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Abstract. The present work discusses extensions
of the pioneering analysis by Dzyaloshinskii and Larkin
[Sov. Phys. JETP 38, 202 (1974)] of correlation func-
tions for one-dimensional Fermi systems, focusing on
the effects of quasiparticle relaxation enabled by non-
linear dispersion. Throughout the work we employ
both, the weakly interacting Fermi gas picture and non-
linear Luttinger liquid model to describe attenuation
of excitations and explore the fermion-boson duality
between both approaches. A special attention is de-
voted to the role of spin-exchange processes, effects
of interaction screening, and integrability. Thermal-
ization rates for electron- and hole-like quasiparticles,
as well as the decay rate of collective plasmon excita-
tions and the momentum space mobility of spin exci-
tations are calculated for various temperature regimes.
The phenomenon of spin-charge drag is considered and
the corresponding momentum transfer rate is deter-
mined. In the context of transport properties, momen-
tum relaxation due to several competing mechanism,
viz. triple electron collisions, electron-phonon scat-
tering, and long-range inhomogeneities is addressed.
Energy transfer facilitated by plasmons is highlighted
from the perspective of inhomogeneous Luttinger liq-
uid. The full matrix of thermoelectric coefficients is
found at the quantum critical point of the first conduc-
tance plateau transition.

1. Introduction. The concept of quasiparticles
plays a central role in the condensed matter physics

* E-mail: levchenko@physics.wisc.edu

of strongly interacting many-body quantum systems
[1, 2]. For instance, in the context of electrons in con-
ductors, one typically views the quasiparticle states as
those evolving from the free electron gas to a Fermi
liquid when adiabatically turning on the interaction.
In accordance with Landau theory [3], quasiparticles
inherit some of the basic quantum numbers of bare
electrons such as spin, charge, and momentum. Their
respective dispersion relations as well as thermodynam-
ical and kinetic properties may, however, differ signifi-
cantly due to interaction-induced renormalizations. A
crucial advantage of the quasiparticle picture is that
residual interactions are assumed to be weak, and can
be systematically and controllably addressed by means
of perturbation theory. The central question related
to the validity of the quasiparticle description concerns
their lifetime τqp. Indeed, in the process of scattering
quasiparticles decay and their mere notion is meaning-
ful only if attenuation is weak enough and they can
be considered as sufficiently long-lived collective exci-
tations. In Fermi systems, the Pauli principle severely
limits the phase space available for quasiparticle col-
lisions. The low temperature decay rate can then be
estimated from the Golden rule as

τ−1
qp (ε, T ) ∝ (νV0)

2 ε
2 + π2T 2

εF
. (1)

In this expression, the excitation energy ε = vF (p−pF )
of a quasiparticle with momentum p is counted from
the Fermi energy εF , ν is the density of states and
V0 is the characteristic strength of the short-range re-
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pulsive interaction1). The dominant microscopic scat-
tering channel leading to Eq. (1) involves quasiparti-
cle decaying into three: another quasiparticle and a
particle-hole excitation. The amplitude for this process
is proportional to V0, hence, the dimensionless factor
of (νV0)2 in the scattering probability entering Eq. (1).
The factor ε2 is the phase space volume for scattering
of a quasiparticle with energy ε compatible with the
conservation of total energy and momentum. At finite
temperatures the smearing of states in the energy strip
of order ∼ T per particle leads to the corresponding
T 2 dependence of τ−1

qp . Higher-order processes involv-
ing 2n + 1 quasiparticles, namely n > 1 electron-ho-
le pairs, are usually neglected as their respective rate
scales with higher powers of energy. In particular, at
zero-temperature the rate for relaxation processes of
a quasiparticle with energy ε involving n particle-hole
pairs vanishes as τ−1

qp ∝ ε2n. One notable property
of Eq. (1) is that it predicts the same relaxation time
for particle-like and hole-like excitations. Another pro-
perty is that the crossover from zero-temperature to
finite-temperature relaxation is governed only by one
scale, viz. when the excitation energy compares to the
temperature itself ε ∼ T .

In addition to the quasiparticle relaxation, which
is often viewed as an out-scattering rate from a par-
ticular quantum state, one may address a more gene-
ral question of relaxation of a nonequilibrium quasi-
particle distribution function. In kinetic theory such
problem is typically analyzed in the framework of the
linearized Boltzmann equation. The eigenvalues of the
corresponding collision operator define relaxation times
of different distribution function modes. In three di-
mensional Fermi liquids this problem is exactly solvab-
le [4, 5] and one finds that all these rates are para-
metrically the same, scaling respectively as ∝ T 2. In
contrast, in two-dimensional Fermi liquids, kinematics
of head-on collisions leads to a parametrically distinct
relaxation of odd and even momentum harmonics of
the distribution function, in particular τ−1

even ∝ T 2/εF
while τ−1

odd ∝ T 4/ε3F [6, 7].
The role of dimensionality in quasiparticle relaxa-

tion becomes the most dramatic in one-dimension (1D).
This special case of electron liquids can be experimen-
tally realized in quantum wires of GaAs/AlGaAs hete-
rostructure [8] or carbon nanotubes [9] when parti-
cle density is such that only the lowest sub-band of
transversal modes is occupied. It further requires that
temperature is sufficiently low and sample purity is suf-

1) Throughout the paper we use units with Planck and Boltz-
mann constants set to unity � = kB = 1.

ficiently high, so that thermally- and disorder-induced
transitions to higher sub-bands are suppressed. In ad-
dition, edge modes formed at the boundaries of a 2D
electron gas when placed in a strong magnetic field in
the integer or fractional quantum Hall regime [10, 11],
or edge states of 2D quantum spin Hall topological-in-
sulators [12], provide other distinct examples of, respec-
tively, chiral and helical quantum 1D electron liquids.

In principle, all these systems can be successfully
described within the framework of Luttinger liquid
theory [13–15], which builds out of the Tomonaga–Lut-
tinger (TL) model [16, 17]. As is known form pioneer-
ing works [18–20], in the asymptotic low-energy limit
ε/εF � 1, the key properties of the TL model are
manifestly non-Fermi liquid like. A power-law anomaly
manifests in the suppression of the single particle den-
sity of states

ν(ε) = ν0

( |ε|
vF pΛ

)2g
sin(πg)

πg
Γ(1− 2g), (2)

and collapse of the quasiparticle residue in the distri-
bution function. At T → 0 that is

n(ε) =
Γ(1/2 + g)

2
√
πΓ(1 + g)

×

×
[
1− Γ(1/2− g)

Γ(1/2 + g)

( |ε|
vF pΛ

)2g

sgn(ε)

]
, (3)

where ν0 = 1/(2πvF ), Γ(z) is the Euler’s gamma func-
tion, and pΛ is the momentum cutoff of the model
(parametrically pΛ ∼ pF ). In the simplest spinless ver-
sion of the TL-model with short-ranged interaction, a
single dimensionless coupling constant,

g =
1

2

[
1 + ν0V0√
1 + 2ν0V0

− 1

]
, (4)

can be related to the zero-momentum Fourier compo-
nent of the bare interaction potential V0. The limit of
weak interaction corresponds to g � 1 and Eqs. (2),
(3) are valid for g < 1/22). However, a direct at-
tempt to apply Luttinger liquid theory to the question
of quasiparticle lifetime meets formidable challenges.
In a fermionic representation of the TL-model, elabo-
rated explicitly by Dzyaloshinskii and Larkin [19], the
electron self-energy vanishes on the mass shell in all
orders of perturbation theory and, consequently, corre-
lation functions assume power-law tails. These results,

2) In Ref. [19] the limit of strong interactions, g > 1/2, was
also considered, including the scenario when coupling between
fermions of the same chirality is different from coupling bet-
ween fermions of different chirality. For additional details on
the derivation of Eq. (3) see also Ref. [21].

777



A. Levchenko, T. Micklitz ЖЭТФ, том 159, вып. 4, 2021

and the absence of relaxation, can be alternatively un-
derstood from the Mattis and Lieb [18], and Luther and
Peschel [20] bosonization construction, which maps in-
teracting 1D fermions to a collection of decoupled har-
monic modes of charge-density and spin-density oscil-
lations. Notably, in both approaches the exact solution
relies heavily on the linearization of the fermionic dis-
persion relation.

One is then left with the natural puzzle whether in-
corporating curvature of the dispersion relation into the
TL-model would cure the issue and yield a finite life-
time of excitations, thus possibly restoring Fermi liquid
like properties of the system. This line of reasoning can
be also corroborated within the fermionic picture, not-
ing that spectrum nonlinearity softens phase space re-
strictions for quasiparticle scattering, thus making their
relaxation possible.

Similarly, at the level of the bosonic description,
nonlinear terms of the dispersion relation couple charge
and spin modes thus enabling their decay. However, it
was quickly recognized that curvature cannot be in-
cluded perturbatively, and a naive expansion leads to
spurious divergences. These and other related ques-
tions to 1D kinetics, including the connection between
the two pictures of the fermion-boson duality, attracted
significant recent interest. This has lead to the devel-
opment of the nonlinear Luttinger liquid theory, also
referred to as Fermi–Luttinger liquid (FLL) theory (see
Refs. [22, 23] for comprehensive reviews and references
herein). Specifically for the problem of quasiparticle
relaxation in quantum wires, various scattering rates
were calculated within different interaction models for
both, spinless [24–33] and spin-1/2 fermions [34–40]. In
parts of the present work we review and extend these
results.

On the experimental forefront the hallmark sig-
natures of Luttinger liquid behavior have been ob-
served by means of various spectroscopic techniques.
Namely, power-law anomalies in the density of states,
tunneling conductance, and current-voltage characte-
ristics [9,10,41,42], spin-charge separation [43,44], and
charge fractionalization [45, 46]. Besides GaAs quan-
tum wires, carbon nanotubes, and edge modes, clear
features of Luttinger liquid physics have been identi-
fied in many other systems such as bundles of NbSe3
[47] and MoSe [48] nanowires, polymer nanofibers [49]
and conjugated polymers at high carrier densities [50],
as well as atomically controlled chains of gold atoms on
Ge surfaces [51], just to name a few distinct examples.
In the most recent report [52], relaxation processes in
quantum wires were captured and bounds on the cor-
responding timescales were determined, thus providing

measurements of quasiparticle properties beyond the
parading of linear Luttinger liquid theory. In a parallel
line of developments [53–56], cooling of nonequilibrium
quasiparticles in quantum Hall edge fluids was mea-
sured and corresponding lengths scales of thermaliza-
tion processes were quantified.

