ЭНЕРГЕТИЧЕСКИЕ ИЗМЕНЕНИЯ РЕЛАКСАЦИОННОЙ ПРИРОДЫ В ВЫСОКОЭНТРОПИЙНЫХ ОБЪЕМНЫХ АМОРФНЫХ СПЛАВАХ

А. С. Макаров^{а*}, Е. В. Гончарова^а, Ц. Ч. Цзиао^{b**}, Н. П. Кобелев^с, В. А. Хоник^а

^а Воронежский государственный педагогический университет 394043, Воронеж, Россия

^b Northwestern Polytechnical University 710072, Xi'an, China

^с Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская обл., Россия

> Поступила в редакцию 5 марта 2021 г., после переработки 22 марта 2021 г. Принята к публикации 23 марта 2021 г.

Методом электромагнитно-акустического преобразования проведены исследования релаксации сдвиговой упругости высокоэнтропийных объемных аморфных сплавов в исходном (свежезакаленном) и релаксированном (состаренном) состояниях, на основании которых определены температурные зависимости изменения молярной концентрации дефектов и энтальпия их формирования. Показано, что изохронная кинетика изменения молярной энтальпии высокоэнтропийных объемных аморфных сплавов может быть полностью рассчитана на основе независимых данных изменения молярной концентрации дефектов.

DOI: 10.31857/S0044451021080071

1. ВВЕДЕНИЕ

Несмотря на то что с момента получения первых аморфных сплавов прошло более полувека [1], интерес исследователей к аморфным сплавам не ослабевает. Этот факт вызван целым рядом причин фундаментального и прикладного характера. С позиции фундаментальной науки вопрос разработки теории о природе некристаллических материалов является одной из интереснейших нерешенных проблем в физике конденсированного состояния [2]. Но, с другой стороны, аморфные сплавы также обладают целым рядом уникальных свойств (высокая твердость, обеспечивающая хорошую износостойкость, большие пределы упругости и прочности, высокий предел текучести, высокая вязкость разрушения, низкое внутреннее трение, высокая магнитная проницаемость, низкое значение температурного коэффициента удельного электросопротивления,

В дальнейшем было разработано большое количество многокомпонентных систем на основе Mg, Ti, Fe, Co, Ni, Cu, Zr, Pd, La, Pr, Hf, Pt и др., которые можно получить полностью в аморфном состоянии размером от нескольких миллиметров до сантиметров [5]. Такие некристаллические материалы получили общее название объемных аморфных сплавов (bulk metallic glasses, BMGs). Все приведенные выше аморфные сплавы были синтезированы по стандартной технологии, которая заключалась в добавлении относительно небольшого количества вторичных элементов к одному (реже двум) основному элементу. Аморфные сплавы, которые содержат один или два основных элемента, в дальнейшем будем называть обычными аморфными сплавами.

коррозионная стойкость, биосовместимость, высокий уровень полировки и др.), которые формируют обширную область для их потенциального при-

менения [3]. В первые годы исследований работали в основном с двойными или тройными система-

ми аморфных сплавов, которые можно было син-

тезировать в некристаллическом состоянии в фор-

ме лент или капель толщиной от 10 до 100 мкм [4].

^{*} E-mail: a.s.makarov.vrn@gmail.com

^{**} J. C. Qiao

ность активируемых переходов между энергетиче-

скими уровнями «дефектов» [14]. Под «дефектами»

