ФАЗЫ М₅С₄ — НОВОЕ СЕМЕЙСТВО КАРБИДНЫХ СВЕРХСТРУКТУР

М. Г. Костенко^{*}, С. И. Садовников, А. И. Гусев^{**}

Институт химии твердого тела Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

> Поступила в редакцию 6 апреля 2020 г., после переработки 21 апреля 2020 г. Принята к публикации 22 апреля 2020 г.

На основе симметрийного анализа, представлений о канале перехода беспорядок-порядок и функции распределения предложены моноклинная, орторомбическая и тетрагональная модели сверхструктур M_5C_4 нестехиометрических кубических карбидов MC_y переходных металлов. Каналы перехода беспорядок-порядок, связанные с образованием указанных модельных сверхструктур, включают по четыре сверхструктурных вектора, являющихся лучами нелифшицевских звезд $\{k_1\}, \{k_2\}$ или $\{k_4\}$. Рассчитаны функции распределения атомов углерода С по узлам рассмотренных сверхструктур M_5C_4 . Оценка вероятностей существования парных вакансионных конфигураций в изученных сверхструктурах позволяет предположить, что наиболее стабильной из них является тетрагональная сверхструктура M_5C_4 .

DOI: 10.31857/S0044451020100089

1. ВВЕДЕНИЕ

Кубические карбиды MC_y и оксиды $\mathrm{M}_x\mathrm{O}_z$ \equiv $\equiv MO_y$ (или $M_x \blacksquare_{1-x} O_z \Box_{1-z} \equiv MO_y$, где y = z/x, 🔳 и 🗆 — структурные вакансии соответственно в металлической и неметаллической (кислородной) подрешетках, переходных металлов IV и V групп (M = Ti, Zr, Hf, Nb, Ta)) являются сильно нестехиометрическими соединениями внедрения [1–3]. Структурные вакансии представляют собой незаполненные узлы какой-либо из подрешеток соединения. В нестехиометрических карбидах и оксидах с кубической (пр. гр. $Fm\overline{3}m$) базисной структурой B1 неметаллические атомы внедрения С или О размещаются в октаэдрических междоузлиях металлической подрешетки, образуя гранецентрированную (ГЦК) неметаллическую подрешетку. В монооксидах TiO и NbO структурные вакансии присутствуют сразу в двух подрешетках — металлической и кислородной. Высокая концентрация структурных вакансий является предпосылкой атомновакансионного упорядочения нестехиометрических карбидов $MC_y (MC_y \square_{1-y})$ и оксидов $MO_y \equiv M_x O_z$

(или $M_x \blacksquare_{1-x} O_z \square_{1-z}$). Действительно, распределение неметаллических атомов и структурных вакансий по узлам решетки может быть неупорядоченным или упорядоченным. Неупорядоченное состояние нестехиометрических соединений внедрения термодинамически равновесно при достаточно высокой температуре (T > 1600 K). Равновесным состоянием нестехиометрических соединений при T << 1300 K является упорядоченное состояние. Полностью упорядоченное и полностью неупорядоченное распределения — предельные состояния нестехиометрического соединения. В результате упорядочения в пределах области гомогенности могут возникать одна или несколько упорядоченных фаз (сверхструктур) [4].

Упорядочение (или атомно-вакансионное упорядочение) является синонимом структурного фазового перехода беспорядок–порядок. При описании упорядочения в нестехиометрических соединениях атомы внедрения и структурные вакансии рассматриваются как взаимозамещающие компоненты бинарного раствора замещения в неметаллической подрешетке. Упорядочение в неметаллической подрешетке. Упорядочение в неметаллической подрешетке нестехиометрических соединений сопровождается понижением симметрии пространственной группы кристалла. Действительно, часть преобразований симметрии неупорядоченной неметаллической подрешетки, совмещающих друг с другом запол-

^{*} E-mail: makskostenko@yandex.ru

^{**} E-mail: gusev@ihim.uran.ru

ненные и незаполненные узлы, не входит в группу элементов симметрии упорядоченного кристалла, так как эти узлы становятся кристаллографически неэквивалентными.

Длительное время для определения положения атомов внедрения в решетке нестехиометрических соединений использовались, в основном, различные методы рентгеноструктурного анализа. Однако малые амплитуды рассеяния рентгеновского излучения атомами внедрения в сравнении с рассеянием атомами металла не всегда позволяют определить положение межузельных атомов на основе анализа интенсивности дифракционных линий. Следствием этого было распространено мнение о том, что атомы внедрения в неметаллической подрешетке нестехиометрических соединений при любых условиях распределены беспорядочно.

Развитие экспериментальной техники и, в особенности, применение дифракции нейтронов позволило обнаружить, что при определенных условиях в нестехиометрических соединениях наблюдается упорядоченное распределение атомов внедрения. Структурная нейтронография — один из наиболее информативных методов исследования нестехиометрических соединений внедрения, так как интенсивности рассеяния нейтронов ядрами атомов переходных металлов и легких элементов внедрения сравнимы по величине. Упорядочение атомов внедрения в этих соединениях удалось обнаружить и другими дифракционными методами (электронная дифракция, просвечивающая электронная микроскопия высокого разрешения), а также разнообразными методами физико-химического анализа.

