ЭЛЕКТРОН-ФОНОННАЯ ПЕРЕНОРМИРОВКА МАССЫ В МЕТАЛЛЕ ЗА ПРЕДЕЛАМИ АДИАБАТИЧЕСКОГО ПРИБЛИЖЕНИЯ

Э. З. Кучинский^{*}, Н. А. Кулеева

Институт электрофизики Уральского отделения Российской академии наук 620016, Екатеринбург, Россия

> Поступила в редакцию 8 апреля 2021 г., после переработки 8 апреля 2021 г. Принята к публикации 9 апреля 2021 г.

Проанализирована перенормировка массы электрона в металле за счет электрон-фононного взаимодействия и связанная с ней константа взаимодействия λ в моделях как акустических, так и оптических фононов в широком интервале величины характерной частоты фононов ω_0 как в адиабатическом пределе, когда эта частота существенно меньше энергии Ферми $arepsilon_F$, так и в антиадиабатическом, когда характерная частота существенно больше ширины затравочной электронной зоны. Показано, что в антиадиабатическом пределе λ обратно пропорциональна характерной частоте фононов, и вследствие малости этой константы теорема Мигдала справедлива и в этом пределе. Рассмотрено влияние беспорядка и сильных электронных корреляций на электрон-фононную перенормировку массы и константу λ . В адиабатическом пределе перенормировка массы λ несколько подавляется примесным рассеянием, что связано с уменьшением плотности состояний на уровне Ферми. Электронные корреляции в этом пределе совсем незначительно подавляют электрон-фононную константу λ в коррелированном металле, а в моттовском диэлектрике $\lambda pprox 0$. Электрон-фононное взаимодействие затрудняет моттовский переход металл-диэлектрик, что в диэлектрике вблизи моттовского перехода приводит к возможности восстановления квазичастичного пика и резкого роста константы λ с ростом дебаевской частоты. В антиадиабатическом пределе ни беспорядок, ни сильные электронные корреляции практически не влияют на электрон-фононную перенормировку массы и эффективную константу $\lambda \sim \varepsilon_F/\omega_0.$

DOI: 10.31857/S0044451021090108

1. ВВЕДЕНИЕ

Стандартная теория электрон-фононного взаимодействия, как и теория сверхпроводимости Элиашберга – Макмиллана [1–3], целиком основана на применимости адиабатического приближения и теореме Мигдала [4], позволяющей пренебречь вершинными поправками при расчетах электрон-фононного взаимодействия в типичных металлах. На самом деле реальным параметром малости теории возмущений в таком пределе является $\lambda \omega_0/\varepsilon_F \ll 1$, где λ — безразмерная константа электрон-фононного взаимодействия, ω_0 — характерная частота фононов, ε_F — энергия Ферми. В последнее время был открыт ряд сверхпроводников, где адиабатическое приближение не может считаться выполненным, а характерные частоты фононов порядка или даже превышают энергию Ферми электронов. Имеются в виду, главным образом, высокотемпературные сверхпроводники на основе монослоев FeSe, прежде всего системы типа моноатомного слоя FeSe на подложке типа SrTiO₃ (FeSe/STO) [5]. Впервые на это обстоятельство в применении к таким системам обратил внимание Горьков [6, 7] при обсуждении идеи о возможном механизме повышения температуры сверхпроводящего перехода T_c в системе FeSe/STO за счет взаимодействия с высокоэнергетическими оптическими фононами в SrTiO₃ [5].

