КОМПОНЕНТЫ НОВОГО ТИПА В СЕЧЕНИИ РАССЕЯНИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ВЕЩЕСТВОМ

А. П. Орешко*

Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

> Поступила в редакцию 22 декабря 2020 г., после переработки 15 марта 2021 г. Принята к публикации 15 апреля 2021 г.

Найдены новые спин-зависимые компоненты сечений нерезонансного и резонансного рассеяния рентгеновского излучения атомами вещества. Для их нахождения использовалось квазирелятивистское разложение гамильтониана Дирака в представлении Фолди – Ваутхайзена. Спин-зависимые компоненты резонансного рассеяния имеют максимальную величину на *К*-крае поглощения в магнитных материалах и содержат информацию о спиновой плотности *p*-состояний непрерывного спектра атомов вещества.

DOI: 10.31857/S0044451021100011

1. ВВЕДЕНИЕ

В настоящее время происходит чрезвычайно бурное развитие рентгеновских резонансных методов исследования конденсированных сред [1]. Эти методы основаны на изучении прохождения или рассеяния рентгеновского излучения (РИ) вблизи краев поглощения какого-либо атома исследуемого вещества, когда энергия падающего РИ близка к величине, необходимой для перехода электрона с внутренней электронной оболочки атома в незанятые состояния внешних оболочки атома в незанятые состояния внешних оболочек или в состояния непрерывного спектра. Практическая реализация резонансных рентгеновских методов неразрывно связана с использованием источников рентгеновского синхротронного излучения [1,2].

Повышенный интерес к подобным методам обусловлен тем, что именно вблизи краев поглощения (в области XANES — X-ray absorption near edge structure) наиболее ярко проявляется анизотропия резонансного взаимодействия РИ с веществом [3]. В свою очередь, это приводит к возникновению таких явлений, как линейный и круговой дихроизм, двулучепреломление, гиротропия и др. [4]. В настоящее время рентгеновские резонансные методы исследования известны как в геометрии пропускания [2,5], так и в геометрии рассеяния [6–9]. Количественное описание различных резонансных явлений основывается на сечениях резонансного поглощения и рассеяния РИ атомами вещества, при вычислении которых успешно используется квазирелятивистское разложение гамильтониана Дирака, предложенное в работах [10, 11]. Однако, как было показано в работе [12], в такой записи разложения гамильтониана [10, 11] отсутствует ряд спинорбитальных членов, а их учет при вычислении сечения поглощения приводит к появлению новой спин-поляризационной компоненты [13]. Эта компонента сечения поглощения существует только в магнитных материалах и может обусловливать до 1/3величины сигнала XMCD (X-гау magnetic circular dichroism) на *K*-крае поглощения 3*d*-металлов.

В настоящей работе показано, что использование полного квазирелятивистского разложения гамильтониана Дирака для вычисления сечений нерезонансного и резонансного рассеяния РИ атомами вещества, приводит к возникновению новых, ранее не известных спин-зависимых компонент сечения рассеяния.

2. ОПЕРАТОР ПЕРЕХОДА

Как известно [14], полный гамильтониан *H* связанной системы «излучение + вещество» представляет собой сумму гамильтониана свободного электромагнитного поля, *H*^{rad}, гамильтониана материальной системы при отсутствии электромагнитно-

^{*} E-mail: ap.oreshko@physics.msu.ru

го поля, H^{mat} , описывающего электронную и ядерную подсистемы, а также взаимодействие между ними, и гамильтониана, описывающего взаимодействие материальной системы с электромагнитным полем, H^{int} :

$$H = H^{rad} + H^{mat} + H^{int}.$$
 (1)

В том случае, когда энергия фотонов электромагнитного поля не соответствует энергии возбуждения атомных ядер, что реализуется в рентгеновском диапазоне длин волн $0.1 \text{ Å} \le \lambda \le 100 \text{ Å}$, ядро можно рассматривать как точечный бесструктурный заряд, т. е. пренебречь гамильтонианом ядерной подсистемы и нуклон-нуклонным взаимодействием в ядрах.

Таким образом, система «излучение + вещество» становится системой «излучение + электроны атома вещества», а гамильтониан этой системы представляет собой гамильтониан Дирака с добавкой векторного потенциала РИ $\mathbf{A}(\mathbf{r}, t)$ [14], для которого будем использовать кулоновскую калибровку.

Сделаем несколько важных замечаний. Во-первых, из выражения для скорости электрона u_n на n-ой боровской орбите атома [15],

$$\frac{u_n}{c} = \alpha \frac{Z_{eff}}{n},$$

где α — постоянная тонкой структуры, а Z_{eff} эффективный заряд ядра атома, следует, что только для 1s-электронов актиноидов и более тяжелых атомов скорость электронов будет релятивистской. Во всех остальных случаях $u_n \ll c$ и можно использовать нерелятивистский предел гамильтониана Дирака. Во-вторых, непосредственно из соотношений неопределенности Гейзенберга следует, что область локализации атомных электронов существенно меньше характерных размеров атома и длины волны РИ. Таким образом, в процессах на атомном уровне электрон хотя бы приближенно можно считать точечной частицей. В-третьих, напряженность электрического поля как рентгеновского, так и рентгеновского синхротронного излучения на несколько порядков меньше величины напряженности электрического внутриатомного поля. Это означает, что поглощение и рассеяние РИ можно описывать методами теории возмущений. Иная ситуация реализуется на рентгеновских лазерах на свободных электронах, где один импульс продолжительностью 10 фс может содержать 10^{21} фотонов [16], а напряженность электрического поля импульса достигать величины 10¹⁰ B/см, т.е. быть сопоставимой или превышать величину напряженности электрического внутриатомного поля. В-четвертых, для описания резонансного поглощения и рассеяния РИ достаточно использовать одноэлектронное приближение [1,2], т. е. считать, что РИ взаимодействует только с одним электроном резонансного атома.