подразумеваются области наномасштаба аморфной

матрицы, в которых реализуются термо- или меха-

нически активируемые перегруппировки. При этом

их конкретная микроскопическая природа остает-

ся предметом активных дискуссий. Разработанные

модельные представления в той или иной степени

позволяют зачастую качественно или реже количе-

ственно интерпретировать различные особенности

релаксации [15]. Наилучшие результаты дают упру-

гие модели, согласно которым существует линейная

взаимосвязь между энергией активации релаксаци-

онного перехода и мгновенными упругими харак-

теристиками вещества (нерелаксированным моду-

лем упругости) [16]. Наиболее перспективной упру-

гой моделью нам представляется межузельная тео-

Около двух десятилетий назад была предложена концепция высокоэнтропийных сплавов (high entropy alloys, HEAs), состоящих как минимум из пяти основных металлических элементов в эквиатомном (одинаковые атомные доли) соотношении или близком к эквиатомному (содержание каждого элемента должно лежать интервале от 5 до 35 ат. %) [6]. Эквиатомнная концентрация компонентов обусловливает значительную величину энтропии смешения, которая для высокоэнтропийных сплавов превышает 1.5 R (R — универсальная газовая постоянная). Большинство высокоэнтропийных сплавов получают в виде однофазных твердых растворов с ГЦК-, ОЦК-, ГПУ-структурами, а также с орторомбической сильнодеформированной кристаллической структурой [7]. Высокоэнтропийные сплавы обладают особыми (в сравнении с обычными конструкционными сплавами) свойствами: высокой твердостью, исключительными износостойкостью и жаропрочностью, хорошей устойчивостью к коррозии и окислению и др. [8]. В начале 2010-х годов были получены полностью аморфные (без кристаллических включений) образцы высокоэнтропийных сплавов [9, 10]. Если первоначально характерный минимальный размер (толщина или диаметр) образцов высокоэнтропийных аморфных сплавов составлял 1–3 мм [8], то впоследствии этот размер достиг 10-15 мм [11, 12], что вполне сопоставимо с объемными аморфными сплавами на основе одного-двух основных компонентов. Такие многокомпонентные полностью некристаллические сплавы стали называть высокоэнтропийными объемными аморфными сплавами (BЭOAC, или HEBMGs — high entropy bulk metallic glasses). BOOAC одновременно сочетают в себе некоторые уникальные характеристики кристаллических высокоэнтропийных сплавов и обычных объемных аморфных сплавов [13]. Таким образом, создание ВЭОАС является очередным шагом исследователей на пути решения фундаментальных вопросов, которые затрагивают механизмы формирования и релаксации аморфных сплавов на микроуровне.

2. ПОСТАНОВКА ЗАДАЧИ

В ВЭОАС, в силу их структурной неупорядоченности, наблюдается структурная релаксация, приводящая к изменению целого ряда физических свойств [12,13]. В настоящее время общепринятым является подход, согласно которому процесс структурной релаксации рассматривается как совокуприя, которая позволила количественно интерпретировать целый ряд важных явлений в равновесных и переохлажденных расплавах, а также в обычных аморфных сплавах [17,18]. Межузельная теория берет начало с работы Гранато, в которой был сформулирован механизм плавления кристаллических металлов [19]. Большинство аморфных сплавов образуется в результате переохлаждения расплава. При этом физическая природа плавления металлов и сплавов, вопреки распространенному мнению, остается также неясной [20]. Согласно работе Гранато, плавление возникает вследствие быстрой тепловой генерации специфических дефектов кристаллической структуры межузельных атомов в гантельной (расщепленной) конфигурации, которые существуют во всех основных кристаллических структурах [21, 22]. Специ-

ет вследствие быстрой тепловой генерации специфических дефектов кристаллической структуры межузельных атомов в гантельной (расщепленной) конфигурации, которые существуют во всех основных кристаллических структурах [21, 22]. Специально поставленные эксперименты подтвердили гипотезу Гранато о механизме плавления металлов [23, 24]. Межузельные гантели остаются идентифицируемыми структурными объектами в жидком состоянии [25], определяя во многом термодинамические свойства жидкости [26]. Аморфный сплав можно рассматривать как кинетически замороженный расплав, содержащий определенную долю «дефектов» типа межузельных гантелей. В отличие от кристаллов, пока не удалось однозначно описать топологическую структуру этих «дефектов» в аморфной матрице, но они могут быть однозначно идентифицированы по тем же свойствам, которые характерны для межузельных гантелей в кристаллических структурах [27,28]. Структурная релаксация ВЭОАС в рамках такого подхода может быть естественным способом интерпретирована как измене-

ние концентрации «дефектов» типа межузельных

гантелей. В дальнейшем кавычки в слове «дефект» опущены, а под дефектами типа межузельных гантелей будем понимать специфические атомные конфигурации аморфной матрицы, характеризуемые следующими свойствами: а) высокой чувствительностью к приложенному сдвиговому напряжению, приводящей к сильному уменьшению нерелаксированного модуля сдвига; б) специфическим полем деформации; в) специфическими низкочастотными модами в колебательных спектрах [27,28].

В настоящее время установлено, что высокая склонность высокоэнтропийных сплавов к аморфизации связана не только с энтропией смешения, а также в значительной степени определяется энтальпией смешения [29, 30]. Энтальпия также является одним из самых распространенных индикаторов структурной релаксации. Поэтому исследования механизмов, ответственных за изменение энтальпии в процессе структурной релаксации, являются весьма актуальными для понимания природы ВЭОАС. Цель настоящей работы — показать, что кинетика изменения энтальпии ВЭОАС может быть полностью количественно интерпретирована на основе данных релаксации сдвиговой упругости.

3. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

В рамках межузельной теории зависимость модуля сдвига G аморфного материала от концентрации c дефектов типа межузельных гантелей определяется выражением

$$G = \mu e^{-\alpha\beta c}.$$
 (1)

Здесь μ — модуль сдвига идеального (не содержащего межузельных дефектов) кристаллического аналога, α — безразмерный параметр порядка единицы, связанный с полем деформации дефекта [17], β сдвиговая восприимчивость ВЭОАС, которая для обоих сплавов была принята равной 20 [18]. Уравнение (1) позволяет определить зависимость концентрации дефектов от температуры, используя температурные зависимости G(T) и $\mu(T)$ упругих модулей:

$$c(T) = \frac{1}{\alpha\beta} \ln \frac{\mu(T)}{G(T)}.$$
 (2)

Следует обратить внимание на тот факт, что температурная зависимость $\mu(T)$ в уравнении (2) отражает исключительно ангармонизм межатомного взаимодействия в кристалле высокоэнтропийного сплава, а зависимость G(T) — одновременно как ангармонические, так и релаксационные компоненты модуля сдвига ВЭОАС.

Структурная релаксация ВЭОАС в рамках такого подхода может быть интерпретирована как результат рекомбинации и/или генерации дефектов. Другими словами, любое изменение концентрации дефектов (уменьшение и/или увеличение в сравнении с концентрацией в свежезакаленном состоянии) будет приводить к изменению физической величины, которая является индикатором структурной релаксации. Используя уравнение (2), можно определить изменение молярной концентрации дефектов в ходе структурной релаксации с помощью выражения

$$\Delta N_{sr}(T) = \Delta c(T) N_A = \frac{N_A}{\alpha \beta} \ln \left(\frac{G_{rt}}{\mu_{rt}} \frac{\mu(T)}{G(T)} \right), \quad (3)$$

где N_A — число Авогадро, G_{rt} и μ_{rt} — модули сдвига при комнатной температуре для аморфного и кристаллического состояний сплава. Для рекомбинации и/или генерации дефектов требуется определенная энтальпия их активации/формирования. В приближении постоянной энтальпии H_f формирования дефектов с помощью уравнения (3) можно определить кинетику изменения молярной энтальпии ВЭОАС в виде

$$\Delta H_{sr}(T) = H_f \Delta N_{sr}(T) = \frac{H_f N_A}{\alpha \beta} \ln \left(\frac{G_{rt}}{\mu_{rt}} \frac{\mu(T)}{G(T)} \right). \quad (4)$$

Использование приближения H_f = const обосновано тем, что величина H_f пропорциональна модулю сдвига G, а его изменение в рассматриваемом диапазоне температур (структурная релаксация) не превышает 10%. Таким образом, полученное в рамках межузельной теории уравнение (4) позволяет спрогнозировать температурную зависимость изменения молярной энтальпии ВЭОАС на основе данных релаксации сдвиговой упругости, но при условии, что известна величина энтальпии H_f формирования дефектов.

С другой стороны, кинетика изменения молярной энтальпии ВЭОАС может быть экспериментально определена методом дифференциальной сканирующей калориметрии (ДСК) при определенной скорости нагрева \dot{T} с помощью соотношения

$$\Delta H_{sr}(T) = \frac{1}{\dot{T}} \int \Delta W(T) \, dT, \qquad (5)$$

где

$$\Delta W(T) = W_{HEBMG}(T) - W_{cr}(T) \tag{6}$$

— разность между температурными зависимостями тепловых потоков ВЭОАС, $W_{HEBMG}(T)$, и аналогичного кристалла, $W_{cr}(T)$ (т.е. кристалла, плавлением и последующей закалкой расплава которого изготовлялся аморфный сплав), которые напрямую измеряются методом ДСК.

4. ОПИСАНИЕ ЭКСПЕРИМЕНТА

Для определения кинетики изменения молярной концентрации дефектов в ходе структурной релаксации с помощью выражения (3) необходимы данные о температурных зависимостях модулей сдвига G(T) и $\mu(T)$. Для их определения был использован бесконтактный метод электромагнитно-акустического преобразования (ЭМАП) [31]. Сущность метода ЭМАП заключается в следующем: через первичную (возбуждающую) катушку пропускается ток ультразвуковой частоты (500-600 кГц), который индуцирует на поверхности металлического образца ВЭОАС размером $5 \times 5 \times 2$ мм³ вихревые токи. В результате, взаимодействуя с магнитным полем постоянного магнита (магнитная индукция 1.2 Тл), вихревой переменный ток создает силу Лоренца, которая вызывает чисто сдвиговые колебания при определенной ориентации образца и катушек в магнитном поле. Далее сдвиговые колебания распространяются по объему исследуемого образца. При совпадении частоты возбуждающего переменного тока с собственной резонансной частотой колебаний образца возникает механический резонанс. Колебания поверхности образца приводят к возникновению высокочастотного переменного сигнала во вторичной (приемной) катушке, сигнал с которой поступает на вход синхронного усилителя. В результате in-situ (в реальном времени) компьютерной обработки сигнала синхронного усилителя определяется резонансная частота f возбуждаемых поперечных акустических колебаний с относительной погрешностью 10-100 ррт в зависимости от температуры. Абсолютное значение модуля сдвига рассчитывается с помощью соотношения

$$G(T) = G_{rt} f^2(T) / f_{rt}^2,$$

где G_{rt} — модуль сдвига при 310 K, f(T) и f_{rt} — текущая и начальная (при T = 310 K) резонансные частоты. Измерения резонансных частот методом ЭМАП проводились в вакууме (при давлении около 0.01 Па) со скорость нагрева 3 К/мин.