В недавних работах Садовского [8–10] электронфононная связь за пределами адиабатического приближения была исследована в рамках теории Элиашберга – Макмиллана. В этих работах было проде-

[•] E-mail: kuchinsk@iep.uran.ru

монстрировано, что в антиадиабатическом пределе эффективная константа электрон-фононного взаимодействия, определяющая перенормировку массы, имеет вид

$$\lambda = \lambda_0 \frac{D}{\omega_0},$$

где λ_0 — стандартная элиашберговская константа электрон-фононного взаимодействия, а D — полуширина зоны. Таким образом, в антиадиабатическом пределе эффективная константа электронфононной связи оказывается малой в силу малости D/ω_0 . Такой сильный результат был получен непосредственно в рамках теории Элиашберга – Макмиллана, где для упрощения анализа делается усреднение по электронным импульсам, лежащим на поверхности Ферми (в антиадиабатическом случае усреднение по импульсам рассеянного на фононе электрона идет по изоэнергетической поверхности с энергией $\varepsilon_F + \omega_0$). Естественно, в антиадиабатическом пределе, когда частота рассеяния заметно больше энергии Ферми, это является достаточно грубым приближением. Кроме того, в работах Садовского [8–10] рассматривалась лишь эйнштейновская модель оптических фононов.

В данной работе мы последовательно рассмотрим эффективную константу электрон-фононного взаимодействия, определяющую перенормировку массы в пределе слабой связи, не используя приближение Элиашберга – Макмиллана, и покажем, что и для оптических, и для акустических фононов в антиадиабатическом пределе $\lambda \sim \lambda_0 D/\omega_0$. Также мы исследуем влияние примесного рассеяния и сильных электронных корреляций (в рамках DMFT+ Σ -подхода) на электрон-фононную перенормировку массы и продемонстрируем, что в антиадиабатическом пределе такое влияние несущественно и поведение $\lambda \sim \lambda_0 D/\omega_0$ сохраняется.

Далее мы будем рассматривать область достаточно слабой силы связи $\lambda_0 < 1$, где можно пренебречь возможными поляронными эффектами [11,12].

Необходимо подчеркнуть, что в данной работе мы будем рассматривать лишь эффективную константу электрон-фононного взаимодействия, связанную с перенормировкой массы, которая в адиабатическом пределе определяет и температуру сверхпроводящего перехода T_c . В антиадиабатическом пределе это не так и критическая температура T_c определяется скорее константой λ_0 [8–10].

Рис. 1. Диаграмма первого порядка для собственно-энергетической части

2. КОНСТАНТА ЭЛЕКТРОН-ФОНОННОГО ВЗАИМОДЕЙСТВИЯ. ПРИБЛИЖЕНИЕ СЛАБОЙ СВЯЗИ

Предполагая слабость электрон-фононной связи, ограничимся простейшим вкладом первого порядка для $\Sigma_{ph}(\varepsilon, \mathbf{p})$, показанным диаграммой на рис. 1. В адиабатическом пределе рассмотрение такого вклада связано с действием теоремы Мигдала и с возможностью пренебречь вершинными поправками к такой диаграмме. В антиадиабатическом пределе, как будет продемонстрировано ниже, эффективная константа электрон-фононного взаимодействия λ оказывается существенно меньше затравочной константы электрон-фононного взаимодействия λ_0 , что и оправдывает использование приближения слабой связи. В таком приближении имеем

$$\Sigma_{ph}(\varepsilon, \mathbf{p}) = ig^2 \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \sum_{\mathbf{k}} D(\omega, \mathbf{k}) G(\varepsilon + \omega, \mathbf{p} + \mathbf{k}), \quad (1)$$

где *g* — обычная константа электрон-фононного взаимодействия,

$$G(\varepsilon, \mathbf{p}) = [\varepsilon + \mu - \xi(\mathbf{p}) - \Sigma_{imp}(\varepsilon) - \Sigma_{ph}(\varepsilon, \mathbf{p})]^{-1}, \quad (2)$$

 $G(\varepsilon, \mathbf{p})$ — одночастичная функция Грина, одетая рассеянием на фононах и беспорядке, $\xi(\mathbf{p})$ — «затравочная» электронная дисперсия, μ — химический потенциал, определяемый заполнением зоны, $\Sigma_{imp}(\varepsilon)$ — собственно-энергетическая часть (СЭЧ), связанная с рассеянием на примесях, для которой будем использовать простейшее самосогласованное борновское приближение:

$$\Sigma_{imp}(\varepsilon) = \Delta^2 \sum_{\mathbf{p}} G(\varepsilon, \mathbf{p}), \qquad (3)$$