The focus of this communication is on the descrip-
tion of elementary kinetic processes inducing relax-
ation in nonlinear Luttinger liquids and their emergent
transport properties. Keeping forward scattering elect-
ron-electron interactions and accounting for nonlinear
contributions to the electron dispersion, this theory is
beyond the Dzyaloshinskii–Larkin theorem. The lat-
ter relax kinematic constraints and open phase space
for multi-loop corrections to the electron self-energy,
thereby providing a variety of inelastic processes which
affect equilibrium as well as nonequilibrium proper-
ties of the 1D quantum electron liquids. The rest of
this work is structured as follows (see the full text).
Section 2 focuses on the hierarchy of relaxation times
in Fermi–Luttinger liquids. We present results be-
yond parametric estimates, including detailed compu-
tations of a number of experimentally relevant interac-
tion models3). The complimentary kinetic equation ap-
proach, applied to the quasiparticle picture of a weakly
interacting Fermi gas, and spin- and charge-excitations
of a Luttinger liquid, are explored concurrently. We
present numerical estimates for experimentally mea-
sured relaxation rates and provide detailed comparison
to previous results. In Sec. 3, the temperature depen-
dence of kinetic coefficients is calculated, accounting
for extrinsic mechanisms of momentum relaxation due
to phonons or long-range inhomogeneities. The contri-
bution to heat transport mediated by plasmons in the
inhomogeneous Luttinger liquid is elucidated. Finally,
we devote parts of the discussion to the thermoelectric
properties at the first plateau transition of the quan-
tum conductance. In Sec. 4, we provide a summary of
main findings and open questions, sketching a broader
picture and commenting on related topics relevant for
chiral, helical, and spiral versions of 1D quantum fluids.
Several Appendices accompany our presentation in the
main text, providing additional technical details of the
presented analysis and formalism.

2. Hierarchy of relaxation processes. The
physics of quasiparticle relaxation in 1D quantum elec-
tron liquids is perhaps a surprisingly rich and compli-
cated problem. In part this has to do with the fact
that, in contrast to their higher dimensional counter-

3) In part this material was summarized in Sec. IV of the ex-
tensive review in Ref. [23].
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parts, two-particle collisions, namely scattering pro-
cesses with the emission of a single particle-hole ex-
citation, do not result in finite relaxation rates. This
statement pertains to generic dispersion relations, i. e.
including curvature, and not only applies to models
with linear dispersion. Indeed, kinematics of two-par-
ticle scattering in 1D is such that particles either keep
or swap their momenta, but neither of these options
causes relaxation. To allow for the redistribution of
momenta and, at the same time, to comply with re-
strictions of conservations laws one necessarily needs
to consider triple electron collisions, or alternatively,
assume some extrinsic mechanism.

The analysis of 1D kinematics of multi-particle col-
lisions resolving energy and momentum conservations
reveals a plethora of possible scattering events. They
ultimately lead to a hierarchy of relaxation stages in the
system and an emergent asymmetry between the relax-
ation of particle-like and hole-like excitations. All pro-
cesses can be broken down into several distinct classes.
First are the forward scattering processes with soft
momentum transfer that involve either (i) all parti-
cles from the same branch, or (ii) particles from both
branches such that all initial and final states are near
the Fermi energy. Second are processes involving states
deeper in the band. These latter are relevant for
(iii) the drift of quasiholes and (iv) backscattering pro-
cesses that change the number of right and left moving
excitations before and after the collision. We will refer
to thermalization when discussing relaxation processes
that proceed without backscattering. These processes
determine the lifetime of quasiparticles associated to
the redistribution of excess energy, and affect thermal
transport properties of the system. In contrast, the no-
tion of equilibration will be used to refer to relaxation
processes involving the backscattering of quasiparticles,
which ultimately govern electrical transport properties.

2.1. Quasiparticle interaction model. In the
picture of a weakly nonideal Fermi gas, the probabil-
ities of particle collisions can be calculated perturba-
tively in the interaction, employing the usual T̂ -matrix
formalism [57]. Within the Golden Rule, the scattering
rate

W = 2π|A|2δ(E − E′)δP,P ′ (5)

is expressed in terms of the scattering amplitude A of
the corresponding process. Here E(E′) and P (P ′) la-
bel total energy and momentum of initial (final) states,
and the delta function δ(E − E′) along with the Kro-
necker delta δP,P ′ enforce energy and momentum con-
servations. In the semiclassical limit, the three-particle
amplitude A was considered in Ref. [58]. The general-

ization to the degenerate quantum limit was presented
in the work of Ref. [59], and exchange terms were care-
fully examined in Refs. [35, 60]. The resulting ampli-
tude takes the form

A =
1

L2

∑
PP′

sgn(P) sgn(P′)×

× Vp′
a−paVp′

c−pc

εpb
+ εpc − εpb+pc−p′

c

Ξσσ′ . (6)

Here L is the system size and sums are over all possible
permutations P of momenta pi with i = 1, 2, 3 star-
ting from the direct scattering process (p1, p2, p3) →
→ (p′1, p

′
2, p

′
3) to all its exchange processes, with

sgn(P) accounting for the sign of the particular per-
mutation (using the convention that sgn(123) = +1).
Each permutation comes with a spin-dependent factor
Ξσσ′ = δσaσ′

a
δσbσ′

b
δσcσ′

c
reflecting particle exchange. In

the spinless case, the amplitude has an identical struc-
ture to Eq. (6) with Ξσσ′ ≡ 1. The amplitude con-
sists of 36 distinct terms that can be split into groups
of 6, each representing one direct and five exchange
scattering processes, respectively. Technically speak-
ing Eq. (6) appears from the iteration of the T̂ -matrix,
T̂ = V +V Ĝ0T̂ , to second order in the bare two-particle
interaction potential V . Here Ĝ0 is the resolvent op-
erator (viz. the free particle Green’s function) and εp
denotes the energy-momentum dispersion relation.

For practical applications to quasiparticle scatter-
ing in quantum wires, it is sufficient to assume the sim-
ple dispersion of a parabolic band εp = p2/2m∗ with
effective mass m∗, and use a Coulomb interaction po-
tential. Effects of screening due to nearby gates can be
modeled by a conducting plate placed at a distance d
away from the wire. In this case the interaction poten-
tial is of the form

V (x) =
e2

κ

[
1

|x| −
1√

x2 + 4d2

]
, (7)

where κ is the dielectric constant of the host mate-
rial. The diverging short-range behavior of this poten-
tial needs to be regularized in order to evaluate the
small-momentum Fourier components Vp entering the
amplitude in Eq. (6). To this end, we introduce the
small width w of the quantum wire, w � d, and replace
1/|x| → 1/

√
x2 + 4w2. Upon 1D Fourier transform we

then find

Vp =
2e2

κ
[K0(2w|p|)−K0(2d|p|)] , (8)
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where K0(z) is the modified Bessel function of the
second kind. Using the asymptotic expression of the
Bessel function at z � 1,

K0(z) ≈ ln

(
2

zeγE

)
+
z2

4
ln

(
2

zeγE−1

)
,

with γE the Euler constant, one then finds the simpli-
fied form of the interaction potential

Vp ≈ 2e2

κ

[
ln

(
d

w

)
− (pd)2 ln

(
e1−γE

|p|d
)]

, (9)

applicable to the screened limit of Coulomb interac-
tion and valid for p � 1/d. In the opposite regime,
d−1 � p � w−1, the second term in Eq. (8) can be
neglected since K0(z) ∝ e−z/

√
z at z 
 1. One then

arrives at the simplified form of the unscreened poten-
tial

Vp ≈ 2e2

κ
×

×
[
ln

(
e−γE

|p|w
)
+ (pw)2 ln

(
e1−γE

|p|w
)]

. (10)

A few comments are in order in relation to the in-
teraction model presented in this section. (i) It should
be noted that retaining numerical pre-factors of the
order of unity under the logarithm in above expres-
sions for Vp would exceed the accuracy of further cal-
culations, so they will be dropped and simply set to
unity. (ii) However, retaining the sub-leading correc-
tions containing p2 in the main log-series expansion of
both Eqs. (9) and (10) is actually crucial. Indeed, in
the spinless case, the model with contact interaction as
well as the Calogero–Sutherland model, are known to
be completely integrable [61]. This implies that all irre-
ducible multi-particle scattering amplitudes must van-
ish identically for a constant Vp and Vp ∝ |p|. Fur-
thermore, the extended model of short-ranged interac-
tion, Vp ∝ p2, corresponding to the real space poten-
tial V (x) ∝ δ′′(x), is also integrable. This is known
as Cheon–Shigehara model [62]. It is only due to the
additional logarithm ∝ p2 ln |p| in Eq. (9), that there
is partial non-cancellation between different terms in
Eq. (6) and the amplitude remains finite. (iii) In the
model of long-ranged Coulomb interaction the situa-
tion is more subtle. A priori this model is not known
to be integrable. Nevertheless, the amplitude in Eq. (6)
vanishes for pure logarithmic interaction Vp ∝ ln |p|, so
that retaining an additional p2 ln |p| term in Eq. (10) is
important to get a finite result.