Калориметрические исследования были выполнены с помощью промышленного дифференциального сканирующего калориметра Hitachi DSC 7020. Тепловые потоки $W_{HEBMG}(T)$ и $W_{cr}(T)$ измерялись со скоростью нагрева 3 К/мин на образцах массой 50–60 мг в проточной атмосфере азота особой

чистоты (99.999%), что позволяло минимизировать поверхностное окисление. Калориметр Hitachi DSC 7020 калибровался с использованием температур и энтальпий плавления высокочистых In, Sn, Pb и Al, что позволяло реализовать измерения теплового потока с погрешностью, не превышающей 5%.

Экспериментальные исследования методами ЭМАП и ДСК были выполнены на образцах ВЭОАС $Zr_{35}Hf_{17.5}Ti_{5.5}Al_{12.5}Co_{7.5}Ni_{12}Cu_{10}$ (ZrHfTiAlCoNiCu) и Ti_{16.7}Zr_{16.7}Hf_{16.7}Cu_{16.7}Ni_{16.7}Be_{16.7} (TiZrHfCuNiBe), которые были получены методом всасывания расплава. Структурное состояние сплавов контролировалось с помощью рентгеновской дифракции. Выбор этих сплавов определялся целым рядом факторов: а) данные сплавы охватывают неэквиатомные и эквиатомные высокоэнтропийные системы; б) данные сплавы обладают относительно высокой конфигурационной энтропией, соответственно 1.77 и 1.79 к; в) данные сплавы обладают относительно широким температурным интервалом переохлажденной жидкости; г) данные сплавы в настоящее время являются одними из лучших стеклообразователей для высокоэнтропийных систем. Критические диаметры для ZrHfTiAlCoNiCu и TiZrHfCuNiBe составляют соответственно 18 и 15 мм [11, 14, 32].

5. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 показаны экспериментальные калориметрические данные и результаты измерений модуля сдвига, которые были реализованы при абсолютно идентичных условиях (скорость нагрева/охлаждения, предварительная термообработка) на образцах ВЭОАС ZrHfTiAlCoNiCu в исходном/свежезакаленном (Run1), релаксированном/состаренном (Run2) и кристаллическом (Run3) состояниях. Первый нагрев (Run1) исходного образца осуществлялся до 730 К (окончание интервала переохлажденной жидкости), после чего следовало регулируемое охлаждение до комнатной температуры. В результате такой термообработки было получено релаксированное состояние ВЭОАС. Далее следовал нагрев (Run2) до 870 К релаксированного образца с последующим регулируемым охлаждением до комнатной температуры, в результате которого было получено кристаллическое состояние сплава. Завершающий нагрев (Run3) кристаллического образца также осуществлялся до 870 K.

Рис. 1. (В цвете онлайн) Экспериментальные данные температурных зависимостей теплового потока (a) и модуля сдвига (δ) для ВЭОАС ZrHfTiAlCoNiCu в исходном (Run1), релаксированном (Run2) и кристаллическом (Run3) состояниях, полученные методами ДСК (a) и ЭМАП (δ) при скорости нагрева 3 К/мин. Калориметрические температуры стеклования T_g и начала кристаллизации T_x показаны стрелками

Видно, что в интервале от комнатной температуры до $T \approx 500$ К в исходном состоянии ВЭОАС (Run1) регистрируемый сигнал теплового потока полностью совпадает с базовой линией калориметра, а на температурной зависимости модуля сдвига наблюдается только линейное ангармоническое уменьшение. По мере дальнейшего нагрева исходного состояния ВЭОАС до калориметрической температуры стеклования T_g на данных ДСК фиксируется протяженный экзотермический эффект, а на данных ЭМАП в этом интервале температур наблюдается монотонное увеличение модуля сдвига относительно ангармонической компоненты. Далее, при нагреве выше калориметрической температуры стеклования T_g вплоть до 730 К, на данных ДСК фиксируется значительный эндотермический эффект, а температурная зависимость модуля сдвига интенсивно убывает вследствие перехода ВЭОАС в состояние переохлажденной жидкости. При нагреве релаксированного образца ВЭОАС (Run2) до $T \approx 595$ K полностью отсутствуют тепловые эффекты в отличие от кристаллического состояния (Run3), а на температурной зависимости модуля сдвига наблюдается только линейное ангармоническое уменьшение. Далее, по мере приближения к T_q, на температурной зависимости модуля сдвига возникает отклонение от линейности, а на данных ДСК начинает регистрироваться незначительный эндотермический эффект. В области стеклования (интервал между температурой стеклования T_{q} и началом кристаллизации T_x) на данных ДСК фиксируется эндотермический эффект, который близок к таковому для исходного состояния, а температурная зависимость модуля сдвига становится полностью аналогичной температурной зависимости исходного состояния. При дальнейшем нагреве выше T_x на данных ДСК фиксируется значительный экзотермический эффект, имеющий форму острого пика, уменьшающегося при $T \approx 800$ К. При измерении методом ЭМАП выше T_x наблюдается быстрый скачкообразный рост величины модуля сдвига, который обусловлен кристаллизацией аморфной матрицы. Температурные зависимости теплового потока и модуля сдвига кристаллического состояния ВЭОАС (Run3) соответственно отражают только базовую линию калориметра и ангармонизм атомных колебаний.

