АТОМНАЯ И ЭЛЕКТРОННАЯ СТРУКТУРА ПЛЕНОК SiO_x, ПОЛУЧЕННЫХ С ПОМОЩЬЮ ВОДОРОДНОЙ ПЛАЗМЫ ЭЛЕКТРОН-ЦИКЛОТРОННОГО РЕЗОНАНСА

Т. В. Перевалов ^{а,b*}, Р. М. Х. Исхакзай ^а, В. Ш. Алиев ^а,

В. А. Гриценко^{а,b}, И. П. Просвирин^с

^а Институт физики полупроводников им. А. В. Ржанова Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> ^b Новосибирский государственный университет 630090, Новосибирск, Россия

^с Институт катализа им. Г. К. Борескова Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> Поступила в редакцию 7 мая 2020 г., после переработки 30 июня 2020 г. Принята к публикации 1 июля 2020 г.

Исследуются тонкие пленки оксида кремния, полученные обработкой термического SiO₂ в водородной плазме электрон-циклотронного резонанса при различных временах экспозиции. С помощью рентгеновской фотоэлектронной спектроскопии установлено, что такая обработка приводит к существенному обеднению термического SiO₂ кислородом, тем большему, чем больше время обработки. Атомная структура полученных таким образом пленок SiO_{x<2} описывается моделью случайных связей. Наличие вакансий кислорода в обработанных в плазме пленках подтверждается сопоставлением экспериментальных и рассчитанных из первых принципов фотоэлектронных спектров валентной зоны, позволяющим оценить значение параметра x. Показано, что обработанные в водородной плазме пленки термического оксида кремния могут успешно использоваться в качестве запоминающей среды ячейки энергонезависимой резистивной памяти.

DOI: 10.31857/S004445102012007X

1. ВВЕДЕНИЕ

Обедненные кислородом пленки оксида кремния $(SiO_{x<2})$ являются перспективным кандидатом на роль активной среды элементов резистивной памяти (мемристоров), принцип действия которых основан на обратимом переключении оксидного слоя в структуре металл–диэлектрик–металл (МДМ) между состояниями с высоким и низким сопротивлением (resistive random access memory, RRAM) [1,2]. Считается, что переключение резистивных состояний в мемристорах на основе оксида кремния осуществляется за счет электродиффузии вакансий кислорода в диэлектрическом слое, приводящей к формированию/разрыву проводящего филамента

[3, 4]. Преимуществом ${
m SiO}_x$ перед другими диэлектрикам, пригодными для использования в качестве активной среды RRAM, является совместимость со стандартными техпроцессами современной микроэлектроники.

Технологии синтеза тонких стехиометрических оксидных пленок в настоящее время хорошо отработаны. Одним из перспективных методов получения нестехиометрических обедненных кислородом пленок является обработка стехиометрического оксида в водородной плазме электрон-циклотронного резонанса (ЭЦР). Достоинством водородной ЭЦР-плазмы является высокая степень ионизации при относительно низкой ионной температуре и низком давлении горения (до 10^{-3} Па), так что в процессе обработки тепловое воздействие на поверхность пленки мало. Данный метод зарекомендовал себя при частичном восстановлении V₂O₅ [5]. Кроме того, уста-

^E-mail: timson@isp.nsc.ru

новлено, что обработка в водородной плазме пленок HfO₂ приводит к их обеднению кислородом (формированию $HfO_{x<2}$) и улучшению запоминающих характеристик мемристоров на его основе [6]. Использование в качестве активного слоя мемристора нестехиометрического оксида интересно, в частности, как способ решения проблемы формовки, состоящей в необходимости высокого напряжении для первого переключения мемристора из исходного состояния в низкоомное. Формовка является на сегодняшний день одной из ключевых проблем в разработке матриц RRAM. В работе [7] было показано, что RRAM-структуры на основе HfO_x сx=1.8являются бесформовочными. Возможность обеднения кислородом пленок SiO₂ с помощью обработки в водородной ЭЦР-плазме ранее не исследовалась.