The triple electron scattering rate from Eq. (5) gen-
erates the collision integral (Stosszahlansatz) of the cor-
responding Boltzmann equation

St{n} =
∑

{p},{σ}
W [np′

1
(1−np1)np′

2
(1−np2)np′

3
×

× (1−np3)−np1(1−np′
1
)np2(1−np′

2
)np3(1−np′

3
)]. (11)

Here each pair of Fermi functions, np(1 − np′), cap-
tures statistical occupation probabilities, whereas the
two terms of the collision integral correspond to in-
coming and outgoing processes. At thermal equilib-
rium these terms nullify each other by virtue of the de-
tailed balance condition. At weak disequilibrium, one
can linearize np = fp + δnp in the external perturba-
tion δnp around the equilibrium Fermi–Dirac distribu-
tion function fp. The collision term can then be con-
sidered as a linear integral operator, acting on δnp =

= fp(1 − fp)ψ, and one can formulate the eigenvalue
problem for this operator, St{ψn} = ωnψn. The spec-
trum of eigenvalues ωn may be discrete or continuous,
and captures all the information about the decay of
different distribution function modes. As solving this
problem exactly for triple collisions presents a daunting
task [29, 40], we here follow a simpler more pragmatic
approach. Setting, for instance, δnp1 = δp1,pF+ε/vF de-
scribes a quasiparticle with excess energy ε. Neglect-
ing then secondary collisions, the Boltzmann equation
reduces to the simple relaxation time approximation,
(∂t + τ−1

qp )δnp = 0, with solution δnp ∝ exp(−t/τqp).
It is natural to identify the corresponding timescale for
decay with the quasiparticle life-time

τ−1
qp = −∂St{n}

∂np
, (12)

which follows from Eq. (11) by only retaining the
out-scattering contribution. Alternatively, one may
project the collision operator (11) onto either momen-
tum or energy modes and thus infer the relaxation time
of interest. This approach is parametrically correct,
however, may miss numerical factors of order unity
when compared to the exact solution of the eigenvalue
problem. We will employ both approaches in the forth-
coming sections.

2.2. Quasiparticle decay rates. Owing to one-
dimensionality of the problem, it is convenient to think
of particles of different chirality, namely right-movers
(R) and left-movers (L). It can be readily checked
that strictly at zero-temperature quasiparticle relax-
ation is only possible if collisions involve both, right-
and left-moving particles since otherwise conservation
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laws cannot be satisfied. For this reason, consider first
a process of relaxation that involves two right-moving
particles, with initial momenta p1, p2, and a left-moving
particle labeled by momentum p3. The outgoing mo-
menta after the collision, p′i = pi+qi, will be labeled by
momenta transfer qi for each of the particle i = 1, 2, 3.
In these notations, the momentum conservation be-
comes q1 + q2 + q3 = 0, and the energy conservation,
for a simple parabolic band, can be cast in the form

2(p1q1 + p2q2 + p3q3) + q21 + q22 + q23 = 0.

These conditions set the phase-space constraints for
collisions.

For an initial state with p1 = pF + ε/vF , the quasi-
particle life-time corresponding to an RRL-process is
then

τ−1
qp =

=
∑
p2p3

p′
1p

′
2p

′
3

W (1 − fp′
1
)fp2(1− fp′

2
)fp3(1− fp′

3
), (13)

where we begin analysis from the spinless case. At
this point it is convenient to shift momenta of left- and
right-movers from the respective Fermi points, p1,2 =

= pF + k1,2 and p3 = −pF + k3. In addition, it is
sufficient to linearize the spectrum in the distribution
functions, approximating

f±pF+k → f±k =

[
exp

(
±vFk

T

)
+ 1

]−1

,

but not in the scattering probability W . Indeed,
an analysis of the kinematic constraints suggests that
q1 ≈ −q2 and q3 ≈ (q1/pF )(k1 − k2 + q1), implying
that |q3| � |q1,2|. In other words, relaxation occurs in
incremental steps of momentum transfer q3 ∼ ε2/v2F pF
from right-movers to left-movers. With these observa-
tions at hand, we next need the corresponding three-
particle scattering amplitude. For the case of long-
ranged Coulomb interaction Eq. (10), one finds from
Eq. (6) after a laborious expansion

A ≈ 2(pFw)
2

L2εF

(
2e2

κ

)2

×

×
[
1− 3

4
ln

(
1

pFw

)]
ln

(
q21

pF |q3|
)
. (14)

This result is obtained to leading logarithmic accuracy
using two small parameters |q1|/pF ∼ |q3|/|q1| � 1 in
the expansion. With the same level of accuracy the

momentum and energy conservations in Eq. (5) can be
simplified to

δP,P ′δ(E − E′) ≈

≈ 1

vF
δ

(
q3 − q1(k1 − k2) + q21

pF

)
δq1,−q2 . (15)

These approximations enable one to complete all five
momentum integrations. Two integrations are removed
by delta functions which fix values of q2 and q3 in terms
of k1,2 and q1. Furthermore, in the zero temperature
limit, T → 0, Fermi occupations become step-func-
tions, fk → θ(−k). The integral over k3 then becomes
elementary, contributing by a pure phase space factor

∑
k3

f−k3(1− f−k2−q3) =
L

2π
|q3|θ(−q3).

The product of Fermi factors, fk2(1 − fk2−q1), simply
limits the domain of k2 to the range k2 ∈ [−|q1|, 0],
while the remaining 1−fk1+q1 dictates that q1 < k1. Fi-
nally, we recall that in this setting k1 = ε/vF . Putting
everything together the RRL-process gives the life-time

τ−1
qp = c1εF g

4λ21(pFw)

(
ε

εF

)4

, (16)

where g = e2/κvF is the dimensionless interac-
tion strength of the model and we introduced
λ1(z) = z2 ln(1/z). The numerical coefficient c1 =

= (15−π2)/32π3 is obtained with help of the following
integral

1∫∫
0

x2g(x, y) ln2

(
x

g(x, y)

)
dx dy =

15− π2

72
, (17)

where g(x, y) = 1 − x(1 − y). Notice that the numeri-
cal factor in Eq. (16) differs from the one calculated in
Refs. [26, 28] as different properties of the interaction
potential were assumed4).

We see that finite decay rate emerges in forth order
of the interaction strength. We also notice that the at-
tenuation is inversely proportional to the cube of mass,
τ−1
qp ∝ (m∗)−3, and vanishes as the limit m∗ → ∞ is

taken at fixed band velocity. This limit corresponds to
the situation considered by Dzyaloshinskii and Larkin.
The energy scaling of the decay rate, ∝ ε4, is consistent
with expectations based on the Fermi liquid picture for

4) In Appendix (see full text) we sketch derivation of Eq. (16)
from the bosonization framework of an impurity scattering in
Luttinger liquids.
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a process involving two particle-hole excitations. How-
ever, this result is not universal. This becomes evi-
dent from repeating the above calculation for the model
of screened short-range interaction, i.e. using the po-
tential given by Eq. (9). Expanding the amplitude in
Eq. (6) under the same conditions as above, one then
finds instead of Eq. (14) the amplitude

A ≈ −5(pFd)
4

3L2εF

(
2e2

κ

)2

ln

(
1

pFd

)
×

×
[
q21
4p2F

[
1 + 6 ln

( |q1|
pF

)]
−

− q23
q21

[
1 + 6 ln

( |q3|
|q1|

)]]
. (18)

The crucial difference here compared to Eq. (14) is the
appearance of the additional small parameter |q1|/pF ∼
∼ |q3|/|q1| ∼ ε/εF � 1, which can be related to the fact
that this particular model is nearly integrable. A close
inspection of the amplitude in Eq. (6) reveals that each
term individually diverges as 1/q at small characteris-
tic momentum transfer. However, all exchange terms
combined together remove the singularity and partially
cancel out all the way to ∼ q2 ln q order. The rest of the
calculation carries through in exactly the same way as
in the previous example, and one finds the decay rate

τ−1
qp = c2εF g

4λ22(pFd)

(
ε

εF

)8

ln2
(εF
ε

)
(19)

with c2 = 2445/3584π3 and λ2(z) = z4 ln(1/z). The
four extra powers in the energy dependence, can be
traced back to the different asymptotic form of the
amplitude in Eq. (18). This demonstrates the high
sensitivity of decay rates in 1D to details of the in-
teraction. The result captured by Eq. (19) is of course
perturbative. For a generic nonintegrable models with
short-ranged interaction, it can be generalized to ar-
bitrary interaction strength. It can further be shown
that τ−1

qp ∝ ε8 remains valid, and the pre-factor can be
expressed in terms of the exact spectrum [31].

As should be anticipated from the discussion above,
electron spin plays a crucial role in the transition ma-
trix element for the three-particle process, and should
thus significantly affect the quasiparticle decay rate.
Indeed, in the spinless case antisymmetry of the elect-
ron wave function dictates that its orbital component
should be odd and therefore relevant exchange ampli-
tudes are suppressed by Pauli exclusion. Mathemati-
cally, one sees this in a cancellation of various terms
that lead to Eq. (18). In contrast, for spinful elect-
rons singular parts of the amplitude do not cancel.

They are dominated by 2pF exchange-processes be-
tween branches, in which left-movers are scattered into
right-movers [35]. Even though the strength of 2pF
exchange interaction is weaker than small momentum
scattering, V2pF � V0, for Coulomb interaction the rel-
ative reduction is only logarithmic. The gain in the
amplitude, on the other hand, is more substantial and
controlled by the large factor ∼ εF/vF q 
 1. This
statement can be verified explicitly from Eq. (6) where
after spin summation one finds for the square of the
amplitude for the RRL-process

∑
σ2σ3

σ′
1σ

′
2σ

′
3

|A|2 =
3V 2

2pF
(V0 − V2pF )

2

32L4ε2F

[
q21
q23

+
4p2F
q21

]
. (20)

To obtain this result we approximated Vp1−p2±qi ≈ V0
and Vp1,2−p3±qi ≈ V2pF in all the relevant terms since
p1,2 − p3 ≈ 2pF and qi � |pi|. Again, by repeating
momentum integrations, the decay rate is found to be
of the form

τ−1
qp = c3εF g

4λ23(pFw)

(
ε

εF

)2

ln2
(εF
ε

)
, (21)

with c3 = 45/32π3 and λ3(z) = ln(1/z). To be consis-
tent with the approximations that lead to Eq. (20),
the difference V0 − V2pF should be understood as a
weak logarithmic factor 
 (2e2/κ) ln(εF /ε) for the
Coulomb interaction potential. This was incorporated
into Eq. (21). The singularity of the amplitude was
compensated by phase space factors, and perhaps sur-
prisingly this restores essentially the Fermi liquid form
of the decay rate at T = 0. We note that up to model
dependent pre-factors, the quadratic dependence of the
relaxation rate on energy of spin-1/2 particles given by
Eq. (21) is consistent with predictions of previous stu-
dies [35, 39].