Представленные на рис. 1 результаты экспериментальных измерений методами ДСК и ЭМАП позволяют определить зависимости разности тепловых потоков $\Delta W(T)$ и абсолютной концентрации дефектов c(T) соответственно по формулам (6) и (2). На рис. 2а показаны результаты расчета разности между температурными зависимостями тепловых потоков ВЭОАС в исходном и кристаллическом состояниях (Run1-Run3), а также в релаксированном и кристаллическом состояниях (Run2–Run3), которые необходимы для калориметрического определения кинетики изменения энтальпии с помощью соотношения (5). На рис. 26 приведены результаты расчета абсолютной концентрации дефектов типа межузельных гантелей ВЭОАС ZrHfTiAlCoNiCu в исходном (Run1) и релаксированном (Run2) состояниях. Видно, что величина абсолютной концентрации дефектов при комнатной температуре для исходного состояния близка к 1.2 %. При этом концентрация дефектов в исходном состоянии практически не ме-

Рис. 2. (В цвете онлайн) Температурные зависимости разности тепловых потоков (*a*) и абсолютной концентрации дефектов типа межузельных гантелей (*б*) для ВЭОАС ZrHfTiAlCoNiCu в исходном (Run1) и релаксированном (Run2) состояниях, рассчитанные соответственно по формулам (6) и (2)

няется вплоть до температуры $T \approx 500$ К (т. е. когда структурная релаксация отсутствует), что отлично согласуется с нулевой величиной разности тепловых потоков $\Delta W(T)$. Далее следует уменьшение концентрации дефектов, отражающее релаксацию в сторону метастабильного равновесия. Выделяющаяся при этом процессе энергия фиксируется на термограмме ДСК в виде отрицательной разности тепловых потоков $\Delta W(T)$. После отжига исходного ВЭОАС выше T_g (до 730 К) с последующим контролируемым охлаждением до комнатной температуры концентрация дефектов уменьшается на $\Delta c \approx 0.25$ %. В релаксированном состоянии ВЭОАС (Run2) концентрация дефектов почти не меняется вплоть до интервала переохлажденной жидкости, что также

Рис. 3. (В цвете онлайн) Экспериментальные (символы) и рассчитанные (сплошные кривые) по формуле (4) температурные зависимости $\Delta H_{sr}(T)$ для ВЭОАС ZrHfTiAlCoNiCu, а также температурные зависимости $\Delta N_{sr}(T)$ для этого же сплава в исходном (*a*) и релаксированном (*б*) состояниях

хорошо согласуется с нулевой величиной разности тепловых потоков $\Delta W(T)$. При переходе релаксированного ВЭОАС в состояние метастабильной жидкости возникает быстрый рост концентрации дефектов. Поглощаемая при этом процессе энергия фиксируется на термограмме ДСК в виде положительной разности тепловых потоков $\Delta W(T)$. Вблизи T_g концентрации дефектов в исходном и релаксированном состояниях становятся одинаковыми и при дальнейшем нагреве имеют одинаковые температурные зависимости.

Представленные на рис. 2a зависимости позволяют определить кинетику изменения молярной энтальпии $\Delta H_{sr}(T)$ ВЭОАС с помощью калориметрического соотношения (5), а зависимости на

рис. 26 — оценить в рамках межузельной теории кинетику изменения молярной концентрации дефектов $\Delta N_{sr}(T)$ с помощью выражения (3). Соответствующие результаты представлены на рис. 3 для исходного и релаксированного состояний ВЭОАС ZrHfTiAlCoNiCu.

Видно, что изменение энтальпии $\Delta H_{sr}^{initial}$ (эксперимент ДСК) для исходного состояния (рис. 3*a*) в интервале температур 310 К < T < 500 К практически отсутствует, что свидетельствует о постоянстве концентрации дефектов. При дальнейшем нагреве (500 К < T < 700 К) энтальпия реализованного термическим воздействием состояния становится меньше энтальпии исходного состояния ВЭОАС при комнатной температуре ($\Delta H_{sr}^{initial}$ принимает отрицательные значения), что свидетельствует о быстром уменьшении концентрации дефектов. Нагрев в интервале температур $T_g < T < 730$ К вызывает рост величины $\Delta H_{sr}^{initial}$, который является следствием генерации дефектов в состоянии переохлажденной жидкости [17].

