АНИЗОТРОПНОЕ МАГНИТОПОГЛОЩЕНИЕ СВЕТА В КОБАЛЬТОВОМ ФЕРРИТЕ И ЕГО КОРРЕЛЯЦИЯ С МАГНИТОСТРИКЦИЕЙ

А. В. Телегин^{*}, Ю. П. Сухоруков, Н. Г. Бебенин

Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

> Поступила в редакцию 2 июля 2020 г., после переработки 27 августа 2020 г. Принята к публикации 29 августа 2020 г.

Спектры поглощения монокристаллов феррит-шпинели $CoFe_2O_4$, обладающих гигантской магнитострикцией, демонстрируют край поглощения при энергии 1.18 эВ и тонкую структуру примесных полос поглощения в ИК-области. Показано, что в фохтовской геометрии эксперимента в кристалле имеет место эффект магнитопоглощения, связанный с изменением под действием поля края фундаментального поглощения и полос примесного поглощения. Магнитопоглощение (магнитопропускание и магнитоотражение света) является анизотропным и зависит от направления магнитного поля относительно осей кристалла. Установлено наличие корреляции между магнитопоглощением света и магнитострикцией кристалла. Показано, что для $CoFe_2O_4$ магнитострикция дает большой вклад в константу магнитной анизотропии, что сопровождается изменением электронного спектра и оптических свойств при приложении магнитного поля. Наличие большой величины магнитопоглощения в $CoFe_2O_4$ в относительно небольшом магнитном поле позволяет использовать этот магнетик для развития нового направления спинтроники — стрейн-магнитооптики.

DOI: 10.31857/S0044451020120123

1. ВВЕДЕНИЕ

Стрейнтроника — новая область спинтроники, изучающая изменение физических свойств материалов за счет упругих деформаций, возникающих под действием магнитных и/или электрических полей [1-3]. Наличие связанных с магнитоупругими свойствами магнитооптических эффектов как в поляризованном [4–6], так и в естественном свете [7], позволяет выделить отдельное направление стрейнтроники — стрейн-магнитооптику [8]. Известно, что в магнитоупорядоченных материалах эффекты, связанные с влиянием магнитного поля на отражение (магнитоотражение) и поглощение (магнитопропускание) естественного света, имеют высокие значения (несколько десятков процентов) в инфракрасной области спектра, где линейные магнитооптические эффекты Керра и Фарадея стремятся к нулю. Ранее [7,8] сообщалось о наблюдении эффекта

магнитоотражения в ИК-диапазоне в ферримагнитной шпинели CoFe₂O₄, обладающей сильной магнитострикцией. Было показано, что полевые зависимости магнитооптических эффектов коррелируют с магнитострикцией. Магнитопропускание света в СоFe₂O₄ исследовалось в фарадеевской геометрии эксперимента [9] (в поле, перпендикулярном плоскости пластины кристалла). Был изучен вклад фарадеевского вращения света в эффект магнитопропускания [10], обусловленный частичной поляризацией света оптической измерительной системой и усложняющий обработку экспериментальных результатов. Кроме того, исследования магнитооптических свойств кобальтового феррита в фарадеевской геометрии сильно осложнены из-за возникновения «паразитных» механических напряжений в магнитном поле, которые усиливаются в материалах с сильной магнитострикцией и приводят к плохо контролируемой деформации образца и искажению экспериментальных данных. В фохтовской геометрии эксперимента (поле лежит в плоскости образца) указанные выше факторы минимальны. Кроме того, эта геометрия позволяет получить информацию об

^{*} E-mail: telegin@imp.uran.ru.ru

анизотропии магнитопоглощения относительно кристаллографических осей кристалла. Целью данной работы являлось исследование поглощения и магнитопоглощения естественного света в ИК-диапазоне в монокристаллах CoFe₂O₄ в фохтовской геометрии эксперимента, установление корреляции магнитооптических и магнитоупругих свойств и оценка вклада магнитострикции в магнитную анизотропию кристалла и в магнитопоглощение.