где $G(\varepsilon, \mathbf{p})$ — одноэлектронная функция Грина (2), а Δ — амплитуда случайного гауссовского поля (ширина распределения Гаусса случайных энергетических уровней на узлах решетки), которая служит мерой силы беспорядка. Далее мы будем рассматривать модель «затравочной» зоны с полуэллиптической плотностью состояний (на элементарную ячейку и один спин):

$$N_0(\xi) = \frac{2}{\pi D^2} \sqrt{D^2 - \xi^2},\tag{4}$$

которая является неплохим приближением в трехмерном случае. Здесь *D* определяет полуширину зоны проводимости.

Фононный пропагатор имеет вид

$$D(\omega, \mathbf{k}) = \frac{2\omega_0(\mathbf{k})}{\omega^2 - \omega_0^2(\mathbf{k}) + i\delta},\tag{5}$$

где $\omega_0(\mathbf{k})$ — фононная дисперсия, которая в стандартной модели Дебая или Эйнштейна имеет вид

$$\omega_0(\mathbf{k}) = \begin{cases} u|\mathbf{k}|, & |\mathbf{k}| < \omega_D/u, \\ \omega_0, & |\mathbf{k}| < k_0. \end{cases}$$
(6)

Здесь u — скорость звука, ω_D , ω_0 — частоты Дебая и Эйнштейна, обрезание k_0 порядка импульса Ферми p_F (в дальнейшем во всех расчетах мы брали $k_0 = p_F$).

Фактически $\Sigma_{ph}(\varepsilon, \mathbf{p})$, определенная выражением (1), имеет слабую импульсную зависимость, которой мы можем пренебречь и учитывать только существенную частотную зависимость. Прямые вычисления (см., например, [13, 14]) в случае дебаевского спектра (6) позволяют переписать выражение (1) в виде

$$\Sigma_{ph}(\varepsilon) = \frac{-ig^2\omega_D}{\omega_c^2} \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \times \left\{ 1 - \frac{1}{2} \frac{\omega}{\omega_D} \ln \left| \frac{\omega/\omega_D + 1}{\omega/\omega_D - 1} \right| + i\pi \frac{\omega^2}{\omega_D^2} \theta(\omega_D^2 - \omega^2) \right\} \times I(\varepsilon + \omega).$$
(7)

Здесь $I(\varepsilon) = \sum_{\mathbf{p}} G(\varepsilon, \mathbf{p})$ — локальная функция Грина,

$$I(\varepsilon) = \int_{-D}^{+D} d\xi \frac{N_0(\xi)}{E_{\varepsilon} - \xi},$$
(8)

где $E_{\varepsilon} = \varepsilon + \mu - \Sigma_{imp}(\varepsilon) - \Sigma_{ph}(\varepsilon)$ и $\omega_c = p_F u$ — характерная частота порядка ω_D . Далее везде мы будем полагать $\omega_c = \omega_D$. В случае полуэллиптической «затравочной» плотности состояний $N_0(\varepsilon)$ (4) с полушириной зоны D мы получаем

$$I(\varepsilon) = \frac{2}{D^2} \left(E_{\varepsilon} - \sqrt{E_{\varepsilon}^2 - D^2} \right).$$
(9)

Удобно ввести затравочную безразмерную константу электрон-фононного взаимодействия:

$$\lambda_0 = \frac{g^2 N_0(\varepsilon_F)}{\omega_D},\tag{10}$$

которая в отсутствие примесного рассеяния в глубоко адиабатическом пределе ($\omega_D \ll D$) совпадает с эффективной λ , ответственной за перенормировку масс.