Целью настоящей работы является изучение атомной и электронной структуры тонких пленок термического SiO_2 , обработанных в водородной ЭЦР-плазме, верификация такой обработки как способа получения нестехиометрических обедненных кислородом пленок $SiO_{x<2}$ и выяснение пригодности полученных пленок для использования в качестве активной среды ячейки RRAM.

2. ОБРАЗЦЫ И МЕТОДЫ

Стехиометрические пленки SiO₂ толщиной 20 нм получены термическим окислением Si (100), причем, для того чтобы в дальнейшем использовать кремниевую подложку в качестве нижнего электрода МДМ-структуры, брался p^{++} -Si марки КДБ. Обработка пленок SiO₂ проводилась в вакуумной установке, собранной на базе откачного поста с турбомолекулярным насосом (остаточное давление в камере менее 10^{-4} Па), в которую был встроен источник водородной ЭЦР-плазмы антенного типа с многополюсной магнитной системой (рис. 1). Рабочая частота источника 2.45 ГГц. ЭЦР-плазма возбуждалась при давлении водорода в вакуумной камере 1.8 · 10⁻² Па. Величина вкачиваемой в плазму мощности составляла 76 Вт при токе магнетрона 20 мА (эмпирически установленное оптимальное значение). На медный держатель образца подавался потенциал смещения -300 В. Температура подложки при воздействии плазмы увеличивалась не более чем на 17 °С. Получена серия пленок SiO₂ с различным временем экспозиции в водородной ЭЦР-плазме: 2, 6 и 14 мин.

Для измерения вольт-амперных характеристик (ВАХ) на структуры p^{++} -Si/SiO₂ наносился слой

Рис. 1. Схематичное изображение установки ЭЦР-плазмы. Загрузочное устройство включает держатель образцов и заслонку для управления временем экспозиции

Ni-контактов размером $0.2 \times 0.2 \text{ мм}^2$ методом электронно-лучевого испарения. Измерения BAX осуществлялись с помощью электрометра Keithley 6517a при комнатной температуре.

Рентгеновские фотоэлектронные спектры $(P\Phi \Theta C)$ измерялись на спектрометре VG ESCALAB НР (Великобритания) с использованием немонохроматизированного излучения AlK_{α} (1486.6 эВ, 150 Вт). Полная ширина линии $Au4f_{7/2}$ на половине ее высоты при энергии пропускания анализатора 20 эВ составила 1.1 эВ. Образцы закреплялись на двухсторонний медный скотч. Для калибровки фотоэлектронных пиков применялся метод внутреннего стандарта с использованием линии C1s(энергия связи $E_B = 284.8$ эВ). Спектры измерялись при энергии пропускания анализатора 20 эВ. Отношение атомных концентраций О к Si (параметр х) определялось по интегральным интенсивностям фотоэлектронных линий O1s и Si2p после вычитания фона Ширли с учетом соответствующих коэффициентов атомной чувствительности (ASF) элементов.