2. ЭКСПЕРИМЕНТ И ОБРАЗЦЫ

Образцы в виде плоскопараллельных пластин (100) размерами 4×4 мм², толщиной d = 100 мкм и шероховатостью поверхности менее 1 мкм были изготовлены из монокристаллов $CoFe_2O_4$ ($a_0 =$ = 8.380 Å), выращенных методом зонной плавки с радиационным нагревом. По данным рентгеновского микроанализа кристаллы являются однофазными и по химическому составу соответствуют формульной единице. Магнитные измерения на вибрационном магнитометре показали, что образец является магнитомягким магнетиком (коэрцитивная сила $H_c = 80$ Э) с магнитной анизотропией типа легкая ось, направленной вдоль [100]. Результаты магнитных и тензометрических измерений образцов СоFe₂O₄ детально приведены в работах [7–9]. Оптические измерения проводились на тех же образцах. Коэффициент поглощения света $K(\lambda)$ определялся по формуле

$$K = \frac{1}{d} \ln \frac{(1-R)^2}{t}.$$
 (1)

При этом экспериментально измеряемыми величинами были: 1) коэффициент зеркального отражения $R = I_S/I_{Al}$, где I_S и I_{Al} — интенсивности неполяризованного света, отраженного соответственно от образца и от эталонного зеркала при угле падения света около 7° к нормали, 2) коэффициент пропускания неполяризованного света $t = Y_S/Y_0$, где Y_S и Y₀ — интенсивности прошедшего и падающего на пластину неполяризованного света. Относительная погрешность определения коэффициентов составила менее 0.5%. Магнитопоглощение определялось как относительное изменение поглощения в магнитном поле $H \leq 7.5$ кЭ в плоскости образца (фохтовская геометрия) и без поля: $\Delta K/K = (K_H - K_0)/K_0$. Для удобства восприятия часть результатов в статье также приводится как относительное изменение отражательной способности (магнитоотражение - $\Delta R/R = (R_H - R_0)/R_0$, где R_H и R_0 — коэффициенты зеркального отражения при наличии и отсут-

ствии магнитного поля) образцов в магнитном поле. Дополнительного вклада линейных по намагниченности эффектов в фохтовской геометрии в ИК-области спектра в пределах погрешности эксперимента обнаружено не было.

3. СПЕКТРЫ ПОГЛОЩЕНИЯ И МАГНИТОПОГЛОЩЕНИЯ СВЕТА

Спектр коэффициента поглощения света для монокристалла ${\rm CoFe_2O_4}$ при комнатной температуре согласуется со спектром оптической проводимости, рассчитанной методом Крамерса-Кронига из спектров отражения (рис. 1). Резкий рост при $\lambda < 2$ мкм связан с краем фундаментального поглощения при $E_q = 1.18$ эВ (~ 1 мкм) [11]. Край формируется непрямыми межзонными переходами из гибридизованных *d*Co + *p*O-состояний валентной зоны в точке X зоны Бриллюэна в dFe-состояния зоны проводимости в точке Г. При понижении температуры от 400 К до 80 К край поглощения испытывает слабый «синий» сдвиг (на рисунке не показано) в область коротких длин волн [9, 12, 13]. При увеличении длины волны в спектре проявляется полоса 1 $(\lambda_1 = 2.6 \text{ мкм}),$ обусловленная примесным поглощением [14]. Ее положение практически не зависит от температуры. В работе [9] предполагалось, что она связана переходами из валентной зоны в состояния $V_{\rm O} + 3d({\rm Fe}^{3+})$, где $V_{\rm O}$ — кислородная вакансия. Однако в работе [15] было установлено, что

Рис. 1. Спектры поглощения (К) и оптической проводимости (σ) света монокристалла $\mathrm{CoFe_2O_4}$ при комнатной температуре. Вставка вверху — увеличенный участок спектра поглощения без поля (черная кривая) и в поле $H = 7.5 \text{ к} \exists$ (красная кривая). Оптическая проводимость рассчитывалась методом Крамерса – Кронига из спектров зеркального отражения кристалла. Стрелками указано положения максимумов примесных линий поглощения