Анализ экспериментальных и теоретических результатов по упорядочению нестехиометрических кубических карбидов и оксидов с базисной структурой *B*1 показал, что в них могут возникать сверхструктуры типа M₂C, M₃C₂, Ti₃O₂, Ti₂O₃, Nb₃O₃, M₄C₃, Ti₄O₅, M₅O₅, M₆C₅, Nb₆O₆ и M₈C₇ (или M_{2t}X_{2t-1}, M_{2t}X_{2t} и M_{2t-1}X_{2t}, где X = C, O и t = = 1, 1.5, 2, 3, 4) [4]. Специфические сверхструктуры V₅₂O₆₄ и V₁₄O₆ образуются в монооксиде ванадия VO, имеющем базисную кубическую структуру типа *D*0₃ и содержащем вакансии соответственно в подрешетке ванадия и в объемно-центрированном тетрагональном твердом растворе кислорода в ванадии β -V(O).

Теоретические методы предсказания сверхструктур, основанные на теоретико-групповом симметрийном анализе, подробно рассмотрены и обобщены в работах [1–8].

Образование сверхструктур типа М₂С и М₄С₃ нестехиометрических карбидов с базисной структурой В1 связано с искажением симметрии по лифшицевским звездам $\{\mathbf{k}_{10}\}, \{\mathbf{k}_9\}$ и $\{\mathbf{k}_8\}$ и удовлетворяет критерию Ландау-Лифшица для фазовых переходов второго рода (все нелифшицевские и лифшицевские звезды от $\{\mathbf{k}_1\}$ до $\{\mathbf{k}_{10}\}$ и их лучи, входящие в зону Бриллюэна базисной ГЦК-решетки, перечислены в работах [1–3]). Однако большинство сверхструктур нестехиометрических соединений с базисной структурой В1 образуется по каналам переходов, включающим сверхструктурные векторы (лучи) нескольких лифшицевских и нелифшицевских звезд [3,4,9]. Сверхструктуры одного типа с разной симметрией образуют семейства М₂X, М₃X₂, М₆X₅, М₈Х₇ и другие. Совместный симметрийный анализ сверхструктур одного семейства [9–13] позволяет выявить последовательность превращений между ними и установить, какая из них является наиболее стабильной, т. е. обладает минимальной энергией при 0 К.

В последнее время интенсивно развиваются теоретические методы, позволяющие моделировать возможные модификации соединений в зависимости от их состава и находить выгодные по энергии структуры. Достаточно достоверные результаты удается получить с помощью эволюционного алгоритма предсказания кристаллических структур USPEX [14–16]. В частности, в работе [17] найдены стабильные упорядоченные фазы Hf_3C_2 и Hf_6C_5 карбида гафния. Несколько возможных стабильных сверхструктур семейства M₆C₅ с разной симметрией предсказаны с помощью эволюционного алгоритма для карбида ниобия состава NbC_{0.83} [13]. Авторы [18] исследовали систему Zr-C и обнаружили четыре стабильные упорядоченные фазы: Zr_2C , Zr_3C_2 , Zr_4C_3 и Zr_7C_6 .

В работе [18] найдена также метастабильная фаза Zr_5C_4 с триклинной симметрией. Предположение о существовании самостоятельной карбидной сверхструктуры, имеющей стехиометрический состав M_5C_4 , было высказано в работе [19] на основе кристаллографических соображений. Других сведений о подобных структурах в литературе нет.

Целью данной работы является исследование гипотетического семейства сверхструктур M_5C_4 , которые могли бы формироваться в нестехиометрических кубических карбидах с базисной структурой *B*1. С помощью симметрийного анализа нами были определены возможные каналы переходов порядок-беспорядок с образованием сверхструктур данного типа, предложены их элементарные ячейки, рассчитаны функции распределения атомов и вакансий, проанализированы варианты локальных атомно-вакансионных группировок, сделаны выводы о вероятной последовательности фазовых переходов при упорядочении.

2. КАНАЛЫ ПЕРЕХОДОВ БЕСПОРЯДОК–ПОРЯДОК $\mathrm{MC}_y \to \mathrm{M}_5\mathrm{C}_4$

Элементарная ячейка нестехиометрического карбида МС_и с базисной структурой В1 содержит 4 атома металла. Сверхструктура M_5C_4 должна включать *n* элементарных ячеек базисной ГЦК-решетки, где n — целое или полуцелое число, поэтому число узлов в металлической подрешетке сверхструктуры M_5C_4 будет равно 4n. Поскольку одна формульная единица сверхструктуры M₅C₄ включает 5 атомов M, то число металлических узлов элементарной ячейки сверхструктуры М₅С₄ должно быть кратно 5 или 4n = 5t, где t — целое число. Ясно, что минимальная по объему элементарная ячейка сверхструктуры М₅С₄, для которой выполняется условие 4n = 5t, содержит 2.5 элементарных ячейки базисной структуры В1. Расчет показал, что для сверхструктур семейства М₅С₄ можно построить моноклинную (пр. гр. C2/m), орторомбическую (пр. гр. Immm) и тетрагональную (пр. гр. I4/m) элементарные ячейки (рис. 1–3) с таким минимальным объемом.