Квантово-химическое моделирование проводилось в рамках теории функционала плотности в модели периодических ячеек в программном пакете Quantum ESPRESSO [8]. Использовался гибридный обменно-корреляционный функционал параметризации B3LYP, обеспечивающий корректное значение ширины запрещенной зоны оксидов [9,10]. Энергия отсечки плоских волн бралась равной 950 эВ, остов учитывался через псевдопотенциалы, сохраняющие норму. Вакансии кислорода в SiO₂ моделировались удалением атомов кислорода в суперячейке α -SiO₂ с последующей структурной релаксацией. Корректность расчетной методики апробирована для SiO_x ранее [11]. РФЭС валентной зоны рассчитывались суммированием спектров парциальной плотности электронных состояний (projected density of states, PDOS) Si3s, Si3p, O2s и O2p с весовыми коэффициентами, соответственно, 3.061, 0.842, 0.964 и 0.128, полученными из согласования расчета и эксперимента для стехиометрического SiO₂, со сглаживанием по гауссовой функции с $\sigma = 1.3$ эВ.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Обработка SiO₂ в водородной ЭЦР-плазме более 2 мин приводит к уширению РФЭС уровня Si2p в низкоэнергетическую область спектра, причем тем большему, чем больше время обработки (рис. 2). Для исходной пленки и обработанной 2 мин полная ширина пика на половине его высоты равна 1.9 эВ, для пленок, обработанных 6 и 14 мин равна 2.0 и 2.05 эВ. Деконволюция РФЭС уровня Si2p на отдельные спектральные компоненты показывает, что спектр необработанной пленки описывается одним пиком со значением $E_B = 103.5$ эВ, характерным для кремния в зарядовом состоянии 4+ (Si⁴⁺). При деконволюции спектра образца с 6-минутной обработкой появляется дополнительный пик при $E_B = 102.5$ эВ, характерный для Si³⁺ [12]. Вклады состояний Si⁴⁺ и Si³⁺ в данный спектр составляют соответственно 94 и 6 %. На разложении спектра состояния Si2p пленки SiO₂, обработанной в течение 14 мин, наблюдаются два дополнительных пика при $E_B = 102.5$ эВ (от Si³⁺) и $E_B = 101.6$ эВ (от Si²⁺) [12]. Вклады от Si⁴⁺, Si³⁺ и Si²⁺ в РФЭС Si2p для этого образца составляют соответственно 87, 11 и 2%.

Заметный сигнал от Si³⁺ и Si²⁺ в РФЭС уровня Si2p свидетельствует о наличии в исследуемых образцах высокой концентрации вакансий кислорода (связей Si–Si). Оценка параметра x = [O]/[Si] для пленок, обработанных в плазме 6 и 14 мин, по отношению атомных концентраций кислорода и кремния дает значения соответственно 1.9 и 1.85. Для исходного образца SiO₂ отношение [O]/[Si] ≈ 2 . Поскольку длины свободного пробега фотоэлектронов с уровней Si2p (3.7 нм) и O1s (2.8 нм) в SiO₂ достаточно близки, при определении отношения [O]/[Si] влияние адсорбатов (экранирование интенсивности сигналов от кремния и кислорода) не учитывалось.

Таким образом, обработка термического SiO₂ в водородной ЭЦР-плазме приводит к формированию

Рис. 2. (В цвете онлайн) Деконволюция РФЭС состояния $\mathrm{Si}2p$ измеренных образцов SiO_2 и SiO_x на индивидуальные компоненты. Символы — эксперимент, синяя, красная и зеленая линии — компоненты разложения, фиолетовая — сумма компонент разложения. Деконволюция проводилась с учетом асимметрии пика $\mathrm{Si}2p$ с коэффициентом асимметрии 8%

нестехиометрического обедненного кислородом оксида кремния $SiO_{x<2}$, причем значение x тем меньше, чем больше время обработки.

Атомная структура SiO_{x<2} может быть описана либо моделью случайной связи (random bonding, RB), когда связи Si–Si и Si–O статистически случайно распределены по структуре оксида, либо моделью смеси фаз (random mixture, RM), когда Si выделяется в кластеры, а также комбинацией этих моделей [13, 14]. В обработанных в плазме пленках Si кластеры отсутствуют по данным РФЭС. В модели RB атомная структура SiO_x описывается пятью сортами тетраэдров Si–O(ν)Si(4 – ν), где $\nu = 0, 1, 2, 3, 4$ (зарядовые состояния центрального атома кремния соответственно Si⁰, Si¹⁺, Si²⁺, Si³⁺, Si⁴⁺), при этом доля тетраэдров заданного сорта в SiO_x определяется статистикой:

$$W_{\nu}(x) = \frac{4!}{\nu!(4-\nu)!} \left(\frac{x}{2}\right)^{\nu} \left(1 - \frac{x}{2}\right)^{4-\nu}.$$
 (1)