We proceed with discussion of the effects of thermal
broadening on relaxation processes. In the Fermi liquid
picture one expects a simple crossover at excitation en-
ergies of the order of temperature ε ∼ T . For 1D liquids
this is not the case, as even at T < ε there are inter-
mediate regimes and relaxation shows nontrivial tem-
perature dependence. Indeed, at finite temperatures
each collision results in a typical momentum trans-
fer qi ∼ T/vF allowed by thermal smearing of states
near the Fermi energy. As RRL relaxation is controlled
by the momentum transfer between the branches, one
needs to compare phase spaces available to left movers.
Since at zero temperature q3 ∼ ε2/v2F pF , one deduces
from comparison to q3 ∼ T/vF the crossover scale εT ∼
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∼ √
εFT . Technically, this argument can be also made

clear by observing that

∑
k3

f−k3(1 − f−k3−q3) =
L

2π
q3

[
exp

(vF q3
T

)
− 1

]−1

,

and reducing to LT/2πvF as q3 → 0. These consider-
ations suggest that Eqs. (16), (19), and (21) are valid
for T � ε2/εF . Above this threshold one finds

τ−1
qp = c4εF g

4λ21(pFw)

(
ε

εF

)2
T

εF
, (22)

instead of Eq. (16) for the spinless Coulomb case. Si-
milarly,

τ−1
qp = c5εF g

4λ22(pFd)

(
ε

εF

)6
T

εF
ln2

(εF
ε

)
, (23)

instead of Eq. (19) for the spinless screened case, and
finally

τ−1
qp = c6εF g

4λ23(pFw)
T

εF
ln2

(εF
ε

)
(24)

instead of Eq. (21) for the spin-1/2 Coulomb case. The
set of coefficients c4,5,6 can be determined from numer-
ical integrations, however, their specific values are of
no particular significance here.

At elevated temperatures the above mechanism of
relaxation competes with another process involving
only particles of the same chirality. As indicated ear-
lier, this RRR- (or equivalently LLL-) process is kine-
matically possible only at finite energies. It follows
from the same amplitude Eq. (6), but admits differ-
ent conditions on the involved momenta. In this pro-
cess, a high-energy particle with excess energy ε can
relax on two other comoving particles, which during
the collision are scattered in opposite directions in en-
ergy. Namely, one is drifting slightly upwards in energy,
whereas the other float downwards, closer to the Fermi
energy. A detailed calculation in the spinless Coulomb
model shows that the corresponding relaxation rate is
given by

τ−1
qp = c7g

4(pFw)
4 T

3

εεF
ln2

(εw
ε

)
, (25)

where εw = vF /w. This rate exceeds that given in
Eq. (22), provided that temperature is higher than
∼ ε

√
ε/εF . In the case of screened Coulomb interac-

tion, the same mechanism is more strongly suppressed

τ−1
qp = c8g

4(pFd)
8 T

7

εε5F
ln2

(εd
ε

)
ln2

( ε
T

)
, (26)

where εd = vF /d. In fact, ∝ T 7 is a generic property
for any non-integrable finite-range interaction model
with a sufficient degree of analyticity at small momenta
[32, 33]. Lastly, in the case of spin-1/2 chiral electrons
one estimates the decay rate to be of the form

τ−1
qp = c9g

4 Tε
6
T

ε2ε4d
ln4

(
d

w

)
. (27)

In addition to relaxation of particles with the same
chirality, thermal broadening allows for the relaxation
of hot quasiholes, a process kinematically forbidden at
zero temperature. The derivation of the corresponding
decay rate τ−1

qh proceeds in close analogy to that for the
RRL-process. Crucial modifications are (i) the sign of
q3, (ii) a smaller phase space volume, now suppressed
by an additional factor ∼ T/(ε2/εF ), and (iii) that it
takes ∼ (ε/εT )

2 steps to relax the excess energy. As a
result, the quasihole relaxation rate e. g. for the spin-
1/2 model,

τ−1
qh = c10εF g

4λ23(pFw)

(
T

ε

)2

ln2
(εF
ε

)
, (28)

is by a factor (εT /ε)
4 smaller than τ−1

qh defined in
Eq. (21) when taken at the same energy. This pro-
nounced asymmetry in the relaxation rates of elect-
ron-like and hole-like excitations is a direct consequence
of the 1D kinematics of three-particle scattering with
nonlinear spectrum. This feature marks a sharp dis-
tinction between the quantum 1D Fermi–Luttinger liq-
uids and higher dimensional Fermi liquids.

We summarize in Table the discussed quasiparticle
relaxation rates in the different regimes.

2.3. Distribution imbalance rates. Another
common technique in kinetic theory applied to the de-
termination of relaxation rates is to project the collision
integral onto specific modes of interest, to infer their
corresponding decay times. For instance, in the context
of the present problem, one can look at the thermal im-
balance relaxation between left- and right-movers. This
amounts to projecting the collision term onto the ener-
gy mode of the distribution function np, which is even
in momentum.

To see the practical implementation of this method,
consider a situation in which right-movers are hotter
than left-movers. The goal is then to derive an equa-
tion which describes the relaxation of the difference in
temperatures ΔT = TR −TL of left- and right-moving
electrons. It should be noted that the physical set-
ting with imbalanced temperature is justified in 1D:
while three-particle collisions generate both right- and
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Table. Energy and temperature dependencies of quasi-
particle relaxation rates (only the leading parametric
behavior is indicated and logarithmic terms are omit-
ted for brevity). First two rows summarize results for
spinless electrons interacting via Coulomb and screened
short-range interaction models, respectively, and the
last row gives the result for the spin-1/2 model. The
first two columns describe processes involving particles
of both chiralities (e. g. the RRL-process), and the
last column describes the relaxation of comoving par-
ticles with only same chirality (e. g. the RRR-process).
In all cases T1 ∼ ε2/εF , while T2 ∼ ε

√
ε/εF in the

Coulomb model, T2 ∼ ε 6
√

ε/εF in the screened model,
and T2 ∼ ε(εd/εF ) 3

√
εd/ε in the spinful model

τ−1
qp T < T1 T1 < T < T2 T2 < T < ε

Coulomb ε4/ε3F Tε2/ε2F T 3/εεF

Screened ε8/ε7F Tε6/ε6F T 7/εε5F

Spin-1/2 ε2/εF T Tε6T/ε
2ε4d

left-moving particle-hole pairs the intrabranch relax-
ation induced by these processes is faster, while inter-
branch is a slow.

We start from the Boltzmann equation, multiply
both sides by εp1 − εF , and sum over p1 > 0∑

p1>0

(εp1 − εF )∂tnp1 =
∑
p1>0

(εp1 − εF )St{n}, (29)

where, as above, momentum p1 is that of a right-
moving particle. We then assume np1 to be of Fer-
mi–Dirac form with nonequilibrium temperature TR =

= T +ΔT of right-moving excitations, and linearize in
the left-hand-side with respect to ΔT ,

∂tnp1 = ∂Tnp1∂tΔT =
(εp1 − εF )∂tΔT

4T 2 ch2
(
εp1 − εF

2T

) . (30)

When computing integral over p1 it is convenient to
shift momentum to the respective Fermi point, p1 =

= pF + k1. Linearizing further the dispersion relation
in k1, εp1 − εF ≈ vF k1, one may use that the integral
is peaked at pF and rapidly converging. Noting that

+∞∫
−∞

z2dz/ ch2(z) = π2/6,

one readily finds∑
p1>0

(εp1 − εF )∂tnp1 =
πLT

6vF
∂tΔT. (31)

The next step is to also linearize the right-hand-si-
de of Eq. (29) in ΔT . To accomplish this task we
parametrize np = fp+fp(1−fp)ψp, which allows to con-
veniently take advantage of the detailed balance con-
dition in the collision integral St{n}. For the thermal
imbalance ψp = (εp − εF )ΔT/T

2, and one finds upon
expansion in ΔT

∑
p1>0

(εp1 − εF )St{n} =

= −ΔT

T 2

∑
{k,q,σ}

(vFk1)(vF q3)W . (32)

Here

W =Wfk1(1− fk1+q1)fk2(1 − fk2+q2)×
× f−k3(1− f−k3−q3), (33)

and at intermediate steps we made use of the energy
conservation implicit in W , and approximated εp1 −
− εF ≈ vFk1 and εp′

3
− εp3 ≈ −vF q3. It is now evident

that Eq. (29) can be cast in form of the usual relaxation
time approximation,

∂tΔT = −ΔT/τth, (34)

where we introduced the corresponding thermalization
time. For the kinematics of the RRL-process, the latter
evaluates to

τ−1
th = c11εF g

4λ23(pFw)

(
T

εF

)2

ln2
(εF
T

)
. (35)

In a similar fashion one can find the relaxation rate for
the odd part of the imbalanced distribution. For this
purposes one may consider a boosted frame of referen-
ce, εp − pu, and derive the relaxation equation for u
by projecting the collision integral onto the momentum
mode. Kinematics of the respective collision is different
though, and will be considered in the next section.