В соответствии со сделанными замечаниями, при рассмотрении взаимодействия рентгеновского синхротронного излучения с атомами вещества полный гамильтониан (1) представляет собой квазирелятивисткое приближение гамильтониана Дирака и в рамках представления Фолди–Ваутхайзена имеет вид [17–19]

$$H = \left\{ \frac{\mathbf{p}^2}{2m} + (eV + e\Phi) - \frac{\mathbf{p}^4}{8m^3c^2} + \frac{e\hbar}{2m^2c^2} \mathbf{s} \cdot [\nabla\Phi \times \mathbf{p}] + \frac{e\hbar^2}{8m^2c^2} \mathbf{s} \cdot \triangle\Phi \right\} + \left\{ -\frac{e}{mc} \mathbf{A} \cdot \mathbf{p} + \frac{e^2}{mc^2} \mathbf{A}^2 - \frac{e\hbar}{mc} \mathbf{s} \cdot [\nabla \times \mathbf{A}] + \frac{e\hbar}{2m^2c^3} \mathbf{s} \cdot \left(\left[\frac{\partial \mathbf{A}}{\partial t} \times \mathbf{p} \right] - \frac{e}{c} \left[\frac{\partial \mathbf{A}}{\partial t} \times \mathbf{A} \right] \right) \right\} + \sum_{\mathbf{k}} \sum_{\lambda} \hbar\omega_{\mathbf{k}} \left(a^{\dagger}(\mathbf{k}, \lambda) a(\mathbf{k}, \lambda) + \frac{1}{2} \right) = H^{mat} + H^{int} + H^{rad}, \quad (2)$$

где e, m, \mathbf{p} и \mathbf{s} — заряд, масса, импульс и оператор спина электрона, V — потенциальная энергия электрона вещества, взаимодействующего со всеми другими электронами и набором неподвижных ядер в определенных положениях, Φ и \mathbf{A} — скалярный и векторный потенциалы РИ, $a(\mathbf{k}, \lambda)$ и $a^{\dagger}(\mathbf{k}, \lambda)$ — операторы уничтожения и рождения фотонов с волновым вектором \mathbf{k} и состоянием поляризации λ . Ниже будем опускать знак «точка» в обозначении скалярного произведения.

Под действием возмущения H^{int} , вызванного падающим РИ, система переходит из начального состояния $|i\rangle \equiv |a_i; \mathbf{k}_i, \mathbf{e}_{\mathbf{k}i}\rangle$, содержащего атом вещества в состоянии $|a_i\rangle$ и фотон $|\mathbf{k}_i, \mathbf{e}_{\mathbf{k}i}\rangle$ (с волновым вектором \mathbf{k}_i и поляризацией $\mathbf{e}_{\mathbf{k}i}$), в конечное состояние $|f\rangle \equiv |a_f; \mathbf{k}_f, \mathbf{e}_{\mathbf{k}f}\rangle$, содержащее атом вещества в состоянии $|a_f\rangle$ и фотон $|\mathbf{k}_f, \mathbf{e}_{\mathbf{k}f}\rangle$ (с волновым вектором \mathbf{k}_f и поляризацией $\mathbf{e}_{\mathbf{k}f}$).

В рамках нестационарной теории возмущений, вероятность такого перехода за единицу времени задается выражением [20]

$$W_{i \to f} = \frac{2\pi}{\hbar} \left| \langle f | T_{i \to f} | i \rangle \right|^2 \rho_f, \tag{3}$$

где ρ_f — плотность конечных состояний, а $T_{i \to f}$ — оператор перехода.

Плотность конечных состояний, т.е. плотность электронов атомов вещества в конечном состоянии, зависит от условий нормировки волновых функций $|a_f\rangle$ [21, 22]. Связанные состояния нормированы на единицу, состояния непрерывного спектра — на δ -функцию Дирака (от кинетической энергии фотоэлектрона), а возбужденные состояния при резонансных переходах — на фактор Брейта – Вигнера

$$\rho(\varepsilon_f = \varepsilon_i + \hbar\omega_{\mathbf{k}}) = \frac{\Gamma/2}{(\varepsilon_i - \varepsilon_f + \hbar\omega_{\mathbf{k}})^2 + (\Gamma/2)^2}$$

где Г — ширина возбужденного состояния [14].

Процессы поглощения, излучения и рассеяния могут быть учтены во втором порядке теории возмущений:

$$T_{i \to f} = H^{int} + H^{int}G(E_i)H^{int}, \qquad (4)$$

где $G(E_i)$ — резольвента полного гамильтониана системы H при энергии начального состояния системы E_i , а $G_0(E_i)$ — резольвента невозмущенного гамильтониана системы [23].