Используя данную формулу несложно посчитать, что 94 % тетраэдров Si–O(4) и 6 % Si–O(3)Si в структуре SiO_x отвечает $x \approx 1.97$ (доля тетраэдров Si-O(ν)Si(4- ν) с $\nu = 2, 1, 0$ для данного x суммарно 0.131%). Именно такое соотношение Si⁴⁺ и Si³⁺ по-

Рис. 3. (В цвете онлайн) РФЭС уровня O1s исходного SiO_2 и после обработки в плазме в течение 6 и 14 мин. На вставке приведены максимумы спектров, отвечающие энергии объемного плазмона

лучено для пленки с 6-минутной обработкой, из чего следует для данной пленки $x \approx 1.97$. SiO_x с x = 1.94в RB-модели состоит из 88 % Si-O(4), 11 % Si-O(3)Si и 1 % Si-O(2)Si(2) (вклад Si-O(1)Si(3) и Si-Si(4) составляет 0.01%). Данное соотношение долей тетраэдров близко к найденному отношению вкладов от Si^{4+} , Si^{3+} и Si^{2+} в РФЭС уровня Si2p для пленки, обработанной в плазме 14 мин. Таким образом, для этой пленки $x \approx 1.94$. Значения параметра x, которые дает описание атомной структуры исследуемых пленок SiO_x моделью RB, качественно согласуются с соответствующими значениями, полученными из экспериментальных данных РФЭС уровней O1s и Si2p. Количественное расхождение объясняется невысокой точность последнего метода (типичная величина ошибки около 5%).

РФЭС уровня O1s для всех образцов SiO_x имеет максимум при $E_B = 532.5$ эВ и дает практически совпадающие значения энергии объемного плазмона 22.5 ± 0.2 эВ (рис. 3). Это согласуется со слабой зависимостью $\hbar\omega_B$ от величины x для SiO_x при 1 < < x < 2, установленной ранее [15]. Поскольку РФЭС уровня O1s также отражает спектр потерь энергии фотоэлектронов на межзонные переходы, можно оценить значение ширины запрещенной зоны E_g оксида путем линейной интерполяции края данного

Рис. 4. (В цвете онлайн) Спектры потерь энергии фотоэлектронов с уровня O1s и оценка значений E_g исходного SiO₂ и после обработки в плазме в течение 6 и 14 мин

спектра до уровня фона (рис. 4). Таким образом получены значения $E_g = 8.3$ эВ, 8.0 эВ, 7.8 эВ соответственно для исходного образца и образцов, обработанных в ЭЦР-плазме в течение 6 и 14 мин. Несмотря на невысокую точность метода, связанную с произволом выбора энергетического диапазона для линейной интерполяции, получена корректная тенденция зависимости $E_g(x)$ для SiO_x: с уменьшением xуменьшается и E_g . Для стехиометрического SiO₂ полученное значение E_g согласуется с известными данными [16].

РФЭС валентной зоны исходной пленки и пленки, обработанной в плазме 14 мин, хорошо описываются рассчитанными в рамках теории функционала плотности РФЭС соответственно для стехиометрического SiO₂ и SiO₂ с вакансиями кислорода (рис. 5). Как расчетные, так и экспериментальные спектры демонстрируют уширение верхнего края валентной зоны E_V , которое отчетливо видно на соответствующих разностных спектрах. Уширение в расчетных спектрах обусловливается дефектными уровнями в запрещенной зоне от вакансий кислорода (связей Si-Si), причем это уширение тем больше, чем выше концентрация вакансий [11]. Можно подобрать такую концентрацию вакансий кислорода в моделируемой структуре, при которой расчетное уширение (или разностный пик) будет совпа-