кислородное окружение ионов Co²⁺ и Fe³⁺ испытывает октаэдрические искажения, более сильные в случае ионов Co²⁺. Можно предположить, что полоса 1 формируется переходами как в состояния $V_{\rm O} + 3d({\rm Fe}^{3+})$, так и $V_{\rm O} + 3d({\rm Co}^{2+})$. Уменьшение интенсивности полосы 1 при понижении температуры можно связать с уменьшением вклада «хвоста» края поглощения вследствие его сдвига. В интервале длин волн $3 < \lambda < 15$ мкм в спектре CoFe₂O₄ существует широкая полоса примесного поглощения 6 с максимумом при $\lambda_6 = 12.5$ мкм (0.1 эВ), имеющая тонкую структуру из полос, центрированных при: $\lambda_2 = 6.1$ мкм (0.2 эВ), $\lambda_3 = 7$ мкм $(0.17 \text{ эB}), \lambda_4 = 8.4 \text{ мкм} (0.14 \text{ эB})$ и $\lambda_5 = 10 \text{ мкм}$ (0.12 эВ). Некоторые из полос наблюдались ранее в работе [14]. Тонкая структура «усиливается» при охлаждении образца до T = 80 K, при этом интенсивность полосы 6 почти не меняется. Рост поглощения при $\lambda > 15$ мкм определяется фононами (рис. 1). Спектр фононов формируется полосой $\lambda_{1P} = 16.4$ мкм ($E_1 = 609$ см⁻¹), связанной с колебаниями ионов Со-О в октаэдрической подрешетке, и $\lambda_{2P} = 24.2$ мкм ($E_2 = 413$ см⁻¹), связанной с колебаниями кислорода в тетраэдрической подрешетке. Расчеты методом Крамерса-Кронига позволили выделить также дополнительные фононные полосы при $\lambda_{3P} \approx 18.7$ мкм (E = 534 см⁻¹) и $\lambda_{4P} \approx 21.5$ мкм (E = 466 см⁻¹) (см. рис. 1) [14, 16–18]. Внешнее магнитное поле H = 7.5 кЭ (существенно выше поля насыщения $H_s \approx 3$ кЭ) приводит к слабому «красному» сдвигу края поглощения ($\Delta E(H) \approx -2$ мэВ) (вставка рис. 1), в отличие от «синего сдвига» $\Delta E(H) \approx +10$ мэВ для фарадеевской геометрии эксперимента [9]. Следовательно, положение края поглощения в CoFe₂O₄ зависит от конкуренции противоположных по знаку температурного «синего сдвига» и магнитополевого «красного сдвига».

На рис. 2 представлены спектры магнитоотражения $\Delta R/R$ и магнитопоглощения $\Delta K/K$ для разной ориентации кристалла относительно магнитного поля. Кривые имеют сложную форму с выраженными максимумами в окрестности края поглощения и примесных полос поглощения. Для **H** [[100] магнитопоглощение положительно вблизи края поглощения, отрицательно при больших длинах волн и достигает максимального значения порядка 5 % при комнатной температуре. При понижении температуры до 80 К абсолютная величина магнитопоглощения возрастает до 12 %. При этом максимум $\Delta K/K$ смещается до 3.4 мкм. Особенность на этой длине волны наблюдалась и в спектре фарадеевского вра-

Рис. 2. Спектры магнитоотражения $\Delta R/R$ (верхний рисунок) монокристалла $\mathrm{CoFe}_2\mathrm{O}_4$ при T=295 К и H=3.6 кЭ, для $\mathbf{H}\parallel [100]$ (\circ) и $\mathbf{H}\parallel [110]$ (\bullet). Спектры магнитопоглощения $\Delta K/K$ (нижний рисунок) при H=7.5 кЭ, для T=295 К в поле $\mathbf{H}\parallel [100]$ (\circ), $\mathbf{H}\parallel [110]$ (\bullet), для T=80 К и $\mathbf{H}\parallel [100]$ (Δ)

щения в СоFe₂O₄ [10]. Отметим выделенное направление кристалла близкое к **H** \parallel [110], при котором измеряемые величины $\Delta R/R$ и $\Delta K/K$ стремятся к нулю (рис. 2).