При этом поглощение описывают те члены оператора перехода, в которых фотон уничтожается, излучение — члены, в которых фотон рождается, а рассеяние — члены, в которых один фотон уничтожается, а один рождается. Таким образом, рассеяние описывается оператором перехода

$$\begin{split} T_{i \to f}^{scatt} &= \left(\frac{e}{mc}\right)^2 \left\{ \frac{m}{2} \mathbf{A} \mathbf{A} - \frac{\hbar}{2c^2} \mathbf{s} \left[\frac{\partial \mathbf{A}}{\partial t} \times \mathbf{A} \right] + \right. \\ &+ \left(\mathbf{A} \mathbf{p} + \hbar \mathbf{s} [\nabla \times \mathbf{A}] - \frac{\hbar}{2mc^2} \mathbf{s} \left[\frac{\partial \mathbf{A}}{\partial t} \times \mathbf{p} \right] \right) G_0(E_i) \times \\ &\times \left(\mathbf{A} \mathbf{p} + \hbar \mathbf{s} [\nabla \times \mathbf{A}] - \frac{\hbar}{2mc^2} \mathbf{s} \left[\frac{\partial \mathbf{A}}{\partial t} \times \mathbf{p} \right] \right) \right\} = \\ &= T_{i \to f}^{scatt,1} + T_{i \to f}^{scatt,2} + T_{i \to f}^{scatt,3}. \end{split}$$
(5)

Отличительной особенностью полученного оператора перехода (5) является наличие спин-орбитального слагаемого

$$-\frac{\hbar}{2mc^2} \mathbf{s} \left[\frac{\partial \mathbf{A}}{\partial t} \times \mathbf{p} \right], \tag{6}$$

обусловленного учетом спин-орбитального члена

$$-\frac{e\hbar}{2m^2c^3}\,\mathbf{s}\left[\frac{\partial\mathbf{A}}{\partial t}\times\mathbf{p}\right]$$

гамильтониана (2).

3. СЕЧЕНИЕ РАССЕЯНИЯ

Первое $T_{i\to f}^{scatt,1}$ и второе $T_{i\to f}^{scatt,2}$ слагаемые в выражении (5) описывают, соответственно, хорошо из-

вестные томсоновское и истинное магнитное рассеяние [24]. При этом величина истинной магнитной компоненты рассеяния меньше томсоновской компоненты рассеяния, и в случае упругого нерезонансного рассеяния РИ, т.е. при

$$\hbar\omega_{\mathbf{k}i} = \hbar\omega_{\mathbf{k}f} \equiv \hbar\omega_{\mathbf{k}} \gg E(a_n) - E(a_i),$$

где $|a_n\rangle$ — промежуточное состояние атома, имеющее конечное время жизни $\tau_n = 2\pi\hbar/\Gamma_n$, получаем

$$\left|\frac{\langle f|T_{i \to f}^{scatt,2}|i\rangle}{\langle f|T_{i \to f}^{scatt,1}|i\rangle}\right| = \frac{\hbar\omega_{\mathbf{k}}}{mc^2} < 0.02$$

В дальнейшем ограничимся рассмотрением только упругого рассеяния РИ и в нерезонансном случае для третьего слагаемого в выражении (5) получим

$$\langle f | T_{i \to f}^{scatt,3} | i \rangle = \left(\frac{e}{mc}\right)^2 \frac{2\pi\hbar c^2}{V} \frac{1}{\omega_{\mathbf{k}}} \frac{1}{\hbar\omega_{\mathbf{k}}} \times \langle a_i | \left[C^-(\mathbf{k}_f), C^+(\mathbf{k}_f) \right] | a_i \rangle, \quad (7)$$

где введено обозначение

$$C^{\pm}(\mathbf{k}) = \{ (\mathbf{e}_{\mathbf{k}}^{\pm}\mathbf{r}) - i\hbar\mathbf{s}[\mathbf{k}\times\mathbf{e}_{\mathbf{k}}^{\pm}] + i\frac{\hbar\omega_{\mathbf{k}}}{2mc^{2}}\mathbf{s}[\mathbf{e}_{\mathbf{k}}^{\pm}\times\mathbf{p}] \} e^{\pm i\mathbf{k}\mathbf{r}}, \quad (8)$$

 $\mathbf{e}_{\mathbf{k}}^+\equiv\mathbf{e}_{\mathbf{k}}$ и $\mathbf{e}_{\mathbf{k}}^-\equiv\mathbf{e}_{\mathbf{k}}^*,$ а знак «звездочка» означает комплексное сопряжение.

Полученное выражение (8) отличается от аналогичных в работах [10, 11, 24, 25] наличием дополнительного слагаемого

$$i\frac{\hbar\omega_{\mathbf{k}}}{2mc^2}\,\mathbf{s}[\mathbf{e}_{\mathbf{k}}^{\pm}\times\mathbf{p}],$$

вызванного наличием спин-орбитального члена (6) в операторе перехода (5).

Окончательно, с учетом всех нерезонансных компонент, сечение упругого рассеяния РИ примет вид

$$\frac{d\sigma}{d\Omega} = r_0^2 \left| D_1 + D_2 + D_3 + D_4 \right|^2, \tag{9}$$