Рис. 5. (В цвете онлайн) Экспериментальные (символы) и рассчитанные из первых принципов (линии) РФЭС валентной зоны ${
m SiO}_2$ и ${
m SiO}_x$. На вставке — соответствующие разностные спектры

дать с экспериментальным. Это дает независимый метод оценки параметра x в SiO_x [17]. Таким образом, было установлено, что наблюдаемое в эксперименте уширение РФЭС валентной зоны после 14-минутной обработки пленки хорошо описывается расчетным при моделировании одной вакансии кислорода в 32-атомной суперячейке, что отвечает атомному отношению [O]/[Si] ≈ 1.92 .

Точность данного метода ограничивается достаточно низким соотношением сигнал/шум экспериментальных РФЭС валентной зоны, измеренных на спектрометре без монохроматора. В частности, большие шумы (а также малое отличие x от 2) не позволили применить данный метод для оценки параметра x в пленке SiO_x, обработанной в плазме в течение 6 мин. Полученное из сопоставления расчетных и экспериментальных РФЭС валентной зоны значение параметра х для пленки с 14-минутной обработкой в плазме близко к значению, полученному из описания атомной структуры данного образца в модели RB, $x \approx 1.94$. Это подтверждает вывод о том, что структура пленок описывается моделью RB, а также, что метод оценки параметра x из отношения РФЭС уровней O1s и Si2p дал заниженные значения.

Рис. 6. (В цвете онлайн) ВАХ мемристорных структур p^{++} -Si/SiO_x/Ni, с различным временем обработки функционального слоя в водородной плазме

Для выяснения пригодности полученных пленок SiO_{x<2} для использования в качестве активной среды ячейки RRAM были измерены ВАХ трех структур p^{++} -Si/SiO_x/Ni, в которых оксидный слой обрабатывался в водородной ЭЦР-плазме 2, 6 и 14 мин (рис. 6). Можно видеть, что структуры, где оксидный слой обрабатывался более двух минут, имеют типичную ВАХ мемристора: способны обратимым образом переключаться между состояниями с высоким сопротивлением (high resistive state, HRS) и низким сопротивлением (low resistive state, LRS). Причем при увеличении времени обработки функционального слоя в плазме увеличивается окно памяти — отношение токов в LRS и HRS. На ВАХ структур с временами обработки оксидного слоя 2, 6 и 14 мин отношение токов в LRS и HRS при напряжении 2 В составляет соответственно 2, 10^3 и $2 \cdot 10^7$. Детальное исследование мемристорных свойств полученных структур является предметом дальнейших исследований.

Таким образом, обработка тонких пленок термического SiO₂ в водородной ЭЦР-плазме приводит к формированию нестехиометрического SiO_{x<2}, который может быть использован в качестве активной среды мемристоров. Однако полученные в настоящей работе данные не позволяют выяснить степень однородности полученных пленок SiO_x. Данный вопрос остается открытым.

4. ЗАКЛЮЧЕНИЕ

В настоящей работе изучена атомная и электронная структура тонких пленок термического SiO₂, обработанных в водородной плазме электронциклотронного резонанса в течение различного времени. Анализ рентгеновских фотоэлектронных спектров показал, что такая обработка приводит к обеднению термического SiO2 кислородом, причем степень обеднения тем выше, чем больше время обработки. Установлено, что атомная структура полученных в результате плазменной обработки нестехиометрических пленок SiO_{x<2} описывается моделью случайных связей, в которой связи Si–Si и Si–O статистически случайно распределены по структуре оксида. Выполнены оценки значений параметра x тремя различными методами: по интегральной интенсивности РФЭС уровней O1s и Si2p; по деконволюции РФЭС уровня Si2p на отдельные компоненты и описании в модели RB; по сопоставлению экспериментальных и рассчитанных из первых принципов РФЭС валентной зоны. Проведены оценки величины ширины запрещенной зоны с помощью анализа спектров потерь энергии фотоэлектронов уровня O1s; получены значения 8.3 эВ, 8.0 эВ и 7.8 эВ соответственно для исходного образца и образцов, обработанных в плазме в течение 6 и 14 мин. Установлено, что ВАХ структур p^{++} -Si/SiO_x/Ni, где оксидный слой обрабатывался в водородной ЭЦРплазме, имеют типичную ВАХ мемристора. При этом окно памяти полученных мемристоров увеличивается с ростом времени экспозиции в водородной плазме. Таким образом, обработка стехиометрического термического SiO₂ в водородной ЭЦР-плазме является эффективным методом получения тонких нестехиометрических пленок $SiO_{x<2}$, пригодных для использования в качестве активной среды ячейки RRAM.