В нестехиометрических карбидах MC_y со структурой B1 и с вакансиями в подрешетке углерода решеткой, в которой происходит упорядочение, является неметаллическая ГЦК-подрешетка. Векторы трансляции, определяющие положение узлов **r** неметаллической подрешетки, имеют вид

$$\mathbf{r} = x_I \mathbf{a}_1 + y_I \mathbf{a}_2 + z_I \mathbf{a}_3,\tag{1}$$

где \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 — основные трансляции ГЦК-решетки в направлениях $[100]_{B1}$, $[010]_{B1}$ и $[001]_{B1}$ ($\|\mathbf{a}_1\| =$ $= \|\mathbf{a}_2\| = \|\mathbf{a}_3\| = a_{B1}$); x_I , y_I , z_I — координаты узлов ГЦК-подрешеток, являющиеся целыми и полуцелыми числами. Базисные векторы обратной решетки, соответствующие прямой ГЦК-решетке, равны $\mathbf{b}_1 = \{\overline{1}11\}$, $\mathbf{b}_2 = \{1\overline{1}1\}$ и $\mathbf{b}_3 = \{11\overline{1}\}$ в единицах $2\pi/a_{B1}$.

Элементарная ячейка упорядоченной моноклинной (пр. гр. C2/m) фазы $M_5C_4\Box$, которая может образовываться в нестехиометрических карбидах, показана на рис. 1*a*. Элементарная ячейка этой сверхструктуры имеет векторы трансляции

$$\mathbf{a}_m = \frac{1}{2} \langle 3 \, \bar{3} \, 2 \rangle_{B1} \,, \quad \mathbf{b}_m = \frac{1}{2} \langle 1 \, 1 \, 0 \rangle_{B1} \,,$$
$$\mathbf{c}_m = \langle \bar{1} \, 1 \, 1 \rangle_{B1} \,.$$

Рис. 1. Элементарные ячейки карбидных сверхструктур $M_5C_4\square$ и их размещение в базисной ГЦК-решетке со структурой B1: a — моноклинная (пр. гр. C2/m) фаза, δ — тетрагональная (пр. гр. I4/m) фаза, e — орторомбическая (пр. гр. Immm) фаза M_5C_4

Для проведения симметрийного анализа рассмотрим моноклинную ячейку, примитивную по расположению металлических атомов М. Эта примитивная ячейка имеет векторы трансляции

$$\mathbf{a}_{mp} = \frac{1}{2} \langle 2 \bar{1} 1 \rangle_{B1}, \quad \mathbf{b}_{mp} = \frac{1}{2} \langle 1 1 0 \rangle_{B1}$$
$$\mathbf{c}_{mp} = \langle \bar{1} 1 1 \rangle_{B1}.$$

Рис. 2. Сверхструктурные векторы обратной решетки сверхструктур M_5C_4 , входящие в каналы фазовых переходов беспорядок-порядок $MC_y \rightarrow M_5C_4$, и положение этих векторов в первой зоне Бриллюэна ГЦК-решетки: a — моноклинная (пр. гр. C2/m) сверхструктура M_5C_4 ; b — тетрагональная (пр. гр. I4/m) сверхструктура M_5C_4 ; b — орторомбическая (пр. гр. I2/m) сверхструктура M_5C_4 ; b — орторомбическая (пр. гр. I4/m) сверхструктура M_5C_4 ; b — орторомбическая (пр. гр. I4/m) сверхструктура M_5C_4 ; b — орторомбическая (пр. гр. Immm) сверхструктура M_5C_4

Найдем канал перехода, т.е. набор векторов звезд, связанных с фазовым превращением $MC_y \rightarrow M_5C_4$. Базисные векторы обратной решетки \mathbf{b}_i^* ($\mathbf{b}_1^* \equiv \mathbf{a}_{M_5C_4}^*, \mathbf{b}_2^* \equiv \mathbf{b}_{M_5C_4}^*, \mathbf{b}_3^* \equiv \mathbf{c}_{M_5C_4}^*$) определяются через трансляционные векторы \mathbf{a}_i ($\mathbf{a}_1 \equiv \mathbf{a}_t, \mathbf{a}_2 \equiv \mathbf{b}_t$, $\mathbf{a}_3 \equiv \mathbf{c}_t$) примитивной ячейки по формуле

$$\mathbf{b}_i^* = 2\pi \frac{\mathbf{a}_j \times \mathbf{a}_k}{\mathbf{a}_1(\mathbf{a}_2 \times \mathbf{a}_3)}$$

где i, j, k = 1, 2, 3.