где

$$D_1 = \langle a_i | e^{i\mathbf{qr}} | a_i \rangle (\mathbf{e}_{\mathbf{k}f}^* \mathbf{e}_{\mathbf{k}i}),$$

$$D_{2} = -i\frac{\hbar\omega_{\mathbf{k}}}{mc^{2}} \times \left\{ \langle a_{i}|e^{i\mathbf{q}\mathbf{r}}\frac{i[\mathbf{q}\times\mathbf{p}]}{\hbar k^{2}}|a_{i}\rangle\mathbf{P}_{L} + \langle a_{i}|e^{i\mathbf{q}\mathbf{r}}\mathbf{s}|a_{i}\rangle\mathbf{P}_{s} \right\},\$$

$$\begin{split} D_{3} &= -\frac{1}{2} \left(i \frac{\hbar \omega_{\mathbf{k}}}{mc^{2}} \right)^{2} \times \\ &\times \left\{ \langle a_{i} | e^{i\mathbf{q}\mathbf{r}} \frac{i[\mathbf{p} \times \mathbf{s}]}{\hbar k^{2}} | a_{i} \rangle \mathbf{P}_{1} + \langle a_{i} | e^{i\mathbf{q}\mathbf{r}} \frac{i(\mathbf{p}\mathbf{s})}{\hbar k^{2}} | a_{i} \rangle P_{2} - \right. \\ &- \langle a_{i} | e^{i\mathbf{q}\mathbf{r}} \frac{(\mathbf{e}_{\mathbf{k}i}\mathbf{p})[\mathbf{s} \times \mathbf{k}_{i}] - (\mathbf{s}\mathbf{e}_{\mathbf{k}i})[\mathbf{p} \times \mathbf{k}_{f}]}{\hbar k^{2}} | a_{i} \rangle \mathbf{e}_{\mathbf{k}f}^{*} - \\ &- \langle a_{i} | e^{i\mathbf{q}\mathbf{r}} \frac{(\mathbf{e}_{\mathbf{k}f}^{*}\mathbf{p})[\mathbf{s} \times \mathbf{k}_{f}] - (\mathbf{s}\mathbf{e}_{\mathbf{k}f}^{*})[\mathbf{p} \times \mathbf{k}_{i}]}{\hbar k^{2}} | a_{i} \rangle \mathbf{e}_{\mathbf{k}i} + \\ &+ \langle a_{i} | e^{i\mathbf{q}\mathbf{r}} \frac{(\mathbf{e}_{\mathbf{k}f}^{*}\mathbf{s}_{i})(\mathbf{e}_{\mathbf{k}i}\mathbf{s}_{i}) - (\mathbf{e}_{\mathbf{k}f}^{*}\mathbf{s}_{f})(\mathbf{e}_{\mathbf{k}i}\mathbf{s}_{f})}{k^{2}} | a_{i} \rangle \right\}, \end{split}$$

$$D_{4} = -\frac{1}{4} \left(i \frac{\hbar \omega_{\mathbf{k}}}{mc^{2}} \right)^{3} \times \\ \times \left\{ \langle a_{i} | e^{i\mathbf{q}\mathbf{r}} \frac{i[\mathbf{p} \times \mathbf{s}] \{ (\mathbf{e}_{\mathbf{k}i}\mathbf{s}_{f})\mathbf{e}_{\mathbf{k}f}^{*} + (\mathbf{e}_{\mathbf{k}f}^{*}\mathbf{s}_{i})\mathbf{e}_{\mathbf{k}i} \}}{\hbar k^{2}} | a_{i} \rangle - \\ - \langle a_{i} | e^{i\mathbf{q}\mathbf{r}} \frac{[\mathbf{e}_{\mathbf{k}f}^{*} \times \mathbf{p}] \{ -\mathbf{e}_{\mathbf{k}i}(\mathbf{p}\mathbf{s}) + \mathbf{p}(\mathbf{s}\mathbf{e}_{\mathbf{k}i}) \}}{\hbar k^{2}} | a_{i} \rangle \right\}$$

и введены поляризационные факторы

$$\begin{split} \mathbf{P}_{f} &= \begin{bmatrix} \mathbf{k}_{f} \times \mathbf{e}_{\mathbf{k}f}^{*} \end{bmatrix}, \quad \mathbf{P}_{i} = \begin{bmatrix} \mathbf{k}_{i} \times \mathbf{e}_{\mathbf{k}i} \end{bmatrix}, \\ \mathbf{P}_{s}^{\prime} &= \mathbf{P}_{f} \left(\mathbf{e}_{\mathbf{k}i} \mathbf{k}_{f} \right) - \mathbf{P}_{i} \left(\mathbf{e}_{\mathbf{k}f}^{*} \mathbf{k}_{i} \right) - \begin{bmatrix} \mathbf{P}_{f} \times \mathbf{P}_{i} \end{bmatrix}, \\ \mathbf{P}_{L} &= \begin{bmatrix} \mathbf{e}_{\mathbf{k}f}^{*} \times \mathbf{e}_{\mathbf{k}i} \end{bmatrix}, \quad \mathbf{P}_{s} = \mathbf{P}_{L} + \frac{\mathbf{P}_{s}^{\prime}}{k^{2}}, \\ \mathbf{P}_{1} &= \mathbf{e}_{\mathbf{k}f}^{*} \left(\mathbf{e}_{\mathbf{k}i} \mathbf{k}_{f} \right) + \mathbf{e}_{\mathbf{k}i} \left(\mathbf{e}_{\mathbf{k}f}^{*} \mathbf{k}_{i} \right), \\ P_{2} &= - \left(\mathbf{e}_{\mathbf{k}f}^{*} \mathbf{P}_{i} + \mathbf{e}_{\mathbf{k}i} \mathbf{P}_{f} \right), \end{split}$$

а $r_0 \equiv e^2/mc^2$ — классический радиус электрона и $\mathbf{q} = \mathbf{k}_i - \mathbf{k}_f$ — вектор рассеяния.