В российской литературе [15,16] достаточно часто в качестве фононного пропагатора используют

$$D(\omega, \mathbf{k}) = \frac{\omega_0^2(\mathbf{k})}{\omega^2 - \omega_0^2(\mathbf{k}) + i\delta}.$$
 (11)

В этом случае [13]

$$\Sigma_{ph}(\varepsilon) = \frac{-ig^2}{4\omega_D^2} \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \times \left\{ \omega_D^2 + \omega^2 ln \left| \frac{\omega_D^2 - \omega^2}{\omega^2} \right| + i\pi\omega^2 \theta(\omega_D^2 - \omega^2) \right\} \times I(\varepsilon + \omega). \quad (12)$$

Естественно переопределение фононного пропагатора ведет к переопределению константы g и затравочной безразмерной константы электрон-фононного взаимодействия:

$$\lambda_0 = g^2 N_0(\varepsilon_F)/4. \tag{13}$$

В случае эйнштейновского спектра фононов [14]:

$$\Sigma_{ph}(\varepsilon) = \frac{ig^2\omega_0}{16\pi} \Big\{ -i\pi (I(\varepsilon + \omega_0) + I(\varepsilon - \omega_0)) + \int_0^\infty d\omega \left[I(\varepsilon + \omega_0 + \omega) + I(\varepsilon - \omega_0 - \omega) - I(\varepsilon + \omega_0 - \omega) - I(\varepsilon - \omega_0 + \omega) \right] / \omega \Big\}.$$
 (14)

В такой модели фононного спектра (и в предположении $k_0 = p_F$) затравочная безразмерная константа электрон-фононного взаимодействия также определяется выражением (13) [14].

Для упрощения нашего анализа мы не проводим полностью самосогласованные расчеты, пренебрегая перенормировкой фононов вследствие электронфононного взаимодействия, поскольку предполагаем, что фононный спектр (6) фиксируется экспериментом.

Далее нас в основном будет интересовать антиадиабатический предел, который на практике возможен лишь для достаточно узкозонных систем. В таких системах обычно весьма существенны электронные корреляции, которые могут быть неплохо описаны в рамках теории динамического среднего поля (DMFT) [17–19] для модели Хаббарда, но возникает вопрос о взаимовлиянии этих корреляций и электрон-фононного взаимодействия. Для описания такого взаимовлияния воспользуемся, следуя [13], DMFT+ Σ -подходом [20–22]. В этом подходе одноэлектроннная функция Грина имеет вид¹)

$$G(\varepsilon, \mathbf{p}) = 1/\left[\varepsilon + \mu - \xi(\mathbf{p}) - \Sigma(\varepsilon) - \Sigma_{ph}(\varepsilon)\right], \quad (15)$$

где $\Sigma(\varepsilon)$ — локальная DMFT СЭЧ. Такой подход позволяет сохранить систему самосогласованных уравнений стандартной DMFT, только на каждой DMFT-итерации мы пересчитываем соответствующую электрон-фононную СЭЧ $\Sigma_{ph}(\varepsilon)$, которая в приближении слабой связи по-прежнему в зависимости от модели фононов определяется выражениями (7), (12) или (14) с $I(\varepsilon)$, совпадающей с локальной функцией Грина эффективной однопримесной задачи:

$$G_{ii}(\varepsilon) = I(\varepsilon) = \int_{-D}^{+D} d\xi \frac{N_0(\xi)}{\varepsilon + \mu - \xi - \Sigma(\varepsilon) - \Sigma_{ph}(\varepsilon)}.$$
 (16)

Эффективную константу электрон-фононного взаимодействия будем определять через перенормировку массы квазичастиц:

$$\frac{m^{\star}}{m} = 1 + \lambda = 1 - \left. \frac{d \operatorname{Re} \Sigma_{ph}(\varepsilon)}{d\varepsilon} \right|_{\varepsilon=0}.$$
 (17)

Тогда

$$\lambda = -\left. \frac{d\operatorname{Re}\Sigma_{ph}(\varepsilon)}{d\varepsilon} \right|_{\varepsilon=0}.$$
 (18)

Естественно, в адиабатическом пределе, когда характерная фононная частота много меньше энергии Ферми, эффективная константа электронфононного взаимодействия практически совпадает с затравочной константой λ_0 . В антиадиабатическом пределе это не так и эффективная константа $\lambda \sim \lambda_0 D/\omega_D$, как следует из подхода на основе теории Элиашберга–Макмиллана [1–3] и как будет продемонстрировано в дальнейшем в нашем подходе.