Расчет показал, что сверхструктурные векторы обратной решетки примитивной ячейки моноклинной фазы равны

$$\mathbf{a}^* = \left\{ -\frac{1}{5} \frac{1}{5} \frac{3}{5} \right\},$$
$$\mathbf{b}^* = \left\{ -\frac{4}{5} - \frac{6}{5} \frac{2}{5} \right\}, \quad \mathbf{c}^* = \left\{ \frac{2}{5} - \frac{2}{5} \frac{4}{5} \right\}$$

в единицах $2\pi/a_{B1}$. Комбинирование и трансляция найденных сверхструктурных векторов показывает, что в первой зоне Бриллюэна неупорядоченной неметаллической ГЦК-подрешетки находятся по два луча двух нелифшицевских звезд $\{\mathbf{k}_2\}$, имеющих разную длину лучей. Обозначим эти звезды как $\{\mathbf{k}_{2(1)}\}$ и $\{\mathbf{k}_{2(2)}\}$. Звезда $\{\mathbf{k}_{2(1)}\}$ имеет текущие параметры $\mu_{2(1)}^{(1)} = 2/5$ и $\mu_{2(1)}^{(2)} = 1/5$. В канал перехода входит луч

$$\mathbf{k}_{2(1)}^{(4)} = \mu_{2(1)}^{(1)}(\mathbf{b}_1 + \mathbf{b}_2) - \mu_{2(1)}^{(2)}\mathbf{b}_2 = \left\{-\frac{1}{5}\frac{1}{5}\frac{3}{5}\right\}$$

и противоположный луч $\mathbf{k}_{2(1)}^{(3)} = -\mathbf{k}_{2(1)}^{(4)}$. Текущие параметры звезды $\{\mathbf{k}_{2(2)}\}$ равны $\mu_{2(2)}^{(1)} = 3/5$ и $\mu_{2(2)}^{(2)} = 2/5$. Канал фазового перехода беспорядок-порядок наряду с лучами $\mathbf{k}_{2(1)}^{(3)}$ и $\mathbf{k}_{2(1)}^{(4)}$ включает лучи

$$\mathbf{k}_{2(2)}^{(6)} = \mu_{2(2)}^{(1)}(\mathbf{b}_1 + \mathbf{b}_2) - \mu_{2(2)}^{(2)}\mathbf{b}_1 = \left\{\frac{2}{5} - \frac{2}{5}\frac{4}{5}\right\}$$

и $\mathbf{k}_{2(2)}^{(5)} = -\mathbf{k}_{2(2)}^{(6)}$ звезды $\{\mathbf{k}_{2(2)}\}$. Таким образом, канал перехода беспорядок-по-

Таким образом, канал перехода беспорядок–порядок, связанный с образованием модельной моноклинной (пр. гр. C2/m) сверхструктуры M_5C_4 , включает четыре сверхструктурных вектора $\mathbf{k}_{2(1)}^{(3)}$, $\mathbf{k}_{2(1)}^{(4)}$, $\mathbf{k}_{2(2)}^{(5)}$ и $\mathbf{k}_{2(2)}^{(6)}$ нелифшицевских звезд $\{\mathbf{k}_{2(1)}\}$ и $\{\mathbf{k}_{2(2)}\}$ (рис. 2*a*). Звездам $\{\mathbf{k}_{2(1)}\}$ и $\{\mathbf{k}_{2(2)}\}$ соответствует один и тот же параметр дальнего порядка η_2 .

Элементарная ячейка упорядоченной тетрагональной (пр. гр. I4/m) фазы $M_5C_4\Box$, которая может образовываться в карбидах MC_y с y < 1, показана на рис. 16. Элементарная ячейка этой сверхструктуры имеет векторы трансляции

$$\mathbf{a}_t = \frac{1}{2} \langle 3 \, 1 \, 0 \rangle_{B1}, \quad \mathbf{b}_t = \frac{1}{2} \langle \overline{1} \, 3 \, 0 \rangle_{B1}, \quad \mathbf{c}_t = \langle 0 \, 0 \, 1 \rangle_{B1}.$$

Хорошо видно, что эта элементарная ячейка является объемно-центрированной по расположению атомов М.

Для упрощения симметрийного анализа рассмотрим ячейку, примитивную по расположению атомов М. Примитивная ячейка тетрагональной сверхструктуры имеет векторы трансляции

$$\mathbf{a}_{tp} = \frac{1}{2} \langle 3\,1\,0\rangle_{B1}, \quad \mathbf{b}_{tp} = \frac{1}{2} \langle \overline{1}\,3\,0\rangle_{B1},$$
$$\mathbf{c}_{tp} = \frac{1}{2} \langle 1\,2\,1\rangle_{B1}.$$

Векторы обратной решетки тетрагональной фазы ${
m M}_5{
m C}_4$ равны

$$\mathbf{a}^* = \left\{\frac{3}{5}\frac{1}{5}-1\right\}, \quad \mathbf{b}^* = \left\{\frac{1}{5}-\frac{3}{5}1\right\}, \quad \mathbf{c}^* = \{0\,0\,2\}$$

в единицах $2\pi/a_{B1}$. Заметим, что сверхструктурный вектор $\mathbf{c}^* \equiv (\mathbf{b}_1 + \mathbf{b}_2)$ и совпадает со структурным узлом обратной решетки.