Первое D_1 и второе D_2 слагаемые в (9) описывают сечения томсоновского и магнитного нерезонансного рассеяния [11, 24, 25]. Третье D_3 и четвертое D_4 слагаемые в (9) представляют собой ранее не известные спин-зависимые компоненты сечения рассеяния.

Каждое следующее слагаемое в (9) отличается от предыдущего множителем $i\hbar\omega_{\mathbf{k}}/mc^2$, содержащим

мнимую единицу *i*. Это означает, что для действительных векторов поляризации (линейная поляризация) падающего излучения интерферируют следующие члены (9): D_1 и D_3 , D_2 и D_4 . В свою очередь, для комплексных векторов поляризации (эллиптическая или круговая поляризация) падающего излучения и/или нецентросимметричных структур интерферируют все члены выражения (9). При этом величина каждого следующего члена много меньше величины предыдущего (в $(\hbar\omega_k/mc^2)^{-1} \sim 50$ раз), т.е. слагаемыми D_3 и D_4 при вычислении сечения нерезонансного рассеяния РИ атомами вещества можно пренебречь.

В случае резонансного упругого рассеяния РИ, т. е. когда соотношение $\hbar\omega_{\mathbf{k}} \approx \hbar\omega_{in} \equiv E(a_n) - E(a_i)$ выполняется хотя бы для одного промежуточного состояния $|a_n\rangle$, матричный элемент, описывающий рассеяние РИ, имеет вид

$$\langle f | T_{i \to f}^{scatt,3,res} | i \rangle \approx \frac{r_0}{m} \frac{2\pi\hbar c^2}{V} \frac{1}{\omega_{\mathbf{k}}} \times \\ \times \sum_{|a_n\rangle} -\frac{E(a_n) - E(a_i)}{\hbar\omega_{\mathbf{k}}} \times \\ \times \frac{\langle a_i | C^-(\mathbf{k}_f) | a_n \rangle \langle a_n | C^+(\mathbf{k}_f) | a_i \rangle}{E(a_i) - E(a_n) + \hbar\omega_{\mathbf{k}} + i\Gamma_n/2}.$$
(10)

Так как в рентгеновском диапазоне длин волн для большинства внутренних уровней атома выполняется условие $\mathbf{kr} \ll 1$ (\mathbf{k} — волновой вектор РИ, r — характерный размер квантовой системы) [26], то экспоненциальный множитель $\exp(\pm i\mathbf{k}\cdot\mathbf{r})$, входящий в выражение (8) для $C^{\pm}(\mathbf{k})$, можно разложить в ряд,

$$e^{i\mathbf{k}\cdot\mathbf{r}} = 1 + i\mathbf{kr} + \frac{(i\mathbf{k}\cdot\mathbf{r})^2}{2} + \dots,$$

и, ограничившись двумя первыми членами разложения, для сечения резонансного рассеяния получим

$$\left. \frac{d\sigma}{d\Omega} \right|_{res} = \left| A_{res}^{e1e1} + A_{res}^{e1e2} + A_{res}^{e2e2} + A_{res}^{e1m1} + A_{res}^{e2m1} + A_{res}^{m1m1} + A_{res}^{e1sp1} + A_{res}^{e2sp1} + A_{res}^{m1sp1} + A_{res}^{sp1sp1} \right|^2, \quad (11)$$

где для компонент сечения резонансного рассеяния введены обозначения

$$A_{res}^{e1e1} = \frac{m}{\omega_{\mathbf{k}}} \sum_{|a_n\rangle} \frac{-\omega_{in}^3 \mathbf{e}_{\mathbf{k}f}^* \langle a_i | \mathbf{r} | a_n \rangle \langle a_n | \mathbf{r} | a_i \rangle \mathbf{e}_{\mathbf{k}i}}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n/2},$$

$$A_{res}^{e1e2} = \frac{im}{2\omega_{\mathbf{k}}} \sum_{|a_n\rangle} \frac{-\omega_{in}^3 \{\mathbf{e}_{\mathbf{k}f}^* \langle a_i | \mathbf{r} | a_n \rangle \langle a_n | (\mathbf{k}_i \mathbf{r}) \mathbf{r} | a_i \rangle \mathbf{e}_{\mathbf{k}i} - \mathbf{e}_{\mathbf{k}f}^* \langle a_i | (\mathbf{k}_f \mathbf{r}) \mathbf{r} | a_n \rangle \langle a_n | \mathbf{r} | a_i \rangle \mathbf{e}_{\mathbf{k}i}\}}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n/2},$$

$$A_{res}^{e2e2} = \frac{m}{4\omega_{\mathbf{k}}} \sum_{|a_n\rangle} \frac{-\omega_{in}^3 \mathbf{e}_{\mathbf{k}f}^* \langle a_i | (\mathbf{k}_f \mathbf{r}) \mathbf{r} | a_n \rangle \langle a_n | (\mathbf{k}_i \mathbf{r}) \mathbf{r} | a_i \rangle \mathbf{e}_{\mathbf{k}i}}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n/2},$$