Релаксированное состояние ZrHfTiAlCoNiCu (рис. 36) характеризуется отсутствием сколько-нибудь значимого изменения $\Delta H^{relaxed}_{sr}$ (эксперимент ДСК) вплоть до состояния переохлажденной жидкости. Этот факт подтверждает обоснованность применения термина «релаксированное состояние» ВЭОАС, т.е. искусственно состаренное состояние, в котором структурная релаксация полностью предшествующей подавлена термообработкой. По мере приближения к температуре стеклования фиксируется интенсивный рост величины $\Delta H_{sr}^{relaxed}$, который является следствием быстрой генерации дефектов в состоянии переохлажденной жидкости [17].

Изменение молярной концентрации дефектов $\Delta N_{sr}(T)$ (правая ось ординат на рис. 3) полностью повторяет все особенности температурной зависимости изменения энтальпии (описано выше).

Абсолютная идентичность поведения зависимостей $\Delta H_{sr}(T)$ и $\Delta N_{sr}(T)$ ВЭОАС ZrHfTiAlCoNiCu (рис. 3), полученных в результате анализа экспериментальных данных независимых методов исследования (ДСК и ЭМАП), позволяет определить величину энтальпии формирования дефектов H_f в формуле (4). Мы нашли значения H_f , при которых имеется минимальная разница между экспериментальной зависимостью $\Delta H_{sr}(T)$ и зависимостью $H_f \Delta N_{sr}(T)$. Метод наименьших квадратов приводит к величине энтальпии формирования дефекта $H_f = 4.3$ эВ. Это значение было использовано для прогнозирования температурной зависимости изменения энтальпии на основе данных изменения молярной концентрации дефектов $\Delta N_{sr}(T)$ как для исходного, так и для релаксированного состояний ВЭОАС ZrHfTiAlCoNiCu. Соответствующие результаты расчетов приведены на рис. 3 в виде сплошных кривых. Видно, что расчет хорошо воспроизводит все особенности экспериментальных зависимостей $\Delta H_{sr}(T)$ ВЭОАС ZrHfTiAlCoNiCu в исходном и релаксированном состояниях: а) отсутствие изменения в интервале температур 310 K < T < 500 K для исходных образцов; б) отрицательные значения в интервале температур 500 K < T < 700 K для исходных образцов; в) рост в состоянии переохлажденной жидкости для исходных и релаксированных образцов; г) отсутствие изменения вплоть до состояния переохлажденной жидкости для релаксированных образцов. Максимальное отклонение расчетных данных от эксперимента ДСК во всех случаях не превышает или существенно менее 5%, что сопоставимо с погрешностью калориметрического метода.

С другой стороны, одним из основных постулатов межузельной теории Гранато является утверждение о том, что энтальпия H_i формирования гантельного междоузлия (dumbbell interstitial) пропорциональна модулю сдвига G, т. е. $H_i = \alpha \Omega G$, где безразмерный параметр α близок к единице, а Ω — объем, приходящийся на атом [33]. Если для ВЭОАС ZrHfTiAlCoNiCu величины α и Ω принять соответственно равными 1 и $2.06 \cdot 10^{-29}$ м³, то получим величину энтальпии формирования $H_i = 4.8$ эВ. Это значение хорошо согласуется с величиной энтальпии формирования дефекта $H_f = 4.3$ эВ, определенной путем сопоставления экспериментальных зависимостей $\Delta H_{sr}(T)$ и $H_f \Delta N_{sr}(T)$. На самом деле безразмерный параметр α , который для оценки величины энтальпии формирования H_i был принят равным единице, требует отдельного всестороннего исследования, но к настоящему времени установлено, что его значение должно лежать в интервале $0.5 \leq$ $\leq \alpha \leq 1$ [17]. Значению энтальпии формирования дефекта $H_i = 4.3$ эВ соответствует величина $\alpha =$ = 0.9. В принципе, такой способ оценки величины параметра α может быть дополнительный интересным следствием настоящей работы. В любом случае приведенный выше анализ для исходного и релаксированного ВЭОАС ZrHfTiAlCoNiCu наглядно показывает, что температурная зависимость изменения энтальпии полностью определяется изменением концентрации дефектов.