To get an idea of the order of magnitude of the
different timescales, it is instructive to consider the fol-
lowing estimates for GaAs quantum wires using exper-
imental parameters of Ref. [52]. For vF ∼ 2 · 105 m/s
and κ ∼ 10, the interaction parameter is just within
the applicability criterion of the perturbative expres-
sions g ∼ 1. For the typical electron density we use
pF ∼ 108 m−1, w ∼ 10 nm, and εF ∼ 1 meV. Then for
ε ∼ εF /4, which is a typical excess energy of injected
particles in tunneling experiments, and T ∼ 0.25 K one
is securely in the regime T � ε2/εF . For this set of
parameters τ−1

qp ∼ 1011 s−1, τ−1
qh ∼ 109 s−1, and τ−1

th ∼
∼ 106 s−1.
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2.4. Backscattering hole mobility rates. Rela-
xation processes of low-energy excitations leading to
the decay of quasiparticles near the Fermi energy do not
change the numbers of right- and left-moving particles.
Thus they are chirality conserving. It turns out that it
is also possible to have backscattering processes. The
kinematics of these collisions involves states deep in the
Fermi sea, and for this reason it is useful to consider
the mobility of holes at the bottom of the band. These
processes are commonly considered from the perspec-
tive of mobile impurities in a Luttinger liquid [63–69].
Here we will continue using the kinetic equation ap-
proach for their description. The idea is then to single
out hole states at the bottom of the band with small
momenta, and to derive an effective kinetic equation
capturing their dynamics and allowing the calculation
of corresponding backscattering rates [70, 71].

For this purpose, let p1 and p′1 be momenta near the
band bottom, p2 and p′2 lie near the right Fermi point
(+pF ), and p3 and p′3 be taken near the left Fermi point
(−pF ). As before, the unprimed momenta correspond
to incoming states whereas primed ones are associated
with outgoing states. With these conventions, we intro-
duce the hole distribution function, hp1 = 1− np1 , and
the collision integral for holes, St{hp1} = −St{np1}.
Starting from Eq. (11), the latter can be cast in the
form

St{hp1} =
∑
p′
1

[P(p1, p
′
1)hp′

1
− P(p′1, p1)hp1

]
, (36)

where

P(p1, p
′
1) = 12

∑
{σ}

∑
p2p3

p′
2p

′
3

Wfp2(1− fp′
2
)fp3(1− fp′

3
) (37)

is the rate for a transition in which a hole scatters from
some state p′1 into p1, while P(p′1, p1) denotes the rate
for the inverse process. In the above sums, all momenta
have been restricted to the discussed ranges, which ex-
plains the combinatorial overall factor of 12. Since both
p1 and p′1 lie near the bottom of the band, the distri-
bution functions hp1 and hp′

1
are exponentially small

∝ e−εF /T due to Pauli exclusion, and so is the collision
integral of holes St{hp}. It is therefore unnecessary
to account for additional exponentially small contribu-
tions in the transition rates P(p1, p

′
1) and P(p′1, p1),

and this is why we replaced fp1 
 1 and fp′
1

 1 in

both. As in the case of the forward scattering process,
the typical scale for momentum change of all three par-
ticles in a hole backscattering is set by temperature,
qi = p′i − pi ∼ T/vF . At the same time, the typical
momentum of a hole is p1 ∼ √

m∗T so that q1/p1 ∼
∼ √

T/εF � 1. This means that the net momentum

change in each scattering event is small, and holes ef-
fectively drift through the bottom of the band. Thus
relaxation occurs in multiple steps and the underlying
dynamics is momentum space diffusion. Under these
conditions, the mobile impurity falls into the universal
class of problems described by a Fokker–Planck equa-
tion [72]. The collision integral Eq. (36) can then be
simplified by expanding in the small momentum step
q1 � p1, and maps to the differential operator

St{hp1} ≈ −∂p1 [A(p1)hp1 ] +
1

2
∂2p1

[B(p1)hp1 ] . (38)

Here we introduced

A(p1) = −
∑
q1

q1Pq1(p1),

B(p1) =
∑
q1

q21Pq1(p1),
(39)

and used the short-hand notation Pq1(p1) = P(p′1, p1).
The diffusion coefficient in momentum space B(p1) is a
function of the hole-momentum p1 varying on a scale
set by pF . For holes at the bottom of the band, one
may thus approximate B(p1) by its value at p1 = 0,
in the following simply denoted by B without argu-
ment. Furthermore, the drift coefficient A(p1) is read-
ily obtained from noting that the collision integral (38)
has to vanish for hole distributions of an equilibrium
Boltzmann form. This condition leads to the relation
A(p) = pB/2m∗T .

The rest of the calculation depends on the struc-
ture of the amplitude for the given kinematics of the
three-particle process. In calculating A from Eq. (6)
for the momentum configuration under consideration,
and up to small corrections in T/εF � 1, it is sufficient
to approximate p1 ≈ 0, p2 ≈ +pF and p3 ≈ −pF . Mo-
mentum and energy conservations provide additional
restrictions on the transferred momenta, enforcing that
q2 ≈ q3 ≈ −q1/2, again up to small corrections in
T/εF � 1. As a result, the amplitude A can be
parametrized only by a single momentum q1. Expan-
ding Eq. (6) and summing over spins one then finds

∑
{σ}

|A|2 =
6

ε2FL
4
V 2
pF

(VpF − V2pF )
2 p

2
F

q21
. (40)

The singularity of A at small momenta is cancelled in
the spinless case. Specifically, for the long-range inter-
action model with Eq. (10) one finds

A ≈ 9

16ε2FL
4

(
2e2

κ

)4

λ21(pFw) ln
2

(
pF
|q1|

)
, (41)
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whereas for the screened model

A ≈ 9(ln 4− 1)2

ε2FL
4

(
2e2

κ

)4

λ22(pF d). (42)

In order to perform remaining momentum integrations
implicit in the definition of B, one can approximate
delta functions in the scattering probability by

δP,P ′δ(E − E′) ≈ 1

vF
δ(q2 − q3)δq2,−q1/2.

This removes two integrations out of five, and gives

B =
12L

vF

∑
q1k2k3

q21
∑
{σ}

|A|2fk2−q1/2(1 − fk2)×

× fk3+q1/2(1− fk3), (43)

where we shifted momenta p2,3 to the respective Fermi
points, ±pF + k2,3, and linearized the dispersion rela-
tion in all Fermi occupation functions. Finally, using
the tabulated integral

∑
k

fk+q(1− fk) =
L

2π
qbq, bq =

1

evF q/T − 1
, (44)

where bq is the equilibrium Bose distribution, we arrive
at the general expression

B =
6π

vF

(
L

2π

)3 ∑
q1

q41
∑
{σ}

|A|2bq1/2(1 + bq1/2). (45)

A notable feature of this expression is that it is entirely
expressed in terms of bosonic modes. In essence, this is
a manifestation of bosonization at the level of fermionic
kinetic theory, as the occupation of an electron-hole
pair near one of the Fermi points integrated over the
center of mass momentum is equivalent to a collective
boson emitted/absorbed in a course of hole diffusion.
It will be shown in the subsequent section that struc-
turally the same expression for B can be obtained from
a purely bosonic formulation of the problem. Finally,
inserting Eq. (40) into Eq. (45) one finds the momen-
tum space diffusion coefficient of spin-1/2 holes

B =
768 ln2(2)

π
g4λ23(pFw)

(
T

εF

)3

p2F εF . (46)

The corresponding backscattering relaxation rate can
be found from Einstein relation adopted to diffusion in
momentum space, Δp2 = Bτdh. The notation τdh is
meant to emphasize kinetics of a deep hole as opposed
to earlier notation τqh describing quasiholes near Fermi

energy. Thus for Δp2 
 m∗T the result is (omitting
numerical factor for brevity)

τ−1
dh 
 g4λ23(pFw)

(
T

εF

)2

. (47)

Finally we recall that the mobility of particles μ is re-
lated to the diffusion constant by the simple kinetic
formula μ = T/B, and therefore μ ∝ 1/T 2.

The result is different in the spinless case. From
Eqs. (41), (42) and (45) one finds B ∝ T 5 in both cases,
modulo a logarithmic factor ln2 T in the Coulomb case,
and thus τ−1

dh ∝ T 4 and μ ∝ 1/T 4. The results dis-
cussed in this section are again perturbative in the in-
teraction. The power laws in the temperature depen-
dence of relaxation rates are, however, generic and also
apply to the strongly interacting regime, as we further
elaborate below, see also Refs. [67, 68].

2.5. Electron-phonon relaxation rates. Apart
from the purely electronic mechanisms of relaxation
electrons may scatter on phonons, disorder, and sam-
ple imperfections thus relaxing their energy and mo-
mentum. At extremely low temperatures phonons are
not expected to be efficient at cooling the electronic
sub-system. On the other hand, electron-phonon scat-
tering has no such severe phase space restrictions like
the three-particle collisions considered above. It is thus
instructive to estimate the temperature dependence for
the corresponding relaxation rate. Unlike the previous
studies of electron-phonon relaxation in multichannel
quantum wires [73, 74], and phonon-induced backscat-
tering relaxation [75, 76], we focus on the complemen-
tary effect of soft collisions in a single-channel geometry
of strictly 1D electrons and 3D phonons.

The coupling of electrons and phonons is described
by the collision integral [77]

St{np, Nq} =

=
∑
p′q

W−[np′(1 − np)Nq−np(1−np′)(1+Nq)] +

+
∑
p′q

W+[np′(1−np)(1+Nq)−np(1−np′)Nq] , (48)

where the scattering rate

W±(p, p′, q) = (2π)|A(q)|2δ(εp−εp′±ωq)δp=p′±qx (49)

describes phonon emission and absorption processes
with an amplitude

A(q) =

√
1

2
Vωq
(D|q|+ iΛ).
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Here we took into account that at the level of the lead-
ing Born approximation, the probabilities of scattering
for direct and reverse processes are the same. In the
amplitude we include both deformation (D) and piezo-
electric (Λ) couplings, 
 is the mass density, qx the
phonon wave-vector along the wire, and V is the sys-
tem volume. For simplicity we assume only a single
acoustic branch ωq = s|q|, with sound velocity s.