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Поскольку нашей задачей является выяснение качественной зависимости константы λ от характерной частоты фононов, дальше мы везде рассматриваем случай с половинным заполнением электронной зоны, т.е. $\mu = U/2$ или $\mu = 0$, в отсутствие хаббардовского взаимодействия U. На рис. 2 приведены плотности состояний для различных значений дебаевской частоты (при выборе фононного пропагатора в виде (5)). В адиабатическом пределе $\omega_D/2D \ll 1$ мы видим стандартное изменение плотности состояний в окрестности $\pm \omega_D$ вокруг уровня Ферми. В антиадиабатическом пределе, когда дебаевская частота больше ширины зоны, наблюдаются пики в плотности состояний в окрестности дебаевской частоты, располагающиеся в этом пределе уже за краями затравочной зоны (см. вставку на рис. 2). С ростом дебаевской частоты интенсивность этих пиков заметно уменьшается. Качественно абсолютно такая же картина эволюции плотности состояний с ростом характерной частоты фононов наблюдается и при другом выборе фононного пропагатора (11) в дебаевской модели и для эйнштейновской модели оптических фононов.

Зависимости эффективной константы электрон-фононного взаимодействия от характерной частоты фононов, полученные из перенормировки массы (17), приведены на рис. 3. Видим, что во всех моделях в адиабатическом пределе эффективная константа λ линейно уменьшается с ростом характерной частоты фононов достаточно слабо (см. вставки на рис. 3). В антиадиабатическом пределе

Рис. 2. Плотность состояний для различных значений дебаевской частоты. На вставке пики плотности состояний на дебаевской частоте в антиадиабатическом пределе

¹⁾ Далее при учете электронных корреляций мы будем пренебрегать примесным рассеянием.

эффективная константа электрон-фононного взаимодействия обратно пропорциональна характерной частоте фононов:

$$\lambda \sim \frac{D}{\omega_D}, \quad \lambda \sim \frac{D}{\omega_0}.$$
 (19)

В полном соответствии с предсказаниями работ [8–10], где эта константа анализировалась в подходе Элиашберга. Такое асимптотическое поведение λ , полученное непосредственно из численных данных для модели Дебая в антиадиабатическом пределе, приведено штриховыми кривыми на рис. 3a, 6. В работе [8] в рамках теории Элиашберга – Макмиллана для эйнштейновской модели оптических фононов было получено общее интерполяционное выражение для эффективной константы электрон-фононного взаимодействия:

$$\lambda = \lambda_0 \frac{D}{\omega_0 + D},\tag{20}$$

описывающее и адиабатический и антиадиабатический пределы. Константа λ , определяемая (20), приведена штриховой кривой на рис. 3*6*. Видим, что

Рис. 3. Зависимость эффективной константы электронфононного взаимодействия от характерной фононной частоты. Для двух вариантов фононного пропагатора в модели Дебая: a — пропагатор (5), б — пропагатор (11). В модели Эйнштейна — e. Штриховыми кривыми на a и бприведено полученное из численных данных асимптотическое поведение $\lambda \sim D/\omega_D$ в антиадиабатическом пределе, на e результат (20) работы [8]. На вставках — область малых характерных фононных частот (адиабатический предел)

(20) хорошо описывает адиабатический и антиадиабатический пределы, а в промежуточной области несколько завышает значение λ . Существенное уменьшение эффективной константы в антиадиабатическом пределе, где формально перестает работать теорема Мигдала и казалось бы нельзя пренебрегать вершинными поправками, позволяет использовать применяемое нами приближение первого порядка для СЭЧ.