Для ГЦК-решетки любой входящий в зону Бриллюэна луч, одна из координат которого равна или кратна единице, а две другие координаты отличны от нуля, является эквивалентным какому-либо сверхструктурному вектору. Найденные векторы \mathbf{a}^* и \mathbf{b}^* обратной решетки эквивалентны сверхструктурным векторам упорядоченной фазы, поскольку отличаются от них на базисные векторы \mathbf{b}_3 или \mathbf{b}_2 обратной решетки углеродной ГЦК-подрешетки. С учетом этого получаем два сверхструктурных вектора ($\mathbf{b}_3 - \mathbf{a}^*$) = $\{2/5 \ 4/5 \ 0\}$ и ($\mathbf{b}^* - \mathbf{b}_2$) = = $\{-4/5 \ 2/5 \ 0\}$ нелифшицевской звезды $\{\mathbf{k}_1\}$. Анализ показывает, что найденные сверхструктурные векторы $\{2/5 \ 4/5 \ 0\}$ и $\{-4/5 \ 2/5 \ 0\}$ принадлежат нелифшицевской звезде $\{\mathbf{k}_1\}$ и являются ее лучами

$$\begin{aligned} \mathbf{k}_{1}^{(1)} &= \mu_{1}^{(1)}(\mathbf{b}_{1} + \mathbf{b}_{3}) + \mu_{1}^{(2)}(\mathbf{b}_{2} + \mathbf{b}_{3}), \\ \mathbf{k}_{1}^{(14)} &= -\mu_{1}^{(1)}(\mathbf{b}_{2} + \mathbf{b}_{3}) + \mu_{1}^{(2)}(\mathbf{b}_{1} + \mathbf{b}_{3}) \end{aligned}$$

с текущими параметрами $\mu_1^{(1)} = 2/5$ и $\mu_1^{(2)} = 1/5$. Каждому сверхструктурному вектору $\mathbf{k}_s^{(j)}$ соответствует противоположный сверхструктурный вектор $-\mathbf{k}_s^{(j)}$, который входит в канал фазового перехода в том случае, если он не эквивалентен вектору $\mathbf{k}_s^{(j)}$. Таким образом, канал перехода беспорядок-порядок, связанный с образованием тетрагональной сверхструктуры M_5C_4 , наряду с векторами $\mathbf{k}_1^{(1)}$ и $\mathbf{k}_1^{(14)}$ включает также сверхструктурные векторы $\mathbf{k}_1^{(2)} = -\mathbf{k}_1^{(1)}$ и $\mathbf{k}_1^{(13)} = -\mathbf{k}_1^{(14)}$ (рис. 26). Звезде $\{\mathbf{k}_1\}$ соответствует параметр дальнего порядка η_1 .

Элементарная ячейка упорядоченной орторомбической (пр. гр. *Immm*) карбидной сверхструктуры M₅C₄ показана на рис. 1*6*. Ее элементарная ячейка имеет векторы трансляции

$$\mathbf{a}_{rh} = \frac{1}{2} \langle 5 \, \bar{5} \, 0 \rangle_{B1} \,, \quad \mathbf{b}_{rh} = \frac{1}{2} \langle 1 \, 1 \, 0 \rangle_{B1}$$
$$\mathbf{c}_{rh} = \langle 0 \, 0 \, 1 \rangle_{B1}$$

и является объемно-центрированной по расположению атомов M, как и две предыдущие сверхструктуры. Векторы трансляции примитивной ячейки этой сверхструктуры равны

$$\mathbf{a}_{rp} = \frac{1}{2} \langle 5\,\bar{5}\,0\rangle_{B1} , \quad \mathbf{b}_{rp} = \frac{1}{2} \langle 1\,1\,0\rangle_{B1} ,$$
$$\mathbf{c}_{rp} = \frac{1}{2} \langle 3\,\bar{2}\,1\rangle_{B1} .$$

В соответствии с этим векторы обратной решетки орторомбической фазы M_5C_4 равны

$$\mathbf{a}^* = \left\{ \frac{1}{5} - \frac{1}{5} - 1 \right\}, \quad \mathbf{b}^* = \{-1 - 1 \, 1\}, \quad \mathbf{c}^* = \{0 \, 0 \, 2\}$$

в единицах $2\pi/a_{B1}$. Комбинирование и трансляция найденных сверхструктурных векторов показывает, что в первой зоне Бриллюэна неупорядоченной ГЦК-подрешетки находятся векторы — $(\mathbf{a}^* + \mathbf{b}^* + \mathbf{b}_1 + \mathbf{b}_3) = \{4/5 - 4/50\}$ и $2(\mathbf{a}^* + 2\mathbf{b}^* + \mathbf{c}^*) = \{2/5 - 2/50\}$. Эти векторы являются лучами $\mathbf{k}_{4(1)}^{(3)} = \mu_4^{(1)}(\mathbf{b}_2 - \mathbf{b}_1)$ и $\mathbf{k}_{4(2)}^{(3)} = \mu_4^{(2)}(\mathbf{b}_2 - \mathbf{b}_1)$ разной длины нелифшицевской звезды $\{\mathbf{k}_4\}$. Для луча $\mathbf{k}_{4(1)}^{(3)}$ текущий параметр $\mu_4^{(1)} = 2/5$, а для более короткого луча $\mathbf{k}_{4(2)}^{(3)}$ параметр $\mu_4^{(2)} = 1/5$. Канал перехода беспорядок-порядок, связанный с образованием орторомбической (пр. гр. *Immm*) сверхструктуры M_5C_4 , наряду с векторами $\mathbf{k}_{4(1)}^{(3)}$ и $\mathbf{k}_{4(2)}^{(3)}$ включает также противоположные сверхструктурные векторы $\mathbf{k}_{4(1)}^{(4)} = -\mathbf{k}_{4(1)}^{(3)}$ и $\mathbf{k}_{4(2)}^{(4)} = -\mathbf{k}_{4(2)}^{(3)}$ (рис. 26). Звездам $\{\mathbf{k}_{4(1)}\}$ и $\{\mathbf{k}_{4(2)}\}$ соответствует параметр дального порядка η_4 .