$$\begin{split} A_{res}^{e1m1} &= \frac{\hbar}{2\omega_{\mathbf{k}}} \sum_{|a_n\rangle} \frac{\omega_{in}^2 \{\mathbf{e}_{\mathbf{k}f}^* \langle a_i | \mathbf{r} | a_n \rangle \langle a_n | (\mathbf{L} + 2\mathbf{s}) \mathbf{P}_i | a_i \rangle + \langle a_i | (\mathbf{L} + 2\mathbf{s}) \mathbf{P}_f | a_n \rangle \langle a_n | \mathbf{r} | a_i \rangle \mathbf{e}_{\mathbf{k}i} \}}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n / 2}, \\ A_{res}^{e2m1} &= \frac{i\hbar}{4\omega_{\mathbf{k}}} \sum_{|a_n\rangle} \frac{-\omega_{in}^2 \{\mathbf{e}_{\mathbf{k}f}^* \langle a_i | (\mathbf{k}_f \mathbf{r}) \mathbf{r} | a_n \rangle \langle a_n | (\mathbf{L} + 2\mathbf{s}) \mathbf{P}_f | a_n \rangle \langle a_n | (\mathbf{L} + 2\mathbf{s}) \mathbf{P}_f | a_n \rangle \langle a_n | (\mathbf{k}_i \mathbf{r}) \mathbf{r} | a_i \rangle \mathbf{e}_{\mathbf{k}i} \}}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n / 2}, \\ A_{res}^{e1sp1} &= \frac{\hbar}{4m^2} \sum_{|a_n\rangle} \frac{-\omega_{in}^2 \{\mathbf{e}_{\mathbf{k}f}^* \langle a_i | (\mathbf{L} + 2\mathbf{s}) \mathbf{P}_f | a_n \rangle \langle a_n | (\mathbf{L} + 2\mathbf{s}) \mathbf{P}_i | a_i \rangle}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n / 2}, \\ A_{res}^{e1sp1} &= \frac{i\hbar}{2c^2} \sum_{|a_n\rangle} \frac{-\omega_{in}^3 \{\mathbf{e}_{\mathbf{k}f}^* \langle a_i | \mathbf{r} | a_n \rangle \langle a_n | \mathbf{s} | \mathbf{e}_{\mathbf{k}i} \times \mathbf{r} | a_i \rangle + \langle a_i | \mathbf{s} | \mathbf{e}_{\mathbf{k}f}^* \times \mathbf{r} | a_n \rangle \langle a_n | \mathbf{r} | a_i \rangle \mathbf{e}_{\mathbf{k}i} \}}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n / 2}, \\ A_{res}^{e2sp1} &= \frac{\hbar}{4c^2} \sum_{|a_n\rangle} \frac{-\omega_{in}^3 \{\mathbf{e}_{\mathbf{k}f}^* \langle a_i | (\mathbf{k}_f \mathbf{r}) \mathbf{r} | a_n \rangle \langle a_n | \mathbf{s} | \mathbf{e}_{\mathbf{k}i} \times \mathbf{r} | a_i \rangle - \langle a_i | \mathbf{s} | \mathbf{e}_{\mathbf{k}f}^* \times \mathbf{r} | a_n \rangle \langle a_n | (\mathbf{k}_i \mathbf{r}) \mathbf{r} | a_i \rangle \mathbf{e}_{\mathbf{k}i} \}}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n / 2}, \\ A_{res}^{e1sp1} &= \frac{\hbar}{4c^2} \sum_{|a_n\rangle} \frac{-\omega_{in}^3 \{\mathbf{e}_{\mathbf{k}f}^* \langle a_i | (\mathbf{k}_f \mathbf{r}) \mathbf{r} | a_n \rangle \langle a_n | \mathbf{s} | \mathbf{e}_{\mathbf{k}i} \times \mathbf{r} | a_i \rangle - \langle a_i | \mathbf{s} | \mathbf{e}_{\mathbf{k}f}^* \times \mathbf{r} | a_n \rangle \langle a_n | (\mathbf{k}_i \mathbf{r}) \mathbf{r} | a_i \rangle \mathbf{e}_{\mathbf{k}i} \}}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n / 2}, \\ A_{res}^{e1sp1} &= \frac{\hbar^2}{4mc^2} \sum_{|a_n\rangle} \frac{\omega_{in}^3 \{\langle a_i | (\mathbf{L} + 2\mathbf{s}) \mathbf{P}_f | a_n \rangle \langle a_n | \mathbf{s} | \mathbf{e}_{\mathbf{k}i} \times \mathbf{r} | a_n \rangle \langle a_n | \mathbf{s} | \mathbf{e}_{\mathbf{k}i} \times \mathbf{r} | a_n \rangle \langle a_n | (\mathbf{L} + 2\mathbf{s}) \mathbf{P}_i | a_i \rangle \}}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n / 2}, \\ A_{res}^{e1sp1} &= \frac{\hbar^2 \omega_{\mathbf{k}}}{4mc^2} \sum_{|a_n\rangle} \frac{\omega_{in}^3 \langle a_i | \mathbf{s} | \mathbf{s} | \mathbf{e}_{\mathbf{k}f}^* \times \mathbf{r} | a_n \rangle \langle a_n | \mathbf{s} | \mathbf{s} | \mathbf{s} \rangle}{\hbar \omega_{in} + \hbar \omega_{\mathbf{k}} + i\Gamma_n / 2}, \\ A_{res}^{e1sp1} &= \frac{\hbar^2 \omega_{\mathbf{k}}}{4mc^2} \sum_{|a_n\rangle} \frac{\omega_{in}^3 \langle a_i | \mathbf{s} | \mathbf{s} | \mathbf{s}$$

а $\mathbf{L} = [\mathbf{r} \times \mathbf{p}]/\hbar$ — орбитальный момент импульса.