Перейдем к анализу влияния беспорядка на плотность состояний и эффективную константу электрон-фононного взаимодействия. На рис. 4 приведена эволюция плотности состояний с ростом беспорядка. В адиабатическом пределе (рис. 4*a*) особенность в плотности состояний, связанная с электронфононным взаимодействием, лежит в энергетической полосе $\pm \omega_D$ вокруг уровня Ферми, и с ростом беспорядка ширина этой энергетической области практически не меняется. Беспорядок приводит к уширению затравочной зоны с падением плотности состояний на уровне Ферми, что вызывает

Рис. 4. Эволюция плотности состояний с ростом беспорядка в адиабатическом (a) и антиадиабатическом (б) пределах

Рис. 5. Зависимость эффективной константы λ от характерной частоты фононов для различных степеней беспорядка в модели Дебая (*a*) и в модели Эйнштейна (*б*). На вставках область малых характерных фононных частот (адиабатический предел)

уменьшение константы λ с ростом беспорядка (см. рис. 5). В антиадиабатическом пределе пики в плотности состояний, связанные с электрон-фононным взаимодействием, располагаются за пределами затравочной зоны на энергии $\pm \omega_D$ от уровня Ферми (см. вставку рис. 4*б*) и практически не изменяются с ростом беспорядка (ни их положение, ни их интенсивность). Это приводит к тому, что беспорядок никак не влияет на величину константы электронфононного взаимодействия в антиадиабатическом пределе. В эйнштейновской модели оптических фононов качественно эволюция плотности состояний с ростом беспорядка является аналогичной.

На рис. 5 приведена эволюция зависимости эффективной константы λ от характерной частоты фононов с ростом беспорядка. Видим, что в обеих моделях фононов в адиабатическом пределе константа λ несколько уменьшается с ростом беспорядка, что связано с уменьшением плотности состояний на уровне Ферми. В антиадиабатическом пределе $\lambda \sim D/\omega_D$; D/ω_0 и фактически никак не зависит от беспорядка, что связано, как уже отмечалось выше, с отсутствием влияния беспорядка на пики плотности состояний на энергии $\pm \omega_D$, связанные с электрон-фононным рассеянием.

Наконец перейдем к изучению влияния сильных электронных корреляций на электрон-фононную перенормировку массы электрона. В рамках DMFT+ Σ подхода, когда полная СЭЧ есть прямая сумма электронной СЭЧ $\Sigma(\varepsilon)$ и электрон-фононной

Рис. 6. Плотность состояний при различных значениях дебаевской частоты ($\lambda_0 = 0.5$) и в отсутствие электрон-фононного взаимодействия ($\lambda_0 = 0$) для разной силы электронных корреляций: (a) — металлическая фаза, (δ) — вблизи перехода Мотта (металл), (e) — вблизи перехода Мотта (диэлектрик), (z) — диэлектрическсая фаза

 $\Sigma_{ph}(\varepsilon)$, полная перенормировка массы $m^*/m = 1 + \lambda$, где $\lambda = \lambda_{ee} + \lambda_{ph}$ — есть также прямая сумма безразмерных констант межэлектронного

$$\lambda_{ee} = -\left. \frac{d\operatorname{Re}\Sigma(\varepsilon)}{d\varepsilon} \right|_{\varepsilon=0}$$

и электрон-фононного

$$\lambda_{ph} = -\left. \frac{d\operatorname{Re}\Sigma_{ph}(\varepsilon)}{d\varepsilon} \right|_{\varepsilon=0}$$

взаимодействий. Причем в условиях сильных электронных корреляций обычно $\lambda_{ee} \gg \lambda_{ph}$, но поскольку энергетические масштабы перенормировки электронного спектра за счет межэлектронного и электрон-фононного взаимодействий существенно различны, всегда есть возможность разделить эти вклады. В данной работе мы будем изучать именно электрон-фононный вклад в перенормировку массы.