Векторы трансляции и координаты атомов и вакансий в элементарных ячейках моноклинной, тетрагональной и орторомбической сверхструктур M_5C_4 приведены соответственно в табл. 1, 2 и 3.

3. ФУНКЦИИ РАСПРЕДЕЛЕНИЯ АТОМОВ УГЛЕРОДА В СВЕРХСТРУКТУРАХ M_5C_4

Структура упорядоченных фаз описывается функцией распределения $n(\mathbf{r})$, которая является вероятностью обнаружения атома данного сорта на узле $\mathbf{r} = (x_I, y_I, z_I)$ упорядочивающейся решетки. Отклонение вероятности $n(\mathbf{r})$ от ее значения в случае неупорядоченного распределения можно представить суперпозицией нескольких плоских концентрационных волн [5]. Волновыми векторами этих волн являются сверхструктурные векторы, образующие канал перехода беспорядок–порядок [1–3]. В методе статических концентрационных волн [5] функция распределения $n(\mathbf{r})$ имеет вид

$$n(r) = y + \frac{1}{2} \sum_{s} \sum_{j \in s} \eta_s \gamma_s \left[\exp\left(i\varphi_s^{(j)}\right) \times \exp\left(i\mathbf{k}_s^{(j)} \cdot \mathbf{r}\right) + \exp\left(-i\varphi_s^{(j)}\right) \times \exp\left(-i\mathbf{k}_s^{(j)} \cdot \mathbf{r}\right) \right], \quad (2)$$

,

Атом	Позиция и кратность	Атомные координаты в базисной кубической структуре типа <i>B</i> 1		Атомные координаты в идеальной упоря- доченной структуре			Значения функции распределения $n(x_I, y_I, z_I)$	
		x/a_{B1}	y/a_{B1}	z/a_{B1}	x/a_m	y/b_m	z/c_m	
C1 (вакан- сия)	2(c)	-1/2	1/2	1/2	0	0	1/2	$n_1 = y + 4\eta_2/5$
C1 (вакан- сия)	2(c)	1/2	0	1	1/2	1/2	1/2	$n_1 = y + 4\eta_2/5$
C2	4(i)	0	0	3/2	2/10	0	3/10	$n_2=y+\eta_2/5$
C3	4(i)	1/2	-1/2	1/2	4/10	0	1/10	$n_2 = y + \eta_2/5$
M1	2(a)	0	0	0	0	0	0	
M2	$\overline{4(i)}$	1/2	-1/2	1	6/10	0	4/10	
M3	4(i)	1	-1	1	8/10	0	2/10	

Таблица 1. Моноклинная (пр. гр. № 12 — C2/m (C12/m1) (C_{2h}^3)) упорядоченная фаза M_5C_4 : $\mathbf{a}_m = \frac{1}{2} \langle 3 \bar{3} 2 \rangle_{B1}$, $\mathbf{b}_m = \frac{1}{2} \langle 1 1 0 \rangle_{B1}$, $\mathbf{c}_m = \langle \bar{1} 1 1 \rangle_{B1}$

Таблица 2. Тетрагональная (пр. гр. № 87 — I4/m (C_{4h}^5)) упорядоченная фаза M_5C_4 : $\mathbf{a}_t = \frac{1}{2} \langle 3 \, 1 \, 0 \rangle_{B1}$, $\mathbf{b}_t = \frac{1}{2} \langle \overline{1} \, 3 \, 0 \rangle_{B1}$, $\mathbf{c}_t = \langle 0 \, 0 \, 1 \rangle_{B1}$

Атом Позиция и	Пориния и	Атомные координаты в			Атомные координаты			Значения функции
	базисной кубической			в идеальной упоря-			распределения	
	кратность	стр	уктуре т	ипа <i>B</i> 1	доч	енной (структуре	$n_C(x_I,y_I,z_I)$
		x/a_{B1}	y/a_{B1}	z/a_{B1}	x/a_t	y/b_t	z/c_t	
С1 (ва-	2(b)	0	0	1/9	0	0	1/2	$n_1 - u_2 4 n_1 / 5$
кансия)	2(0)	0	0	1/2	0	0	1/2	$m_1 = g - 4\eta_1 / 0$
C2	8(h)	0	1/2	0	1/10	3/10	0	$n_2 = y + \eta_1/5$
M1	2(a)	0	0	0	0	0	0	
M2	$\overline{8(h)}$	1/2	1/2	0	4/10	2/10	0	