Компоненты сечения резонансного рассеяния A_{res}^{e1e1} (электрическая диполь-дипольная), A_{res}^{e2e2} (электрическая диполь-квадрупольная), A_{res}^{e2e2} (электрическая квадруполь-квадрупольная), A_{res}^{e1m1} (электрическая дипольная-магнитная дипольная), A_{res}^{e2m1} (электрическая квадрупольная-магнитная дипольная), A_{res}^{e2m1} (электрическая квадрупольная-магнитная дипольная) и A_{res}^{m1m1} (магнитная диполь-дипольная) хорошо известны [11, 24, 25].

В то же самое время A_{res}^{e1sp1} , A_{res}^{e2sp1} , A_{res}^{m1sp1} и A_{res}^{sp1sp1} — ранее не известные спин-зависимые компоненты сечения резонансного рассеяния, порождаемые спин-орбитальным членом (6) оператора перехода (5), возникающим из-за взаимодействия малых волновых функций Дирака электрона [27].

Для понимания физической природы новых спин-зависимых компонент рассмотрим атом, спины электронов которого параллельны оси z и не зависят друг от друга, т.е. спиновая часть $|\psi_s\rangle$ атомной волновой функции $|a\rangle = |\psi\psi_s\rangle$ представляет собой спинор вверх или вниз, и

$$\langle a_n | \mathbf{s} [\mathbf{e} \times \mathbf{r}] | a_i \rangle = \langle \psi_n | [\mathbf{e} \times \mathbf{r}] | \psi_i \rangle \langle \psi_s | \mathbf{s} | \psi_s \rangle.$$

Поскольку $\mathbf{s} = \{0, 0, s_z\}$, спин-зависимый дипольный оператор имеет вид

$$\mathbf{s}[\mathbf{e} \times \mathbf{r}] = i s_z \frac{4\pi}{3} r \left\{ Y_1^{-1}(\mathbf{e}) Y_1^{+1}\left(\frac{\mathbf{r}}{r}\right) - Y_1^{+1}(\mathbf{e}) Y_1^{-1}\left(\frac{\mathbf{r}}{r}\right) \right\}, \quad (12)$$

где $Y_l^m(\mathbf{a})$ — сферические функции для вектора **a** [28]. Как видно из выражения (12), такой оператор действует и на спиновую, и на координатную части волновой функции, поэтому назовем его спин-позиционным дипольным оператором [13]. Правила отбора для оператора (12) хорошо известны: $\Delta l =$ $= \pm 1$, $\Delta m = \pm 1$. Это позволяет предположить, что спин-позиционные компоненты сечения будут присутствовать при резонансном рассеянии РИ в магнитных материалах и при энергии падающего излучения, соответствующей *K*-краю поглощения дадут информацию о спиновой плотности *p*-состояний непрерывного спектра.

В таблице на примере ОЦК-Fe (E_K (Fe) = = 7.11 кэВ, E_{L2} (Fe) = 0.72 кэВ) проводится сопоставление относительных величин компонент сечения резонансного рассеяния РИ веществом (см. выражение (11)).

Так как внутренние состояния атома локализованы, компоненты сечения рассеяния вычислялись для внутренних орбиталей, радиус которых определяется соотношением [29, 30]

$$r_c = \frac{3}{2} \frac{a_0}{Z_{eff}},$$

где $a_0=\hbar^2/me^2=5.2917\cdot 10^{-9}$ см — радиус первой боровской орбиты.

Как видно из представленных результатов, спинпозиционные компоненты сечения резонансного рассеяния РИ веществом являются величиной такого

		Значения для ОЦК-Fe	
Компонента	Порядок величины	К-край поглощения Fe	L_2 -край поглощения Fe
$A_{res}^{e1e2}/A_{res}^{e1e1}$	$kr_c/2$	$5.7 \cdot 10^{-2}$	$6.6 \cdot 10^{-3}$
$A_{res}^{e2e2}/A_{res}^{e1e1}$	$(kr_{c}/2)^{2}$	$3.2 \cdot 10^{-3}$	$4.3 \cdot 10^{-5}$
$A_{res}^{e1m1}/A_{res}^{e1e1}$	$\hbar k^2/2m\omega_{in}$	$7.0 \cdot 10^{-3}$	$7.0 \cdot 10^{-4}$
$A_{res}^{e2m1}/A_{res}^{e1e1}$	$(\hbar k^2/2m\omega_{in})(kr_c/2)$	$4.0 \cdot 10^{-4}$	$4.6 \cdot 10^{-6}$
$A_{res}^{m1m1}/A_{res}^{e1e1}$	$(\hbar k^2/2m\omega_{in})^2$	$4.9 \cdot 10^{-5}$	$4.9 \cdot 10^{-7}$
$A_{res}^{e1sp1}/A_{res}^{e1e1}$	$\hbar\omega_{\mathbf{k}}/2mc^2$	$7.0 \cdot 10^{-3}$	$7.0 \cdot 10^{-4}$
$A_{res}^{e2sp1}/A_{res}^{e1e1}$	$(\hbar\omega_{\mathbf{k}}/2mc^2)(kr_c/2)$	$4.0 \cdot 10^{-4}$	$4.6 \cdot 10^{-6}$
$A_{res}^{m1sp1}/A_{res}^{e1e1}$	$(\hbar\omega_{\mathbf{k}}/2mc^2)(\hbar k^2/2m\omega_{in})$	$4.9 \cdot 10^{-5}$	$4.9 \cdot 10^{-7}$
$A_{res}^{sp1sp1}/A_{res}^{e1e1}$	$(\hbar\omega_{\mathbf{k}}/2mc^2)^2$	$4.9 \cdot 10^{-5}$	$4.9 \cdot 10^{-7}$

Таблица. Относительные величины компонент сечения резонансного рассеяния РИ

же порядка малости, как и соответствующие магнитные компоненты. Вместе с этим поляризационные зависимости спин-позиционных и магнитных компонент различны, что позволит разделить их вклад в сечение рассеяния.