На рис. 6 приведена эволюция плотности состояний с увеличением дебаевской частоты от адиабатического до антиадиабатического предела при $\lambda_0 = 0.5$ для различной силы хаббардовского взаимодействия U. В металлической фазе (рис. 6a, 6) электрон-фононное взаимодействие приводит к переносу части спектрального веса из верхней и нижней хаббардовских зон на квазичастичный пик на уровне Ферми и этот пик уширяется с увеличением ω_D вплоть до $\omega_D/2D \sim 1$, однако с дальнейшим увеличением ω_D в антиадиабатическом пределе квазичастичный пик опять начинает сужаться. Это связано с уменьшением эффективной константы электрон-фононного взаимодействия λ с ростом час-

Рис. 7. Зависимость эффективной константы λ от дебаевской частоты для разной силы хаббардовского взаимодействия. На вставке область малых частот Дебая (адиабатический предел)

тоты Дебая в антиадиабатическом пределе. Уширение квазичастичного пика электрон-фононным взаимодействием свидетельствует, что это взаимодействие затрудняет моттовский переход металл-диэлектрик [13]. Соответственно в диэлектрической фазе вблизи моттовского перехода (рис. 6в) рост ω_D приводит к восстановлению квазичастичного пика и переходу диэлектрик-металл, однако дальнейший рост дебаевской частоты в антиадиабатическом пределе приводит к сужению этого пика и его исчезновению (переходу металл-диэлектрик) при дальнейшем росте ω_D . Достаточно глубоко в фазе моттовского диэлектрика (рис. 6г) силы электронфононного взаимодействия оказывается недостаточно для закрытия моттовской щели, но наибольшее влияние электрон-фононного взаимодействия на плотность состояний в области верхней и нижней хаббардовских зон по-прежнему наблюдается при $\omega_D/2D \sim 1$, а дальнейшее увеличение ω_D уменьшает λ и ослабляет это влияние.

На рис. 7 приведена зависимость эффективной константы электрон-фононного взаимодействия λ от дебаевской частоты для разной силы электронных корреляций. В сильном адиабатическом пределе ($\omega_D \ll D$) эффективная константа λ в металлической фазе мало отличается от затравочной λ_0 при U = 0, в диэлектрической фазе на уровне Ферми открывается моттовская щель и пока дебаевская частота меньше этой щели $\lambda \approx 0$, электрон-фононная перенормировка массы отсутствует. Однако в диэлектрике вблизи моттовского перехода (см. рис. 6*6* и случай U/2D = 1.45 на рис. 7) само электронфононное взаимодействие может (когда ω_D превышает ширину моттовской щели) приводить к закрытию моттовской щели и восстановлению квазичастичного пика на уровне Ферми. Это приводит к быстрому росту константы λ с ростом ω_D в адиабатическом пределе, однако с дальнейшим ростом частоты Дебая в антиадиабатическом пределе константа λ начинает уменьшаться. В антиадиабатическом пределе λ практически не зависит от силы электронных корреляций и даже глубоко в моттовском диэлектрике поведение эффективной константы $\lambda \approx \lambda_0 D/\omega_D$, полученное в работе Садовского [8], сохраняется.

4. ЗАКЛЮЧЕНИЕ

В пределе слабой связи мы проанализировали эффективную константу электрон-фононного взаимодействия λ , связанную с перенормировкой массы, в моделях акустических и оптических фононов в широком интервале величины характерной частоты фононов как в адиабатическом пределе, так и в антиадиабатическом, когда характерная фононная частота много больше ширины затравочной электронной зоны 2D. Во всех рассмотренных моделях фононного спектра в антиадиабатическом пределе эффективная константа λ обратно пропорциональна характерной частоте фононов.

Мы изучили влияние беспорядка на эффективную константу электрон-фононного взаимодействия. В адиабатическом пределе λ несколько подавляется беспорядком, что связано с уменьшением плотности состояний на уровне Ферми вследствие размытия затравочной плотности состояний беспорядком. В антиадиабатическом пределе беспорядок не оказывает никакого влияния на константу электрон-фононного взаимодействия, несмотря на то что плотность состояний на уровне Ферми также заметно уменьшается с ростом беспорядка.