Таким образом, можно сделать вывод о том, что магнитопоглощение кобальтового феррита существенно анизотропно, т. е. сильно зависит от величины и направления магнитного поля относительно кристаллографических осей кристалла, а также от температуры. Форма и амплитуда кривых магнитопоглощения определяется изменением интенсивности и смещением примесных полос поглощения света. Как было показано ранее [8,9,19], более отчетливо взаимосвязь между магнитострикцией и магнитооптическими свойствами монокристалла кобальтового феррита проявляется в их полевых зависимостях.

4. ПОЛЕВЫЕ ЗАВИСИМОСТИ

Известно, что в случае кубического ферромагнетика относительное удлинение $\Delta l/l$ (магнитострикция) вдоль оси, заданной направляющими косинусами $\beta_{x,y,z}$, в магнитном поле, направление которого задается косинусами $\alpha_{x,y,z}$, описывается выражением

$$\frac{\Delta l}{l} = \frac{3}{2}\lambda_{100} \left(\alpha_x^2 \beta_x^2 + \alpha_y^2 \beta_y^2 + \alpha_z^2 \beta_z^2 - \frac{1}{3} \right) + \\ + 3\lambda_{111} (\alpha_x \alpha_y \beta_x \beta_y + \alpha_y \alpha_z \beta_y \beta_z + \alpha_z \alpha_x \beta_z \beta_x).$$
(2)

В нашем случае измерения $\Delta l/l$ проводились вдоль оси x, а магнитное поле было в плоскости пластины, поэтому $\alpha_z = \beta_y = \beta_z = 0, \beta_x = 1$. При T = 295 К \ll $\ll T_C = 812$ К намагниченность насыщения практически не зависит от поля H, так что объемная магнитострикция мала и ее можно не учитывать. Следовательно, относительное удлинение $(\Delta l/l)_{100}$ должно быть равно λ_{100} при **H** || [100] и $-\lambda_{100}/2$ при **H** \perp [100].

Отметим, что в поле $\mathbf{H} \parallel [110]$ деформация $\Delta l/l$ вдоль осей четвертого порядка является минимальной. Важным фактом является то, что для $\mathbf{H} \parallel [110]$ в эксперименте наблюдаются минимальные значения магнитопоглощения и магнитоотражения (см. рис. 2), что указывает на сильную связь магнитострикции с наблюдаемыми магнитооптическими эффектами.

В отличие от намагниченности полевые зависимости магнитострикции являются четными функциями поля (рис. 3).

В соответствии с выражением (2) и экспериментальными данными величина $(\Delta l/l)_{100}$ существенно зависит от направления поля относительно кристаллографических осей кристалла [20]. Вместе с тем, от направления осей относительно поля зависит и ход

Рис. 3. Полевая зависимость намагниченности (*M*) монокристалла $CoFe_2O_4$ при T = 295 К и **H** || [100]. На вставках полевые зависимости магнитострикции ($(\Delta l/l)_{100}$) и магнитопоглощения ($\Delta K/K$) на длине волны $\lambda = 2.7$ мкм: при **H** \perp [100] (*a*,*b*), при **H** || [100] (*b*,*c*)

кривых $(\Delta l/l)_{100}$ (вставки на рис. 3). Например, в случае **H** || [100] и H < 1.6 кЭ магнитострикция имеет малую величину. Магнитный момент образца при этом монотонно возрастает. Резкий рост $(\Delta l/l)_{100}$ начинается с H = 1.6 кЭ и достигает $-654 \cdot 10^{-6}$ при H = 2.8 кЭ, выходя на насыщение, как и намагниченность. В случае **H** \perp [100] магнитострикция увеличивается с полем практически от нуля, является положительной и достигает насыщения $+221 \cdot 10^{-6}$ в тех же полях, что и намагниченность. Заметим, что в отличие от оценки для кубического ферромагнетика в нашем случае величина $|(\Delta l/l)_{100}|$ не в два, а в три раза меньше, чем при **H** || [100], что указывает на искажение кубической симметрии реального кристалла.

