины линии ЯМР на ядрах ²⁷Al, как свидетельство движения дырок, приводящего к возникновению эффективного магнитного момента в подрешетке меди и парамагнетизму при низких температурах. Появление же дырок связанно с появлением вакансий на позициях меди в CuAlO₂.

Возникновение на ионах меди эффективного магнитного момента в соединениях со структурой делофоссита $CuMeO_2$ (Me = Cr, Fe, Mn) может играть важную роль в формировании ближнего или дальнего магнитного порядка в подрешетке магнитных ионов.

Благодарности. Авторы благодарны А. С. Волегову за обсуждение полученных результатов по магнитной восприимчивости.

Финансирование. Работа выполнена при поддержке гранта Президента РФ для поддержки молодых ученых (МК-6094.2021.1.2) и в рамках государственного задания Министерства высшего образования и науки Российской Федерации (шифр «Функция» Г.р. АААА-А19-119012990095-0).

ЛИТЕРАТУРА

- S. Seki, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 101, 067204 (2008).
- Yu. A. Sakhratov, L. E. Svistov, P. L. Kuhns, H. D. Zhou, and A. P. Reyes, Phys. Rev. B 94, 094410 (2016).
- T. T. A. Lummen, C. Strohm, H. Rakoto, and P. H. M. van Loosdrecht, Phys. Rev. B 81, 224420 (2010).
- M. S. Lee, T. Y. Kim, and D. Kim, Appl. Phys. Lett. 79, 2028 (2001).
- H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature (London) 389, 939 (1997).
- H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, and N. Hamada, J. Appl. Phys. 88, 4159 (2000).
- B. J. Ingram, T. O. Mason, R. Asahi, K. T. Park, and A. J. Freeman, Phys. Rev. B 64, 155114 (2001).
- H. Raebiger, S. Lany, and A. Zunger, Phys. Rev. B 76, 045209 (2007).
- 9. M. Nolan, Thin Sol. Films 516, 8130 (2008).
- B. Ingram, G. Gonzalez, and T. Mason, Chem. Mater. 16, 5616 (2004).
- J. Tate, H. L. Ju, J. C. Moon, A. Zakutayev, A. P. Richard, J. Russell, and D. H. McIntyre, Phys. Rev. B 80, 165206 (2009).
- V. V. Ogloblichev, V. L. Matukhin, I. Yu. Arapova, C. V. Schmidt, and R. R. Khusnutdinov, Appl. Magn. Res. 50, 619 (2019).

- А. Г. Запазинский, В. Ф. Балакирев, Н. М. Чеботаев, Г. И. Чуфаров, Ж. неорг. химии 14, 624 (1969).
- V. L. Matukhin, I. H. Khabibullin, D. A. Shulgin, S. V. Schmidt, and E. I. Terukov, Semicond. 46, 1102 (2012).
- 15. А. Г. Смольников, В. В. Оглобличев, С. В. Верховский, К. Н. Михалев, А. Ю. Якубовский, К. Кумагаи, Ю. Фурукава, А. Ф. Садыков, Ю. В. Пискунов, А. П. Геращенко, С. Н. Барило, С. В. Ширяев, Письма в ЖЭТФ 102, 766 (2015).
- 16. А. Г. Смольников, В. В. Оглобличев, С. В. Верховский, К. Н. Михалев, А. Ю. Якубовский, Ү. Furukawa, Ю. В. Пискунов, А. Ф. Садыков, С. Н. Барило, С. В. Ширяев, Физика металлов и металловедение 118, 142 (2017).
- А. Ф. Садыков, А. П. Геращенко, Ю. В. Пискунов,
 В. Оглобличев, А. Г. Смольников, С. В. Верховский, А. Ю. Якубовский, Э. А. Тищенко,
 А. Буш, ЖЭТФ 142, 753 (2012).
- J. J. Fitzgerald, S. D. Kohl, G. Piedra, S. F. Dec, and G. E. Maciel, Chem. Mater. 6, 1915 (1994).
- К. Н. Михалев, А. Ю. Гермов, А. Е. Ермаков, М. А. Уймин, А. Л. Бузлуков, О. М. Саматов, ФТТ 59, 500 (2017).
- 20. A. Narath, in *Hyperfine Interactions*, ed. by A. J. Freeman and R. B. Frankel, Acad. Press, New York (1967), p. 287.
- E. R. Andrew and D. P. Tunstall, Proc. Phys. Soc. 78, 1 (1961).
- **22.** A. Abragam, *The Principles of Nuclear Magnetism*, Clarendon Press, Oxford (1961).
- C. P. Slichter, Principles of Magnetic Resonance, Harper Row, New York (1963).
- 24. V. I. Chizhik, Y. S. Chernyshev, A. V. Donets, V. Frolov, A. Komolkin, and M. G. Shelyapina, *Magnetic Resonance and its Applications*, Springer, Berlin (2014).
- 25. Magnetic Resonance, ed. by C. K. Coogan, N. S. Ham, S. N. Stuart, J. R. Pilbrow, and G. V. H. Wilson, Plenum Press, New York (1970).
- 26. M. Haouas, F. Taulelle, and C. Martineau, Progr. Nucl. Magn. Res. Spectr. 94–95, 11 (2016).
- 27. M. Aziziha, S. A. Byard, R. Beesely, J. P. Lewis, M. S. Seehra, and M. B. Johnson, AIP Adv. 9, 035030 (2019).
- 28. M. Aziziha, R. Beesley, J. R. Magers, N. Mottaghi, M. B. Holcomb, J. P. Lewis, M. S. Seehra, and M. B. Johnson, J. Magn. Magn. Mater. 471, 495 (2019).

- **29**. A. Freeman and R. Frankel, *Hyperfine Interactions*, Acad. Press, New York–London (1967).
- 30. А. Г. Смольников, В. В. Оглобличев, А. Ю. Гермов, К. Н. Михалев, А. Ф. Садыков, Ю. В. Пискунов, А. П. Геращенко, А. Ю. Якубовский, М. А. Муфлихонова, С. Н. Барило, С. В. Ширяев, Письма в ЖЭТФ 107, 134 (2018).
- P. Carretta, M. Corti, and A. Rigamonti, Phys. Rev. B 48(5), 3433 (1993).
- 32. F. Raffa, M. Mali, J. Roos, D. Brinkmann, M. Matsumura, and K. Conder, Phys. Rev. B 58(5), 2724 (1998).
- 33. N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).
- 34. O. Kanert, J. Steinert, H. Jain, K. L. Ngai, J. Non-Cryst. Sol. 131–133, 1001 (1991).

- 35. K. L. Ngai and A. K. Rizo, Phys. Rev. Lett. 76, 1296 (1996).
- 36. D. Brinkmann, M. Mali, J. Roos, R. Messer, and H. Birli, Phys. Rev. B 26, 4810 (1982).
- 37. S. Sen and J. F. Stebbins, Phys. Rev. 55, 3512 (1997).
- 38. I. Svare, F. Borsa, D. R. Torgeson, and S. W. Martin, Phys. Rev. B 48, 9336 (1993).
- **39**. P. A. Beckmann, Phys. Rep. **171**(3), 85 (1988).
- 40. W. W. Warren Jr., A. Rajabzadeh, T. Olheiser, J. Liu, J. Tate, M. K. Jayaraj, and K. A. Vanaja, Sol. St. Nucl. Magn. Res. 26, 209 (2004).
- 41. T. Ishiguro, N. Ishizawa, N. Mizutani, and M. Kato, J. Sol. St. Chem. 41, 132 (1982).