В рамках DMFT+ Σ -подхода мы также исследовали взаимовлияние сильных электронных корреляций и электрон-фононного взаимодействия и изучили влияние электронных корреляций на электрон-фононную перенормировку массы. В сильном адиабатическом пределе эффективная константа электрон-фононного взаимодействия $\lambda \approx \lambda_0$ в металлической фазе и $\lambda \approx 0$ в моттовском диэлектрике. Однако электрон-фононное взаимодействие затрудняет моттовский переход металл-диэлектрик, приводя к возможности восстановления квазичастичного пика с ростом λ_0 или дебаевской частоты. Поэтому в диэлектрике вблизи моттовского перехода рост дебаевской частоты (при ω_D порядка ширины щели) приводит к резкому росту константы λ . В антиадиабатическом пределе электронные корреляции практически не влияют на эффективную константу λ и электрон-фононную перенормировку массы. Таким образом, в антиадиабатическом пределе поведение $\lambda \sim D/\omega_D; D/\omega_0$ сохраняется и в присутствии сильных электронных корреляций и примесного рассеяния.

Благодарности. Авторы благодарны М. В. Садовскому за полезное обсуждение результатов работы.

Финансирование. Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 20-02-00011).

ЛИТЕРАТУРА

- D. J. Scalapino, in *Superconductivity*, ed. by R. D. Parks, Marcel Dekker, New York (1969), p. 449.
- С. В. Вонсовский, Ю. А. Изюмов, Э. З. Курмаев, Сверхпроводимость переходных металлов их сплавов и соединений, Наука, Москва (1977).
- P. B. Allen and B. Mitrović, Solid State Physics, Vol. 37, ed. by F. Seitz, D. Turnbull, and H. Ehrenreich, Academic Press, New York (1982), p. 1.
- **4**. А. Б. Мигдал, ЖЭТФ **34**, 1438 (1958).
- М. В. Садовский, УФН 186, 1035 (2016); arXiv: 1605.04426.
- 6. L. P. Gor'kov, Phys. Rev. B 93, 054517 (2016).
- 7. L. P. Gor'kov, Phys. Rev. B 93, 060507 (2016).
- М. В. Садовский, ЖЭТФ 155, 527 (2019); arXiv: 1809.02531.

- М. В. Садовский, Письма ЖЭТФ 109, 165 (2019); arXiv:1811.10184.
- M. V. Sadovskii, J. Supercond. Novel Magn. 33, 19 (2020); arXiv:1908.00718.
- **11**. А. С. Александров, А. Б. Кребс, УФН **162**, 1 (1992).
- I. Esterlis, B. Nosarzewski, E. W. Huang, D. Moritz, T. P. Devereux, D. J. Scalapino, and S. A. Kivelson, Phys. Rev. B 97, 140501(R) (2018).
- E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B 80, 115124 (2009); arXiv:0906.3865.
- E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, J. Phys. Chem. Sol. 72, 366 (2011); arXiv:1006.0294.
- 15. А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической физике, Физматгиз, Москва (1963).
- М. В. Садовский, Диаграмматика, ИКИ, Москва– Ижевск (2010).
- 17. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).
- 18. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
- 19. D. Vollhardt, in Lectures on the Physics of Strongly Correlated Systems XIV, ed. by A. Avella and F. Mancini, AIP Conference Proceedings, Vol. 1297 (AIP, Melville, New York, 2010), p. 339; arXiV:1004. 5069.
- E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Письма в ЖЭТФ 82, 217 (2005) [JETP Letters 82, 198 (2005)]; arXiv:cond-mat/0506215.
- M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Prushke, and V. I. Anisimov. Phys. Rev. B 72, 155105 (2005); arXiV:cond-mat/0508585.
- 22. Э. З. Кучинский, И. А. Некрасов, М. В. Садовский, УФН 182, 345 (2012) [Physics Uspekhi 53, 325 (2012)]; arXiv:1109.2305.