Таким же образом, как и магнитострикция, ведут себя полевые зависимости $\Delta K/K(H)$ при различных направлениях поля относительно кристаллографических осей кристалла (вставки на рис. 3). Видно, что магнитопоглощение является четным по полю эффектом, как и магнитострикция, т. е. определяется изменением диагональных компонент тензора диэлектрической проницаемости. Вид этой зависимости можно определить с помощью формального разложения ε_{ij} в ряд по степеням $\mathbf{n} = \mathbf{M}/M_s$, где M_s — намагниченность насыщения. Нас интересует четный относительно \mathbf{M} эффект, поэтому

$$\varepsilon_{ij} = \varepsilon_{ij}^{(0)} + c_{ijkl} + d_{ijklmn} n_k n_l n_m n_n + \dots$$
(3)

Остальные слагаемые можно не учитывать. В общем случае, определение параметров тензоров 4-го и 6-го рангов является непростой и громоздкой задачей. С учетом того, что вектор намагниченности лежит в плоскости (001), свет является неполяризованным и распространяется вдоль оси четвертого порядка [001], а магнитное поле перпендикулярно этой оси, поглощение должно быть периодической, с периодом $\pi/2$, функцией угла ϕ между осью [100] и направлением поля. Разложение в ряд Фурье такой функции должно начинаться с sin 4 ϕ (или соs 4 ϕ). Тогда зависимость коэффициента поглощения неполяризованного света от поля **H** для образца в многодоменном состоянии можно представить в виде (ограничившись первым членом разложения)

$$K = A + B\langle \sin 4\phi \rangle_H,$$

где $\langle \ldots \rangle_H$ означает усреднение по доменной структуре, константы A и B зависят от длины волны света, температуры и величины поля H, $|B| \ll A$, ϕ — угол между осью [100] и направлением намагниченности. Очевидно, что зависимость sin 4ϕ происходит

Рис. 4. Полевые зависимости магнитопоглощения ($\Delta K/K$) монокристалла ${\rm CoFe_2O_4}$ для разных длин волн при ${f H} \parallel [100]$ и T=295 К

0

2

4

Н, кЭ

-2

-4

из последнего слагаемого в выражении (3) для диэлектрической проницаемости.

Если приложенное магнитное поле превышает поле насыщения H_s , то $\langle \sin 4\phi \rangle_H$ переходит в $\sin 4\phi$. Тогда, магнитопоглощение можно записать как

$$\frac{\Delta K}{K} = \frac{\Delta A + B(\langle \sin 4\phi \rangle_H - \langle \sin 4\phi \rangle_{H=0})}{A(H=0)}, \quad (4)$$

где $\Delta A(H) = A(H) - A(H = 0) \ll A(H = 0).$

Если ΔA и *В* одного порядка величины, тогда должна наблюдаться сильная ориентационная зависимость $\Delta K/K$, а также $\Delta R/R$ от угла ϕ . Для **Н** || [110] эффекты магнитопоглощения и магнитоотражения очень малы (рис. 2), что отвечает минимальному значению магнитострикции [20] и указывает на близость значений ΔA и *B*. На рис. 2 и 3 видно, что при $\phi = 0$ (**H** || [100]) и $H > H_s$ магнитопоглощение меньше нуля, таким образом, параметры $\Delta A < 0, B > 0$.

Как и для магнитострикции, в малых полях при **H** || [100] рост размеров доменов с намагниченностью вдоль поля за счет соответствующего уменьшения размеров доменов с намагниченностью, направленной противоположно **H**, почти не влияет на магнитопоглощение неполяризованного света. Насыщение магнитопоглощения происходит в тех же полях, что и для $(\Delta l/l)_{100}$ и намагниченности M, — при H > 2.5 кЭ. В то же время, в отличие от магнитострикции, для кривых $\Delta K/K$ существует выраженный максимум в области 2 кЭ. Отметим, что изломы на кривых магнитопоглощения (рис. 3, 4) практически совпадают с положением экстремумов $\frac{d(\Delta l(H)/l)_{100}}{dH}$, что также указывает на прямую связь магнитооптических эффектов в CoFe₂O₄ с магнитострикцией.

В случае $\mathbf{H} \perp [100]$ с увеличением поля в соответствии с (4) наблюдался плавный рост как $(\Delta l/l)_{100}$, так и $\Delta K/K(H)$ с выходом на насыщение в тех же полях, что и для случая $\mathbf{H} \parallel [100]$.