For equilibrium Fermi and Bose distribution func-
tions of electrons and phonons respectively, np → fp
and Nq → bq, the collision integral in Eq. (48) vanishes
due to detailed balance condition. As in the above ex-
ample of the distribution imbalance relaxation, we then
assume that electrons are hot, that is, at an excess tem-
perature T +ΔT with respect to the temperature T of
lattice phonons. Electron-phonon collisions tend to re-
lax ΔT , and the corresponding rate for relaxation can
be found by projecting the collision integral onto the
energy mode,∑

p

εpṅp = −
∑
p

εpSt{np, Nq},

with εp = εp − εF . To linear order in ΔT one finds
from the phonon emission processes of hot electrons,
∂tΔT = −ΔT/τep, where

τ−1
ep = − 6vF

πT 3L
×

×
∑
pp′q

Wεpωqfεp(1− fεp)(fεp+ωq + bωq ) . (50)

Upon completion of the remaining momentum integra-
tions, we then find to leading order in T

τ−1
ep =

9ζ(3)

8π3
T (Λ2/s2vF 
). (51)

The scattering rate due to the deformation potential
is parametrically weaker, scaling as τ−1

ep ∝ T 3. The
backscattering mechanism results in an activated tem-
perature dependence ∝ e−TA/T with TA = 2spF . It
is straightforward to generalize Eq. (51) to the case
when electronic relaxation occurs via several acoustic
branches. Notice also that the piezoelectric potential
may have complicated angular dependence in case of
wires oriented arbitrarily with respect to the crystallo-
graphical axis of the sample. A proper angular aver-
aging would change then numerical factors in Eq. (51)
where we took the simplest geometry. Luttinger liquid
effects lead to renormalization of the linear-T behavior
and transform it into a power-law with interaction de-
pendent exponent ∝ TK , where K = vF /u is the ratio

of Fermi and plasmon velocities. In the TL model u =

= vF
√
1 + V0/πvF .

2.6. Spin-charge scattering rates. The applica-
bility of the Born approximation, used to construct the
quantum amplitude for triple particle processes cap-
tured by Eq. (6), requires that incoming spin-1/2 quasi-
particles have sufficiently high energy compared to the
typical scale of interparticle interaction ε
 m∗vFV0.

In the generic interacting environment of a 1D
quantum fluid, quasiparticle excitations break down
into spin and charge modes. At the level of linear Lut-
tinger liquid theory, spin-charge separation is an ex-
act property of the model [14]. At weak coupling, the
splitting between velocities of collective spin (vσ) and
charge (vρ) density waves is related to the forward scat-
tering component of the interaction vρ−vσ ∼ V0 (recall
that for repulsive interactions vρ > vσ). Assuming then
thermal excitations with ε ∼ T , the Born condition can
be equivalently formulated as T/(m∗vF ) 
 vρ − vσ.
In other words, for fermionic quasiparticles to preserve
their integrity the excitation energy (or temperature)
should be bigger than the energy scale of spin-charge
separation.

The interplay of spectrum nonlinearities and in-
teractions leads to spin-charge coupling [78, 79]. Al-
though irrelevant in the renormalization group sense,
the newly emerging higher order operators capture
the attenuation of quasiparticles. The kinetic prop-
erties of 1D quantum liquids with spin-charge cou-
pling are not fully understood. There are basically
two possible approaches one may pursue. The first is
to refermionize the nonlinear bosonic theory to obtain
an effective description in terms of dressed quasiparti-
cles: holons and spinons. Holon relaxation was conside-
red in Refs. [36,37] based on non-Abelian bosonization
[80]. The advantage of this complex theory is that, in
principle, it allows to go beyond the weakly interact-
ing limit for spinful fermions. Alternatively, one may
choose to continue working in bosonic language. In the
limit of weak backscattering one can then account for
spin-charge interaction perturbatively in the basis of
well-defined spin and charge modes. This second pro-
cedure is limited to weak interactions V2pF � V0 � vF .
To complement previous studies, we follow in this sec-
tion the second path. In part this will enable us to ex-
plore the fermion-boson duality. We delegate technical
details of bosonization to the Appendix (see full text)
and elucidate here the impact of spin-charge scattering
on various decay rates.

The lowest order nonlinearity, compatible with
SU(2) symmetry of the problem is cubic. It contains
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one charge and two spin operators. Treating this term
in a perturbative expansion generates a collision ker-
nel that describes the decay of a plasmon into two spin
modes ρ→ σσ. It reads

St{Nρ, Nσ} = −
∑
q1q2

W
[
Nρ

q (1+N
σ
q1)(1+N

σ
q2) −

− (1 +Nρ
q )N

σ
q1N

σ
q2

]
, (52)

where Nρ/σ are the bosonic occupations of charge (ρ)
and spin (σ) excitations. The scattering probability

W = 2π|A|2δq=q1+q2δ(ω
ρ
q − ωσ

q1 − ωσ
q2) (53)

contains an amplitude scaling cubically with momenta
of the bosons |A|2 = (π3/8L)|q||q1||q2|Γ2

ρσσ . The per-
turbative result for the coupling constant is Γρσσ =

= V ′
2pF

/
√
2π2, where the prime denotes the derivative

with respect to pF . Note that it thus vanishes for the
integrable case of constant interaction. At smallest
momenta the dispersion relations are linear ωρ/σ =

= vρ/σ |q|. The kinematics of this process uniquely
fixes momenta in the final state. Indeed, for concrete-
ness let q > 0, then q1 = q(vρ + vσ)/2vσ and q2 =

= −q(vρ − vσ)/2vσ, which means that spin waves are
counterpropagating. From dimensional analysis it be-
comes apparent that St{Nρ, Nσ} defines the decay rate
of a plasmon, and one can introduce the characteristic
rate

τ−1
ρ =

∑
q1q2

W 
 q3(V ′
2pF

)2
v2ρ − v2σ
v3σ

.

For the sake of an estimate, one may now take V ′
2pF

∼
∼ V2pF /pF and replace vρ/σ ∼ vF , except in their dif-
ference where vρ − vσ ∼ V0, and finds the life-time

τ−1
ρ ∼ εF

V0
vF

(
V2pF

vF

)2 (
q

pF

)3

. (54)

Notice the nonanalytic dependence of interaction ∝ V 3.
For thermal plasmons the relaxation rate can be cal-
culated from Eq. (52) by a projection onto an energy
mode. We observe that as |q2| � q the relaxation
occurs by small energy transfer from right-movers to
left-movers (or vise versa) so that interbrach processes
are slow. Assuming that right-moving excitations are
hotter by ΔT , and in complete analogy to the fermionic
case, we find∑

q>0

ωρ
q∂tN

ρ
q =

∑
q>0

ωρ
qSt{Nρ, Nσ}. (55)

The left-hand-side is straightforward to evaluate fur-
ther, noting that

∂tN
ρ
q = ∂TN

ρ
q ∂tΔT =

ωρ
q∂tΔT

4T 2 sh2(ωρ
q/2T )

, (56)

which after momentum integration gives a factor of
(πLT/6vρ)∂tΔT . The right-hand-side can be linearized
with the usual substitution Nq = bq + bq(1 + bq)φq ,
where φq = ωqΔT/T

2 for the case of a thermal imbal-
ance. After some algebra one finds

∑
q>0

ωρ
qSt{Nρ, Nσ} =

= −ΔT
∑
qq1q2

(ωρ
q/T )

2W (1 + bρq)b
σ
q1b

σ
q2 , (57)

where we repeatedly used energy conservation and the
detailed balance condition. Performing the final inte-
grations, we then arrive at

τ−1
ρ =

3π

16
Γ2
ρσσ(T

3/v4σ)F (vσ/vρ), (58)

where the dimensionless function reads

F (κ) = κ(1− κ2)

∞∫
0

dz z5(1 + bz)bz+bz− (59)

with bz = (ez − 1)−1 and z± = z(1 ± κ)/2. One can
readily check that F → 32π4/15 in the limit κ→ 1.

The same scattering process can be alternatively
viewed as a mutual spin-charge friction. Physically,
this is analogous to the electron-phonon drag effect,
typically studied in the context of thermoelectricity, or
Coulomb drag in double-layers [81] and spin Coulomb
drag [82]. In each of these examples momentum trans-
fer between interactively coupled systems leads to drag-
ging of one sub-system by the flow of the other. For
instance, in the context of spin physics in Luttinger liq-
uids, generation of spin current is possible by Coulomb
drag [83]. To estimate the spin-charge drag rate, one
can consider a boosted frame of reference for spin and
charge excitations with mismatched boost velocities
uρ/σ. The scattering leads to momentum exchange be-
tween spins and charge and, as a result, to relaxation
∂tuρ = −(uρ − uσ)/τρσ. To capture this effect, we lin-
earize the collision integral for N(ωq−uq) with respect
to u, for both spin and charge occupations, and then
project onto the momentum mode to calculate the rate
of momentum loss by (e. g.) charge modes

∂tPρ =
∑
q

qSt{Nρ, Nσ} =

= −Δu

T

∑
qq1q2

q2W (1 + bρq)b
σ
q1b

σ
q2 . (60)
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When we compare this to ∂tPρ = (πLT 2/3v3ρ)∂tuρ, we
find that thus defined drag relaxation rate τ−1

ρσ coin-
cides with Eq. (58) up to a constant factor. It is per-
haps useful to note that τ−1

ρσ ∝ T 3 is consistent with
the expectation that Coulomb drag transresistivity be-
tween double quantum wires due to interwire momen-
tum transfer from spin-charge coupling at zero mag-
netic field scales as ρD ∝ T 5 [37]. Indeed, this rate is
accompanied by two thermal phase space factors ∼ T

per wire, thus leading to T 5. In the drag problem,
the factor q3 results from the width of the dynamic
charge structure factor and the underlying scattering
that gives rise to q3 is precisely the decay of a charge
boson into two spin bosons.