4. ЗАКЛЮЧЕНИЕ

В работе получены выражения для сечений нерезонансного и резонансного рассеяния РИ атомами вещества. Эти выражения содержат новые спин-зависимые члены, обусловленные спин-орбитальным взаимодействием.

Так как величины новых спин-зависимых компонент сечения нерезонансного рассеяния РИ много меньше сечений как томсоновского, так и магнитного нерезонансного рассеяния, спин-зависимыми компонентами можно пренебречь.

Новые спин-зависимые компонент сечения резонансного рассеяния РИ атомами вещества являются результатом совместного действия спин-позиционного дипольного (12) и электрического дипольного A_{res}^{e1sp1} , электрического квадрупольного A_{res}^{e2sp1} , магнитного дипольного A_{res}^{m1sp1} и спин-позиционного операторов A_{res}^{sp1sp1} , на основании чего они получили название спин-позиционных компонент.

Экспериментальное обнаружение спин-позиционных компонент возможно на *K*-крае поглощения в магнитных материалах, а их величина сопоставима с величинами магнитных дипольных и электрической квадруполь-квадрупольной компонент сечения резонансного рассеяния РИ. Финансирование. Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 19-52-12029).

ЛИТЕРАТУРА

- Magnetism and Accelerator-Based Light Sources, ed. by H. Bulou, L. Joly, J.-M. Mariot et al., Springer, Berlin (2021).
- 2. X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications, ed. by J.A. van Bokhoven and C. Lamberti, John Wiley and Sons, United States (2016).
- 3. C. Brouder, J. Phys.: Condens. Matter 2, 701 (1990).
- V. E. Dmitrienko, K. Ishida, A. Kirfel et al., Acta. Cryst. A 61, 481 (2005).
- Magnetism and Synchrotron Radiation: New Trends, ed. by E. Beaurepaire, H. Bulou, F. Scheurer et al., Springer, Berlin (2010).
- 6. C. Vettier, Eur. Phys. J. Spec. Top. 208, 3 (2012).
- L. J. P. Ament, M. van Veenendaal, T. P. Devereaux et al., Rev. Mod. Phys. 83, 705 (2011).
- J.-L. Hodeau, V. Favre-Nicolin, S. Bos et al., Chem. Rev. 101, 1843 (2001).
- М. М. Борисов, В. Е. Дмитриенко, К. А. Козловская и др., Поверхность 10, 42 (2019).
- 10. M. Blume, J. App. Phys. 57, 3615 (1985).
- M. Blume, in *Resonant Anomalous X-Ray Scattering*, ed. by G. Materlik, C. J. Sparks, and K. Fischer, North-Holland, Amserdam (1994), p. 495.

- 12. N. Bouldi and C. Brouder, Eur. Phys. J. 90, 246 (2017).
- N. Bouldi, N. J. Vollmers, C. G. Delpy-Laplanche et al., Phys. Rev. B 96, 085123 (2017).
- 14. В. Гайтлер, *Квантовая теория излучения*, Изд-во иностр. лит-ры, Москва (1956).
- А. М. Попов, О. В. Тихонова, Лекции по атомной физике, Москва (2007).
- 16. T. Ishikawa, H. Aoyagi, T. Asaka et al., Nature Photon. 6, 540 (2012).
- 17. К. Ициксон, Ж.-Б. Зюбер, Квантовая теория поля, т. 1, Мир, Москва (1984).
- 18. L. L. Foldy, Phys. Rev. 87, 688 (1952).
- 19. A. J. Silenko, Phys. Rev. A 93, 022108 (2016).
- **20**. Л. Шифф, *Квантовая механика*, Изд-во иностр. лит-ры, Москва (1959).
- **21**. H. Friedrich, *Theoretical Atomic Physics*, Springer, Berlin (2006).
- **22**. A. L. Ankoudinov, *Relativistic Spin-Dependent X-Ray Absorption Theory*, University of Washington (1996).

- 23. С. Сунакава, Квантовая теория рассеяния, Мир, Москва (1979).
- 24. M. Altarelli, in *Magnetism: a Synchrotron Radiation Approach*, ed. by E. Beaurepaire, H. Bulou, F. Scheurer et al., Springer, Berlin (2006), p. 201.
- 25. M. Altarelli, in Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources, ed. by E. Beaurepaire, H. Bulou, F. Scheurer et al., Springer, Berlin (2013), p. 95.
- 26. F. de Groot, Coord. Chem. Rev. 249, 31 (2005).
- 27. В. К. Херсонский, Е. В. Орленко, Д. А. Варшалович, Квантовая теория углового момента и ее приложения, т. 2, Физматлит, Москва (2019).
- 28. Д. А. Варшалович, В. К. Херсонский, Е. В. Орленко, А. Н. Москалев, Квантовая теория углового момента и ее приложения, т. 1, Физматлит, Москва (2017).
- 29. E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
- 30. E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys. 47, 1300 (1967).