В поле **H** || [110] более 3 кЭ образец однородно намагничен по полю, так что в формуле (2) $\alpha_x^2 =$ = 1/2. Тогда оценка величины магнитострикции ($\Delta l/l$)₁₁₀ с учетом $\lambda_{111} = +120 \cdot 10^{-6}$ [20], дает величину $-70 \cdot 10^{-6}$. Таким образом, при **H** || [110] деформация кристаллической решетки почти на порядок меньше, чем в случае **H** || [100], что в предположении тесной взаимосвязи магнитострикции и магнитопоглощения объясняет малую величину рассматриваемых магнитооптических эффектов в CoFe₂O₄ при промежуточных направлениях поля.

Подобные полевые зависимости магнитопоглощения при разном направлении поля относительно кристаллографических осей монокристалла имеют место при других длинах волн. В качестве примера, на рис. 4 представлены зависимости $\Delta K/K(H)$ при различных длинах волн при комнатной температуре и **H** || [100].

Наибольшее изменение поглощения под действием поля происходит в области «края поглощения» и в окрестности примесной полосы поглощения 1 при $\lambda \sim 3$ мкм. Во всех точках измерений присутствуют экстремумы при H ~ 2 кЭ, связанные со смещением края и полос поглощения под действием поля. При H < 1.5 кЭ магнитопоглощение близко к нулю, а при H = 3.5 кЭ > H_s зависимости $\Delta K/K(H)$ выходят на насыщение, как и магнитострикция.

Из экспериментальных данных ясно, что магнитопоглощение света в кобальтовом феррите анизотропно и коррелирует с магнитострикцией. Природа линейной магнитострикции тесно связана с природой кристаллографической магнитной анизотропии. Кобальтовые ферриты характеризуются больпой положительной величиной магнитной анизотропии. Принято считать, что вклад магнитострикции в константу магнитной анизотропии K_1 не превышает нескольких процентов [20–22]. В нашем случае ситуация иная. Согласно [22], вклад магнитострикции в K_1 вычисляется по формуле

$$\Delta K = \frac{9}{4} [(c_{11} - c_{12})\lambda_{100}^2 - 2c_{44}\lambda_{111}^2].$$
 (5)

Константы упругости монокристалла CoFe₂O₄ равны: $c_{11} = 2.57 \cdot 10^{12} \text{ эрг/см}^3$, $c_{12} = 1.5 \cdot 10^{12} \text{ эрг/см}^3$, $c_{44} = 0.85 \cdot 10^{12} \text{ эрг/см}^3$ [23]. Принимая $\lambda_{111} = 120 \cdot 10^{-6}$ [20] и $\lambda_{100} = -650 \cdot 10^{-6}$, получаем $\Delta K \approx 1 \cdot 10^6 \text{ эрг/см}^3$ (для сравнения, для никеля ΔK составляет всего порядка $2 \cdot 10^3 \text{ эрг/см}^3$ [22]). Из данных по намагниченности феррита для константы анизотропии имеем $K_1 \approx 2 \cdot 10^6 \text{ эрг/см}^3$.

Таким образом, вклад магнитострикции в магнитную анизотропию CoFe_2O_4 сравним с ее величиной. Такой аномально большой вклад магнитострикции в магнитную анизотропию и магнитооптические эффекты для CoFe_2O_4 подтверждается и прямым наблюдением искажения октаэдрического окружения ионов Co^{2+} и Fe^{3+} в магнитном поле в [15].