где *у* — относительная концентрация атомов данного сорта в упорядочивающейся подрешетке; величина

$$\frac{1}{2}\eta_s\gamma_s\left[\exp\left(i\varphi_s^{(j)}\right)\exp\left(i\mathbf{k}_s^{(j)}\cdot\mathbf{r}\right)+\right.\\\left.+\left.\exp\left(-i\varphi_s^{(j)}\right)\exp\left(-i\mathbf{k}_s^{(j)}\cdot\mathbf{r}\right)\right]\equiv\Delta\left(\mathbf{k}_s^{(j)},\mathbf{r}\right)\right]$$

есть стоячая плоская статическая концентрационная волна, порождаемая сверхструктурным вектором $\mathbf{k}_s^{(j)}$ звезды $\{\mathbf{k}_s\}$; η_s — параметр дальнего порядка, соответствующий звезде $\{\mathbf{k}_s\}$; $\eta_s \gamma_s$ и $\varphi_s^{(j)}$ — соответственно амплитуда и фазовый сдвиг концентра-

ционной волны. Коэффициенты $\gamma_s \exp(i\varphi_s^{(j)})$ учитывают симметрию кристалла и выбираются так, чтобы полностью упорядоченному кристаллу стехиометрического состава соответствовали параметры дальнего порядка, равные единице. На узлах **r**, расположенных в кристаллографически эквивалентных позициях, функция $n(\mathbf{r})$ принимает одно и то же значение. Суммирование в (2) ведется только по неэквивалентным сверхструктурным векторам первой зоны Бриллюэна.

Рассчитанная функция распределения атомов углерода С по узлам неметаллической подрешетки

6 ЖЭТФ, вып. 4 (10)

Атом позиция и	Позиция и	Атомные координаты в			Атомные координаты			Значения функции
	оазисной куоической			в идеальной упоря-			распределения	
кратность		структуре типа В1			доченной структуре			$n_C(x_I, y_I, z_I)$
		x/a_{B1}	y/a_{B1}	z/a_{B1}	x/a_{rh}	y/b_{rh}	z/c_{rh}	
С1 (ва-	2(a)	2/9	1	0	1 / 9	1/9	0	$n_{1} = u_{1} - 4n_{1}/5$
кансия)	2(c)	3/2	-1	0	1/2	1/2	0	$n_1 = y = 4\eta_4/3$
C2	4(f)	1	-1/2	0	3/10	1/2	0	$n_2 = y + \eta_4/5$
C3	4(f)	1/2	0	0	1/10	1/2	0	$n_2 = y + \eta_4/5$
M1	2(a)	0	0	0	0	0	0	
M2	4(e)	1/2	1/2	0	2/10	0	0	
M3	4(e)	1	1	0	4/10	0	0	

Таблица 3. Орторомбическая (пр. гр. № 71 — *Immm* (C_{4h}^5)) упорядоченная фаза M_5C_4 : $\mathbf{a}_{rh} = \frac{1}{2} \langle 5\bar{5} 0 \rangle_{B1}$, $\mathbf{b}_{rh} = \frac{1}{2} \langle 1 1 0 \rangle_{B1}$, $\mathbf{c}_{rh} = \langle 0 0 1 \rangle_{B1}$

моноклинной (пр. гр. C2/m) сверхструктуры M_5C_4 карбида MC_y имеет вид

$$n(x_{I}, y_{I}, z_{I}) = y - \frac{2\eta_{2}}{5} \times \left\{ -\cos\left[\frac{2\pi}{5}(-x_{I} + y_{I} + 3z_{I})\right] + \cos\left[\frac{2\pi}{5}(2x_{I} - 2y_{I} + 4z_{I})\right] \right\}.$$
 (3)

Согласно расчету, для полностью упорядоченной моноклинной сверхструктуры при $\eta_1 = 1$ в функции распределения (3) величина y = 4/5. Таким образом, идеальная сверхструктура M_5C_4 может образовываться в нестехиометрическом карбиде $MC_{0.80}$, содержащем 20 % вакансий в подрешетке углерода. На всех узлах углеродной подрешетки функция распределения (3) принимает два значения: n_1 на позициях 2(c) и n_2 на позициях 4(i) (см. табл. 1). Координаты атомов и вакансий в элементарной ячейке моноклинной фазы M_5C_4 , а также значения функции (3), принимаемые ею на разных позициях углеродной подрешетки этой фазы, приведены в табл. 1.

При образовании в карбиде MC_y моноклинной сверхструктуры M_5C_4 максимальная величина параметра дальнего порядка η_2 равна

$$\eta_2^{max}(y) = \begin{cases} 2t(1-y) \equiv 5(1-y), & 1 > y > \frac{2t-1}{2t}, \\ \frac{2ty}{2t-1} \equiv \frac{5y}{4}, & y < \frac{2t-1}{2t}. \end{cases}$$
(4)

При максимальной степени дальнего порядка и 1 > > y > (2t-1)/2t значение n_2 всегда равно единице, а значение $y \ge n_1 \ge 5y-4$ и всегда меньше единицы.