Финансирование. Работа поддержана Российским научным фондом (грант № 19-19-00286). Моделирование осуществлялось на вычислительном кластере ИВЦ НГУ.

ЛИТЕРАТУРА

 F. Zhou, L. Guckert, Y. F. Chang, E. E. Swartzlander, and J. Lee, Appl. Phys. Lett. 107, 183501 (2015).

- A. Mehonic, A. L. Shluger, D. Gao, I. Valov, E. Miranda, D. Ielmini, A. Bricalli, E. Ambrosi, C. Li, J. J. Yang, Q. F. Xia, and A. J. Kenyon, Adv. Mater. 30, 1801187 (2018).
- D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, Rep. Progr. Phys. 75, 076502 (2012).
- 4. A. A. Chernov, D. R. Islamov, A. A. Pik'nik, T. V. Perevalov, and V. A. Gritsenko, ECS Trans. 75, 95 (2017).
- В. Ш. Алиев, В. Н. Вотенцев, А. К. Гутаковский, С. М. Марошина, Д. В. Щеглов, Поверхность 8, 25 (2007).
- Y. Y. Chen, L. Goux, J. Swerts, M. Toeller, C. Adelmann, J. Kittl, M. Jurczak, G. Groeseneken, and D. J. Wouters, IEEE Elect. Device Lett. 33, 483 (2012).
- V. S. Aliev, A. K. Gerasimova, V. N. Kruchinin, V. A. Gritsenko, I. P. Prosvirin, and I. A. Badmaeva, Mater. Res. Express 3, 085008 (2016).
- P. Giannozzi, O. Andreussi, T. Brumme et al., J. Phys.: Condens. Matter 29, 465901 (2017).
- В. А. Гриценко, Т. В. Перевалов, В. А. Володин, В. Н. Кручинин, А. К. Герасимова, И. П. Просвирин, Письма в ЖЭТФ 108, 230 (2018).
- D. R. Islamov, V. A. Gritsenko, T. V. Perevalov, O. M. Orlov, and G. Y. Krasnikov, Appl. Phys. Lett. 109, 052901 (2016).
- Т. В. Перевалов, В. А. Володин, Ю. Н. Новиков, Г. Н. Камаев, В. А. Гриценко, И. П. Просвирин, ФТТ 61, 2528 (2019).
- A. Barranco, J. A. Mejias, J. P. Espinos, A. Caballero, A. R. Gonzalez-Elipe, and F. Yubero, J. Vac. Sci. Technol. A 19, 136 (2001).
- 13. H. R. Philipp, J. Noncryst. Sol. 8-10, 627 (1972).
- Y. N. Novikov and V. A. Gritsenko, J. Appl. Phys. 110, 014107 (2011).
- 15. F. G. Bell and L. Ley, Phys. Rev. B 37, 8383 (1988).
- K. A. Nasyrov, S. S. Shaimeev, V. A. Gritsenko, and J. H. Han, J. Appl. Phys. **105**, 123709 (2009).
- Т. В. Перевалов, В. А. Гриценко, Д. Р. Исламов, И. П. Просвирин, Письма в ЖЭТФ 107, 62 (2018).