The next in complexity is a quartic nonlinearity in
spin-charge coupling which leads to two-boson scatte-
ring ρσ → ρσ. In particular, we consider backscat-
tering of spin excitations on plasmons. Such scattering
processes correspond to the diffusion of spin excitations
near the spectral edge, and the goal is to calculate the
corresponding diffusion constant. As alluded to earlier,
the discussion parallels the previous calculation of the
backscattering of a deep hole in the fermionic language.
The corresponding collision integral reads

St{Nρ, Nσ} =

= −
∑

q2q′1q
′
2

W
[
Nσ

q1(1 +Nσ
q′1
)Nρ

q2(1 +Nρ
q′2
) −

− Nσ
q′1
(1 +Nσ

q1)N
ρ
q′2
(1 +Nρ

q2)
]
. (61)

The scattering rate for this process is given by

W = 2π|A|2δQ,Q′δ(E − E′) (62)

with the amplitude |A|2 = (Γρσ/8L)
2|q1q′1q2q′2|, where

the coupling constant at the perturbative level reads
Γρσ = V ′′

2pF
. The notations for momentum and energy

conservation here are Q = q1 + q2 and E = ωσ
q1 + ωρ

q2 .
Let momenta q1 and q′1 correspond to the initial and fi-
nal states of the spin excitation near the spectral edge.
Kinematically each momentum is of the order of the
Fermi momentum, q1 ∼ q′1 ∼ pF , while their difference,
q′1 − q1 ∼ T/vF , is small. This corresponds to a small
momentum change in each collision, which is accom-
panied by the excitation of plasmons at low momenta
q2 ∼ q′2 ∼ T/vF . For this reason the low-energy de-
scription based on Eq. (61) is sufficient to capture this
physics. Under the specified conditions and n complete
analogy with the fermionic case, we can convert the
collision integral into a Fokker–Planck differential op-
erator, thus describing the diffusion of spins. Indeed,

for momenta q ∼ pF the occupation is small, Nσ
q ∝

∝ e−εσ/T � 1, and correspondingly 1+Nσ ≈ 1, where
εσ is the band width of spin excitations. The latter is
parametrically of the order of the spin exchange cou-
pling. Viewing Eq. (61) as the collision integral for
spins, we thus write

St{Nσ
q1} =

∑
q′1

[P(q1, q
′
1)N

σ
q′1

− P(q′1, q1)N
σ
q1 ], (63)

where
P(q′1, q1) =

∑
q2q′2

WNρ
q′2
(1 +Nρ

q2) (64)

is the transition rate for spin scattering processes. More
specifically, it describes a collision with momentum
transfer δq, in which a spin is scattered out of the ini-
tial state q1. It can thus be rewritten as P(q′1, q1) =

= Pδq(q1), and following the same prescription, the
transition rate for the inverse process reads P(q1, q

′
1) =

= P−δq(q1 + δq). Performing then a small-momentum
expansion,

P(q1, q
′
1)N

σ
q′1

≈ P−δq(q1)N
σ
q1 +

+ δq∂q1 [P−δq(q1)N
σ
q1 ] +

δq2

2
∂2q1 [P−δq(q1)N

σ
q1 ], (65)

the collision integral of spin excitations takes the sim-
plified form

St{Nσ
q1} = −∂q1 [Aρσ(q1)N

σ
q1 ] +

+
1

2
∂2q1 [Bρσ(q1)N

σ
q1 ], (66)

where

Aρσ = −
∑
δq

δqPδq(q1), Bρσ =
∑
δq

δq2Pδq(q1). (67)

At this stage we focus on the derivation of Pδq(q1). The
momentum conservation implicit in W removes the q′2
integration. We then notice that distribution functions
limit the typical momentum transfer and momenta of
plasmons to q2 ∼ δq ∼ T/vF . At the same time, the
typical momentum of spins at the spectral edge is q1 ∼
∼ pF and it is sufficient to calculate Pδq(pF ). With
these observations at hand, we can now approximate
energy conservation by

δ(E − E′) ≈ 1

vρ
δ(q2 − δq/2).

This removes the q2 integral, and we thus arrive at

Pδq =
V 2
ρσ

1024Lvρ

(δq/pF )
2

sh2(vρδq/4T )
, (68)
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with the notation Vρσ = p2FΓρσ. Finally, this defines
the diffusion coefficient of spins in momentum space
associated to ρσ → ρσ scattering channel

Bρσ =
π3

30

(
Vρσ
vρ

)2 (
T

pF vρ

)5

p3F vρ. (69)

In addition to spin-charge scattering, nonlinearities
also allow for spin-spin scattering. Importantly for the
momentum space diffusion, scattering processes with
spin-flips are enhanced. They are thus described by a
different scaling of the probability with momentum as
compared to Eq. (68). That is,

Pδq =
V 2
σσ

8π2Lvσ

1

sh2(vσδq/4T )
, (70)

and this crucial detail is technically speaking traced
back to the non-commutativity of spin operators when
calculating the corresponding amplitude. The impor-
tance of spin flips is also apparent at the level of
fermions. Indeed, the ratio of scattering rates between
spinless and spinful cases has exactly the same param-
eter (q/pF )

2 � 1 as the ratio between probabilities in
Eqs. (68) and (70). The resulting diffusion constant in
the spin-spin channel is then

Bσσ =
4π

15

(
Vσσ
vσ

)2 (
T

pF vσ

)3

p3F vσ. (71)

A microscopic calculation of the respective coupling
constants for the different scattering channels is a chal-
lenging task. Known approaches include weak coupling
results obtained via mobile impurity model [69], results
for Kondo polarons [66], and calculations in the strong
interaction limit within the non-Abelian bosonization
framework [37], as well as a model departing from the
Wigner crystal limit [84].

Two-boson processes also contribute to the thermal-
ization rates [33,85,86]. For charge excitations this re-
sults in a subleading correction to Eq. (58). In the
spin sector the situation is, however, different since
at the cubic level of nonlinearities spins are kinemati-
cally forbidden to scatter. In both cases nonlinearity of
the bosonic spectrum plays an important role to open
phase space for such collisions. In order to general-
ize the present model, consider first the charge sector
and assume a weakly anharmonic dispersion of plas-
mons, ωρ

q ≈ vρ|q|(1− (ξq)2). Assume now that a right-
moving boson with momentum q1 � T/vρ is injected
into the Luttinger liquid. For this setting the collision
term from Eq. (61), with replacement Nσ → Nρ, dic-
tates that the dominant process limiting the lifetime

of the injected boson is due to scattering with inter-
branch momentum transfer. Indeed, for q1, q2, q′1 > 0

momentum conservation implies that q′2 is order q3,
since energy conservation fixes q′2 ≈ −(3ξ2/2)q1q2q

′
1.

Curiously, even though a finite ξ is crucial to resolve
the kinematic constraints it drops out from the corre-
sponding rate provided that q1 � 3

√
T/vρξ2. In this

regime vρ|q′2| � T , implying that Nρ
q′2

≈ T/ωρ
q′2

and q′2
cancels out from W . The decay rate then scales para-
metrically as τ−1

ρ ∝ Tq4. This estimate is applicable
as long as T/vρ � q � 3

√
T/vρξ2.

For thermal plasmons, this rate can be estimated
more accurately by projecting the collision integral
onto the energy mode. Assuming that the boson with
momentum q1 is “hotter” by a temperature difference
ΔT , one finds upon repeating the steps from the pre-
vious similar calculations

τ−1
ρ =

6vρ
πLT

∑
q1q2
q′1q

′
2

ωq1ωq2

T 2
×

×WNρ
q1N

ρ
q2(1 +Nρ

q′1
)(1 +Nρ

q′2
). (72)

For the kinematics of the process specified above, one
sum is removed by momentum conservation setting
q′1 = q1+q2. Energy conservation removes another inte-
gral, setting q′2 = −(3ξ2/2)q1q2(q1+q2). The remaining
integrals can, after rescaling of momentum variables in
units of temperature, be brought to a dimensionless
double-integral. This results in

τ−1
ρ =

3c12
(4π)4

(
Vρρ
vρ

)2

T

(
T

pF vρ

)4

, (73)

where the coefficient

c12 =

∞∫
0

x2y2(x + y)ex+ydx dy

(ex − 1)(ey − 1)(ex+y − 1)

and Vρρ = p2FΓρρ.

The two-spin scattering can be analyzed in the same
way, starting out from Eq. (61) by changing Nρ → Nσ.
The crucial difference is in the momentum dependence
of the scattering rate, which is enhanced by spin-flip
processes. The resulting spin wave thermalization rate
due to two-boson scattering processes reads

τ−1
σ ∼

(
Vσσ
vσ

)2

T

(
T

pF vσ

)2

. (74)

This final estimate exhausts all possible scattering pro-
cesses emerging from the quartic corrections to the lin-
ear Luttinger liquid model.

790



ЖЭТФ, том 159, вып. 4, 2021 Kinetic processes in Fermi–Luttinger liquids

Funding. This work was supported by the U. S.
Department of Energy (DOE), Office of Science, Ba-
sic Energy Sciences (BES) Program for Materials and
Chemistry Research in Quantum Information Science
under Award No. DE-SC0020313. T. M. acknowl-
edges financial support by Brazilian agencies CNPq
and FAPERJ.

The full text of this paper is published in the English
version of JETP.

REFERENCES

1. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshin-
skii, Methods of Quantum Field Theory in Statistical
Physics, ed. by R. S. Silverman, Dover Publ. (1975).

2. D. Pains, Elementary Excitations in Solids: Lectures
on Phonons, Electrons, and Plasmons, CRC Press
(1999).

3. L. D. Landau, Sov. Phys. JETP 3, 920 (1957); 5, 101
(1957); 35, 70 (1959).

4. A. A. Abrikosov and I. M. Khalatnikov, Rep. Prog.
Phys. 22, 329 (1959).

5. G. A. Brooker and J. Sykes, Phys. Rev. Lett. 21, 279
(1968).

6. R. N. Gurzhi, A. I. Kopeliovich, and S. B. Rutkevich,
Adv. Phys. 36, 221 (1987).

7. P. J. Ledwith, H. Guo, and L. Levitov, Ann. Phys.
411, 167913 (2019).

8. O. M. Auslaender, A. Yacoby, R. de Picciotto,
K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Sci-
ence 295, 825 (2002).

9. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler,
R. E. Smalley, L. Balents, and P. L. McEuen, Nature
397, 598 (1999).

10. A. M. Chang, L. N. Pfeiffer, and K. W. West, Phys.
Rev. Lett. 77, 2538 (1996).

11. A. M. Chang, Rev. Mod. Phys. 75, 1449 (2003).

12. T. Li, P. Wang, H. Fu, L. Du, K. A. Schreiber,
X. Mu, X. Liu, G. Sullivan, G. A. Csáthy, X. Lin,
and R.-R. Du, Phys. Rev. Lett. 115, 136804 (2015).