5. ЗАКЛЮЧЕНИЕ

Исследование оптических и магнитооптических свойств монокристалла кобальтового феррита СоFe₂O₄ в инфракрасной области спектра показало наличие тонкой структуры в спектре поглощения, связанной с примесными состояниями. Эта структура проявляется и в спектрах магнитопоглощения. Коэффициенты поглощения и отражения феррита СоFe₂O₄ существенным образом зависят не только от величины, но и от ориентации магнитного поля относительно кристаллографических осей. Обнаруженная тесная связь между магнитооптическими эффектами в области примесного поглощения и магнитострикцией указывает на изменение спектров в результате искажения окружения ионов $\rm Co^{2+}$ и $\rm Fe^{3+}$ в магнитном поле. Показано, что в ферримагнитной шпинели CoFe₂O₄ магнитострикция дает аномально большой (порядка 1/2К1) вклад в константу магнитной анизотропии K₁. Полученные результаты подтверждают высказанное ранее предположение о том, что в отличие от материалов со слабой магнитострикцией, таких как Hg(Cd)Cr₂Se₄, в шпинели CoFe₂O₄ с сильной магнитострикцией влияние магнитного поля на оптические свойства является непрямым: поле приводит к возникновению искажений кристаллической решетки, что приводит к изменению электронной структуры. Большие величины эффектов магнитопоглощения, магнитопропускания и магнитоотражения света (до 12% в поле 3 кЭ) свидетельствуют о большом практическом потенциале нового направления стрейнтроники — стрейн-магнитооптики. Например, в создании поляризационно-независимых модуляционных устройств ИК-диапазона на основе магнитопоглощения в стрейнтронных структурах с CoFe₂O₄.

Финансирование. Работа выполнена в рамках государственного задания ФАНО России (тема «Спин» № АААА-А18-118020290104-2). Магнитные измерения были проведены в ЦКП ИФМ УрО РАН.

ЛИТЕРАТУРА

- 1. K. Roy, Proc. SPIE 9167, 9167OU (2014).
- А. Б. Устинов, П. И. Колков, А. А. Никитин и др., ЖТФ 81, 75 (2011).
- А. А. Бухарев, А. К. Звездин, А. П. Пятаков, Ю. К. Фетисов, УФН 188, 1289 (2018).
- J. Ferre and G. A. Gehring, Rep. Prog. Phys. 47, 513 (1984).
- А. С. Москвин, Д. Г. Латыпов, В. Г. Гудков, ФТТ 30, 413 (1988).
- Е. А. Ганьшина, А. В. Зенков, Г. С. Кринчик и др., ЖЭТФ 99, 274 (1991).
- Ю. П. Сухоруков, А. В. Телегин, Н. Г. Бебенин и др., ЖЭТФ 153, 127 (2018).
- Yu. P. Sukhorukov, A. V. Telegin, N. G. Bebenin et al., Solid State Commun. 263, 27 (2017).
- Ю. П. Сухоруков, А. В. Телегин, Н. Г. Бебенин и др., Письма в ЖЭТФ 108, 47 (2018).
- А. В. Телегин, Ю. П. Сухоруков, В. Д. Бессонов и др., Письма в ЖТФ 45, 19 (2019).
- B. S. Holinsworth, D. Mazumdar, H. Sims et al., Appl. Phys. Lett. 103, 082406 (2013).
- R. C. Rai, S. Wilser, M. Guminiak et al., Appl. Phys. A 106, 207 (2012).
- C. Himcinschi, I. Vrejoiu, G. Salvan et al., J. Appl. Phys. 113, 084101 (2013).
- 14. A. Rahman, A. Gafur, and A. R. Sarker, Int. J. Inn. Research in Adv. Engin. 2, 99 (2015).
- 15. G. Subias, V. Cuartero, J. Garsia et al., Phys. Rev. B 100, 104420 (2019).
- M. I. Danil'kevich, G. V. Litvinivich, and V. I. Naumenko, J. Appl. Spectr. 24, 38 (1976).
- 17. R. Bujakiewicz-Koronska, L. Hetmanczyk, B. Garbarz-Gios et al., Cent. Eur. J. Phys. 10, 1137 (2012).

- 18. R. D. Waldron, Phys. Rev. 99, 1727 (1955).
- 19. Yu. P. Sukhorukov, N. G. Bebenin, A. V. Telegin et al., Phys. of Met. and Metallogr. 119, 1167 (2018).
- 20. R. M. Bozorth, E. F. Tilden, and A. J. Wiliams, Phys. Rev. 99, 1788 (1955).
- **21**. C. Kittel, Mod. Phys. **21**, 541 (1949).
- **22**. Г. С. Кринчик, *Физика магнитных явлений*, Московский университет, Москва (1976).
- 23. Z. Li, E. S. Fisher, J. Z. Liu, and M. V. Nevitt, J. Mater. Sci. 26, 2621 (1991).