Точно такой же анализ можно провести и для эквиатомного ВЭОАС TiZrHfCuNiBe. Соответствующие результаты приведены на рис. 4. Параметры

Рис. 4. То же, что на рис. 3, для ВЭОАС TiZrHfCuNiBe

термообработки образцов ВЭОАС ТіZrHfCuNiBe: первый нагрев исходного образца осуществлялся до 687 К (окончание интервала переохлажденной жидкости), после чего следовало регулируемое охлаждение до комнатной температуры. В результате такой термообработки было получено релаксированное состояние ВЭОАС. Далее следовал нагрев до 870 К релаксированного образца с последующим регулируемым охлаждением до комнатной температуры, в результате которого было получено кристаллическое состояние сплава. Завершающий нагрев кристаллического образца также осуществлялся до 870 К. Калориметрические температуры стеклования T_g и начала кристаллизации T_x для ВЭОАС TiZrHfCuNiBe составляют соответственно 667 К и 706 К.

Полученные результаты экспериментальных исследований показывают, что изменения энтальпии $\Delta H_{sr}^{initial}$ и концентрации дефектов $\Delta N_{sr}^{initial}$ для исходного состояния (рис. 4*a*) в интервале температур 310 К < T < 500 К характеризуются монотонным увеличением, а при дальнейшем нагреве (500 К < < T < 667 К) наблюдается более быстрое уменьшение, свидетельствующее о приближении к области стеклования. При нагреве в интервале температур 667 К < T < 687 К снова возрастают величины $\Delta H_{sr}^{initial}$ и $\Delta N_{sr}^{initial}$, что является следствием перехода ВЭОАС TiZrHfCuNiBe в состояние переохлажденной жидкости [17].

Релаксированное состояние TiZrHfCuNiBe (рис. 46) характеризуется незначительным ростом (около 10%) величин $\Delta H_{sr}^{relaxed}$ и $\Delta N_{sr}^{relaxed}$ вплоть до состояния переохлажденной жидкости. По мере приближения к T_g фиксируется интенсивный рост этих величин, который также является следствием перехода ВЭОАС TiZrHfCuNiBe в состояние переохлажденной жидкости [17].

Поиск методом наименьших квадратов значения энтальпии формирования дефектов H_f , при котором имеется минимальная разница между экспериментальной зависимостью $\Delta H_{sr}(T)$ и зависимостью $H_f \Delta N_{sr}(T)$, приводит к величине $H_f = 3.5$ эВ. Данное значение энтальпии формирования совместно с экспериментальными результатами изменения молярной концентрации дефектов $\Delta N_{sr}(T)$ позволяет при помощи уравнения (4) спрогнозировать температурную зависимость изменения энтальпии как для исходного, так и для релаксированного состояния ВЭОАС TiZrHfCuNiBe. Соответствующие результаты расчетов приведены на рис. 4 в виде сплошных кривых. Видно, что расчет также хорошо воспроизводит все особенности экспериментальных зависимостей $\Delta H_{sr}(T)$ ВЭОАС TiZrHfCuNiBe в исходном и релаксированном состояниях.

Выполним оценку параметра а в межузельной теории для BЭOAC TiZrHfCuNiBe. Положим величину энтальпии формирования дефекта $H_f = 3.5$ эВ (поиск методом наименьших квадратов, описанный выше), объем, приходящийся на атом, $\Omega =$ $= 1.55 \cdot 10^{-29}$ м³, а модуль сдвига G = 38.6 ГПа, тогда $\alpha = H_f/\Omega G = 0.94$. Видно, что полученное значение α для BЭOAC TiZrHfCuNiBe лежит в интервале $0.5 \le \alpha \le 1$ [17]. Таким образом, для исследованных ВЭОАС ZrHfTiAlCoNiCu и TiZrHfCuNiBe найдены значения α , соответственно равные 0.9 и 0.94. Этот факт отлично согласуется с выводами, полученными на основе анализа результатов молекулярно-статического моделирования межузельных дефектов и расчетов объемов полиэдров Вороного для атомов, образующих дефекты, и их ближайшего окружения [34]. На основе этого анализа было показано, что отношение дилатационного вклада в упругую энергию к сдвиговому вкладу для наиболее устойчивых расщепленных межузлий в металлах с ГЦК-решеткой не превышает 0.12–0.13 [34].

6. ЗАКЛЮЧЕНИЕ

Результаты настоящей работы показывают, что уравнение (4) с хорошей точностью (не хуже 5%) описывает температурные зависимости изменения энтальпии исходных (свежезакаленных) и релаксированных (состаренных) ВЭОАС от комнатной температуры и вплоть до завершения интервала переохлажденной жидкости. Другими словами, имеется убедительное согласие между экспериментальными данными ДСК и независимыми результатами оценки изменения концентрации дефектов методом ЭМАП. В связи с этим можно сделать вывод, что физическая причина изменения энтальпии ВЭОАС в ходе структурной релаксации заключается в активируемом процессе изменения системы дефектов межузельного типа в сторону метастабильного равновесного состояния.