13. F. D. M. Haldane, J. Phys. C: Sol. St. Phys. 14, 2585
(1981); Phys. Rev. Lett. 47, 1840 (1981).

14. T. Giamarchi, Quantum Physics in One Dimension,
Clarendon Press (2004).

15. D. L. Maslov, Lecture Notes for the LXXXI Les
Houches Summer School “Nanoscopic Quantum Tran-
sport” (2004).

16. S. Tomonaga, Prog. Theor. Phys. (Kyoto) 5, 544
(1950).

17. J. M. Luttinger, J. Math. Phys. N. Y. 4, 1154 (1963).

18. D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304
(1965); see also Mathematical Physics in One Dimen-
sion, Acad. Press, New York (1966).

19. I. E. Dzyaloshinskii and A. I. Larkin, Sov. Phys.
JETP 38, 202 (1974).

20. A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).

21. H. Gutfreund and M. Schick, Phys. Rev. 168, 418
(1968).

22. V. V. Deshpande, M. Bockrath, L. I. Glazman, and
A. Yacoby, Nature 464, 209 (2010).

23. A. Imambekov, T. L. Schmidt, and L. I. Glazman,
Rev. Mod. Phys. 84, 1253 (2012).

24. K. Samokhin, J. Phys.: Condens. Matter 10, 533
(1998).

25. A. V. Rozhkov, Eur. Phys. J. 47, 193 (2005); Phys.
Rev. B 74, 245123 (2006); Phys. Rev. Lett. 112,
106403 (2014).

26. M. Khodas, M. Pustilnik, A. Kamenev, and L. Glaz-
man, Phys. Rev. 76, 155402 (2007).

27. D. A. Bagrets, I. V. Gornyi, A. D. Mirlin, and
D. G. Polyakov, Semiconductors 42, 994 (2008).

28. R. G. Pereira, S. R. White, and I. Affleck, Phys. Rev.
B 79, 165113 (2009).

29. T. Micklitz and A. Levchenko, Phys. Rev. Lett. 106,
196402 (2011).

30. S. Teber, Phys. Rev. B 86, 195112 (2012).

31. K. A. Matveev and A. Furusaki, Phys. Rev. Lett.
111, 256401 (2013).

32. Z. Ristivojevic and K. A. Matveev, Phys. Rev. B 87,
165108 (2013).

33. I. V. Protopopov, D. B. Gutman, and A. D. Mirlin,
Phys. Rev. B 90, 125113 (2014); Phys. Rev. B 91,
195110 (2015).

34. L. Balents and R. Egger, Phys. Rev. B 64, 035310
(2001).

35. T. Karzig, L. I. Glazman, and F. von Oppen, Phys.
Rev. Lett. 105, 226407 (2010).

36. T. L. Schmidt, A. Imambekov, and L. I. Glazman,
Phys. Rev. B 82, 245104 (2010).

791



A. Levchenko, T. Micklitz ЖЭТФ, том 159, вып. 4, 2021

37. R. G. Pereira and E. Sela, Phys. Rev. B 82, 115324
(2010).

38. A. Levchenko, Phys. Rev. Lett. 113, 196401 (2014).

39. M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys.
Rev. B 97, 195147 (2018).

40. K. A. Matveev and Z. Ristivojevic, Phys. Rev. B 102,
045401 (2020).

41. Z. Yao, H. Postma, L. Balents, and C. Dekker, Nature
402, 273 (1999).

42. O. M. Auslaender, A. Yacoby, R. de Picciotto,
K. W. Baldwin, L. N. Pfeiffer, and K. W. West Phys.
Rev. Lett. 84, 1764 (2000).

43. O. M. Auslaender, H. Steinberg, A. Yacoby, Y. Tser-
kovnyak, B. I. Halperin, K. W. Baldwin, L. N. Pfeif-
fer, and K. W. West, Science 308, 88 (2005).

44. Y. Jompol, C. J. B. Ford, J. P. Griffiths, I. Far-
rer, G. A. C. Jones, D. Anderson, D. A. Ritchie,
T. W. Silk, and A. J. Schofield, Science 325, 597
(2009).

45. H. Steinberg, G. Barak, A. Yacoby, L. N. Pfeiffer,
K. W. West, B. I. Halperin, and K. Le Hur, Nature
Phys. 4, 116 (2007).

46. H. Kamata, N. Kumada, M. Hashisaka, K. Muraki,
and T. Fujisawa, Nature Nanotechnol. 9, 177 (2014).

47. E. Slot, M. A. Holst, H. S. J. van der Zant, and
S. V. Zaitsev-Zotov, Phys. Rev. Lett. 93, 176602
(2004).

48. L. Venkataraman, Y. S. Hong, and P. Kim, Phys.
Rev. Lett. 96, 076601 (2006).

49. A. N. Aleshin, H. J. Lee, Y. W. Park, and K. Akagi,
Phys. Rev. Lett. 93, 196601 (2004).

50. J. D. Yuen, R. Menon, N. E. Coates, E. B. Namdas,
S. Cho, S. T. Hannahs, D. Moses, and A. J. Heeger,
Nature Mater. 8, 572 (2009).

51. C. Blumenstein, J. Schaefer, S. Mietke, A. Dollinger,
M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, and
R. Claessen, Nature Phys. 7, 776 (2011).

52. G. Barak, H. Steinberg, L. N. Pfeiffer, K. W. West,
L. Glazman, F. von Oppen, and A. Yacoby, Nature
Phys. 6, 489 (2010).

53. G. Granger, J. P. Eisenstein, and J. L. Reno, Phys.
Rev. Lett. 102, 086803 (2009).

54. C. Altimiras, H. le Sueur, U. Gennser, A. Cavanna,
D. Mailly, and F. Pierre, Nature Phys. 6, 34 (2010).

55. H. le Sueur, C. Altimiras, U. Gennser, A. Cavanna,
D. Mailly, and F. Pierre, Phys. Rev. Lett. 105,
056803 (2010).

56. M. G. Prokudina, S. Ludwig, V. Pellegrini, L. Sorba,
G. Biasiol, and V. S. Khrapai, Phys. Rev. Lett. 112,
216402 (2014).

57. J. R. Taylor, Scattering Theory : The Quantum Theo-
ry of Nonrelativistic Collisions, Dover Publ. (2006).

58. Y. M. Sirenko, V. Mitin, and P. Vasilopoulos, Phys.
Rev. B 50, 4631 (1994).

59. A. M. Lunde, K. Flensberg, and L. I. Glazman, Phys.
Rev. B 75, 245418 (2007).

60. A. Levchenko, Z. Ristivojevic, and T. Micklitz, Phys.
Rev. B 83, 041303(R) (2011).

61. B. Sutherland, Beautiful Models, World Sci., Singa-
pore (2004).

62. T. Cheon and T. Shigehara, Phys. Rev. Lett. 82, 2536
(1999).

63. T. Ogawa, A. Furusaki, and N. Nagaosa, Phys. Rev.
Lett. 68, 3638 (1992).

64. A. H. Castro Neto and M. P. A. Fisher, Phys. Rev.
B 53, 9713 (1996).

65. A. Imambekov and L. I. Glazman, Phys. Rev. Lett.
100, 206805 (2008).

66. A. Lamacraft, Phys. Rev. Lett. 101, 225301 (2008).

67. M. Schecter, D. M. Gangardt, and A. Kamenev, Ann.
Phys. 327, 639 (2012).

68. K. A. Matveev and A. V. Andreev, Phys. Rev. B 86,
045136 (2012).

69. M.-T. Rieder, A. Levchenko, and T. Micklitz, Phys.
Rev. B 90, 245434 (2014).

70. T. Micklitz, J. Rech, and K. A. Matveev, Phys. Rev.
B 81, 115313 (2010).

71. M.-T. Rieder, T. Micklitz, A. Levchenko, and
K. A. Matveev, Phys. Rev. B 90, 165405 (2014).

72. H. Risken, The Fokker-Planck Equation: Methods of
Solution and Applications, Springer (1996).

73. V. L. Gurevich, V. B. Pevzner, and K. Hess, Phys.
Rev. B 51, 5219 (1995).

74. A. Sergeev, M. Yu. Reizer, and V. Mitin, Phys. Rev.
Lett. 94, 136602 (2005).

75. G. Seelig and K. A. Matveev, Phys. Rev. Lett. 90,
176804 (2003).

76. G. Seelig, K. A. Matveev, and A. V. Andreev, Phys.
Rev. Lett. 94, 066802 (2005).

792



ЖЭТФ, том 159, вып. 4, 2021 Kinetic processes in Fermi–Luttinger liquids

77. A. Levchenko and J. Schmalian, Ann. Phys. 419,
168218 (2020).

78. S. Brazovskii, F. Matveenko, and P. Nozieres, JETP
Lett. 58, 796 (1993).

79. C. Nayak, K. Shtengel, D. Orgad, M. P. A. Fisher,
and S. M. Girvin, Phys. Rev. B 64, 235113 (2001).

80. A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik,
Bosonization and Strongly Correlated Systems, Cam-
bridge Univ. Press, Cambridge (1998).

81. B. N. Narozhny and A. Levchenko, Rev. Mod. Phys.
88, 025003 (2016).

82. I. D’Amico and G. Vignale, Phys. Rev. B 62, 4853
(2000).

83. M. Pustilnik, E. G. Mishchenko, and O. A. Starykh,
Phys. Rev. Lett. 97, 246803 (2006).

84. K. A. Matveev, A. V. Andreev, and A. D. Klirono-
mos, Phys. Rev. B 90, 035148 (2014).

85. J. Lin, K. A. Matveev, and M. Pustilnik, Phys. Rev.
Lett. 110, 016401 (2013).

86. S. Apostolov, D. E. Liu, Z. Maizelis, and A. Levchen-
ko, Phys. Rev. B 88, 045435 (2013).

793



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUS <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