Выполнен расчет энтальпии формирования дефектов межузельного типа для ВЭОАС. Полученные значения хорошо согласуются с результатами расчетов при помощи основного уравнения межузельной теории. И, наконец, получены первые независимые оценки параметра α межузельной теории, который связан с полем упругих деформаций дефектов в ВЭОАС. В связи с этим весьма полезными могли бы быть дополнительные экспериментальные исследования согласованности полученных величин α с результатами других методов.

Финансирование. Исследование выполнено при финансовой поддержке гранта Президента РФ для государственной поддержки молодых российских ученых — кандидатов наук (проект MK-1101.2020.2).

ЛИТЕРАТУРА

- W. K. Jun, R. Willens, and P. Duwez, Nature 187, 869 (1960).
- 2. W. P. Anderson, Science 267, 1609 (1995).
- 3. M. Ashby and A. Greer, Scr. Mater. 54, 321 (2006).
- H. Chen and C. Miller, Rev. Sci. Instrum. 41, 1237 (1970).

- 5. M. Telford, Mater. Today. 7, 36 (2004).
- J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
- E. P. George, D. Raabe, and R. O. Ritchie, Nat. Rev. Mater. 4, 515 (2019).
- M. H. Tsaia and J. W. Yeh, Mater. Res. Lett. 2, 107 (2014).
- A. Takeuchi, N. Chen, T. Wada, W. Zhang, Y. Yokoyama, A. Inoue, and J. W. Yeh, Procedia Eng. 36, 226 (2012).
- M. Vaidya, S. Armugam, S. Kashyap, and B. S. Murty, J. Non-Cryst. Solids 413, 8 (2015).
- H. Y. Ding, Y. Shao, P. Gong, J. F. Li, and K. F. Yao, Mater. Lett. **125**, 151 (2014).
- 12. W. H. Wang, JOM 66, 2067 (2014).
- Y. Chen, Z. W. Dai, and J. Z. Jiang, J. Alloys Compd. 866, 158852 (2021).
- L. T. Zhang, Y. J. Duan, T. Wada, H. Kato, J. M. Pelletier, D. Crespo, E. Pineda, and J. C. Qiao, J. Mater. Sci. Technol. 83, 248 (2021).
- J. C. Qiao, Q. Wang, J. M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, and Y. Yang, Prog. Mater. Sci. 104, 250 (2019).
- 16. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
- 17. V. A. Khonik and N. P. Kobelev, Metals 9, 605 (2019).
- 18. A. S. Makarov, Yu. P. Mitrofanov, G. V. Afonin, N. P. Kobelev, and V. A. Khonik, Intermetallics 87, 1 (2017).
- 19. A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).
- 20. A. V. Granato, D. M. Joncich, and V. A. Khonik, Appl. Phys. Lett. 97, 171911 (2010).
- **21.** K. H. Robrock, *Mechanical Relaxation of Interstitials in Irradiated Metals*, Springer, Berlin (1990).
- 22. W. G. Wolfer, in *Comprehensive Nuclear Materials*, ed. by R. J. M. Konings, Elsevier, Amsterdam (2012), p. 14.
- E. V. Safonova, Yu. P. Mitrofanov, R. A. Konchakov, A. Yu. Vinogradov, N. P. Kobelev, and V. A. Khonik, J. Phys.: Condens. Matter 28, 215401 (2016).
- 24. Е. В. Гончарова, А. С. Макаров, Р. А. Кончаков, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 106, 39 (2017) [JETP Lett. 106, 35 (2017)].

- 25. K. Nordlund, Y. Ashkenazy, R. S. Averback, and A. V. Granato, Europhys. Lett. 71, 625 (2005).
- 26. A. V. Granato, J. Non-Cryst. Solids 352, 4821 (2006).
- 27. E. V. Goncharova, R. A. Konchakov, A. S. Makarov, N. P. Kobelev, and V. A. Khonik, J. Phys.: Cond. Matter 29, 305701 (2017).
- 28. R. A. Konchakov, A. S. Makarov, N. P. Kobelev, A. M. Glezer, G. Wilde, and V. A. Khonik, J. Phys.: Condens. Matter 31, 385703 (2019).
- 29. S. Guo and C. T. Liu, Prog. Nat. Sci. 21, 433 (2011).

- 30. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Mater. Trans. 55, 165 (2014).
- 31. А. Н. Васильев, Ю. П. Гайдуков, УФН 141, 431 (1983) [Sov. Phys. Uspekhi 26, 952 (1983)].
- 32. T. Wada, J. Jiang, K. Yubuta, H. Kato, and A. Takeuchi, Materialia 7, 100372 (2019).
- 33. Н. П. Кобелев, В. А. Хоник, ЖЭТФ 153, 409 (2018) [JETP 126, 340 (2018)].
- 34. Р. А. Кончаков, А. С. Макаров, Г. В. Афонин, М. А. Кретова, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 109, 473 (2019) [JETP Lett. 109, 460 (2019)].