Функция распределения атомов углерода C по узлам неметаллической подрешетки тетрагональной (пр. гр. I4/m) сверхструктуры M_5C_4 , рассчитанная с учетом найденного канала перехода, имеет вид

$$n(x_I, y_I, z_I) = y - \frac{2\eta_1}{5} \left\{ \cos\left[\frac{4\pi}{5}(x_I + 2y_I)\right] + \cos\left[\frac{4\pi}{5}(2x_I - y_I)\right] \right\}.$$
 (5)

Согласно расчету, для тетрагональной сверхструктуры M_5C_4 при $\eta_1 = 1$ в функции распределения (5) величина y = 4/5. Как и в случае моноклинной сверхструктуры, идеальная тетрагональная сверхструктура M_5C_4 может образовываться в нестехиометрическом карбиде $MC_{0.80}$ с 20 % вакансий в подрешетке углерода. Функция распределения (5) принимает значение n_1 на позициях 2(b) и n_2 на позициях 8(h) (см. табл. 2). Координаты атомов и вакансий для тетрагональной сверхструктуры M_5C_4 и значения функции (5) на разных позициях углеродной подрешетки этой фазы приведены в табл. 2.

Зависимость максимальной величины параметра дальнего порядка η_1 от состава карбида MC_y при образовании тетрагональной сверхструктуры M_5C_4 описывается такой же функцией (4), как и в случае моноклинной сверхструктуры.

В тетрагональной сверхструктуре M_5C_4 в направлении $[001]_{B1}$ расположены одинаковые атомные плоскости, содержащие пять атомов M, один вакантный узел углеродной подрешетки и четыре узла, занятые атомами C (рис. 16). Относительное содержание углерода в этих плоскостях равно 4/5.

В соответствии с найденным каналом перехода функция распределения атомов С по узлам неметаллической подрешетки орторомбической (пр. гр. *Immm*) сверхструктуры M₅C₄ имеет вид

$$n(x_{I}, y_{I}, z_{I}) = y - \frac{2\eta_{4}}{5} \left\{ \cos \left[\frac{4\pi}{5} (x_{I} - y_{I}) \right] + \cos \left[\frac{2\pi}{5} (x_{I} - y_{I}) \right] \right\}.$$
 (6)

На всех узлах углеродной подрешетки функция распределения (6) принимает два значения: n_1 на позициях 2(c) и n_2 на позициях 4(f) (см. табл. 3). Координаты атомов и вакансий в элементарной ячейке моноклинной фазы M_5C_4 , а также значения функции (6) на разных позициях углеродной подрешетки этой фазы приведены в табл. 3.

4. ТИПЫ БЛИЖАЙШЕГО ОКРУЖЕНИЯ АТОМОВ МЕТАЛЛА В СВЕРХСТРУКТУРАХ M_5C_4

Рассмотрим, каково ближайшее окружение атомов металла занятыми и вакантными узлами углеродной подрешетки в сверхструктурах M_5C_4 . Характер окружения важен для анализа ближнего порядка в реальных упорядоченных фазах. В обозначениях окружения нижний и верхний индексы показывают число вакансий в первой и второй координационных сферах атома М в базисной кубической решетке карбида. Наименьшее расстояние между соседними узлами углеродной подрешетки равно $(a_{B1}\sqrt{2})/2$.

В моноклинной сверхструктуре M_5C_4 атомы металла, занимающие две разные четырехкратные кристаллографические позиции (*i*), имеют разные ближайшие окружения M_2^1 и M_1^2 (рис. 3*a*). Пятая часть всех атомов металла (атомы M, занимающие кристаллографические позиции 2(*a*)) не имеет вакансий в первой координационной сфере и содержит две вакансии во второй координационной сфере, т. е. имеет ближайшее окружение M_0^2 .

Атомы металла в полностью упорядоченной тетрагональной (пр. гр. I4/m) фазе M_5C_4 расположены только в двух позициях. Пятая часть всех атомов металла (атомы M, занимающие кристаллографические позиции 2(a)) имеет две углеродные вакансии в первой координационной сфере и не имеет вакансий во второй координационной сфере, т.е. имеет ближайшее окружение M_2^0 . Остальные атомы металла занимают кристаллографические позиции 8(h) и имеют одну углеродную вакансию в первой координационной сфере и две вакансии во второй координационной сфере, т. е. имеют ближайшее окружение M_1^2 (рис. 36).

Орторомбическая (пр. гр. Immm) сверхструктура M_5C_4 имеет три типа ближайшего окружения атомов металла. Атомы M, занимающие две разные четырехкратные кристаллографические позиции (e), имеют ближайшие окружения M_2^0 и M_0^2 . Атомы M, занимающие кристаллографические позиции 2(a), содержат два вакантных узла в первой координационной сфере и четыре вакансии во второй координационной сфере, т. е. имеют ближайшее окружение M_2^4 (рис. 3e).

Когда концентрация вакансий в карбиде мала $(1 - y \ll 1)$, то они расположены друг от друга на расстояниях больше, чем $(a_{B1}\sqrt{2})/2$, и являются изолированными. Для неметаллической ГЦК-подрешетки с координационным числом 12 вероятность того, что данная вакансия является изолированной, равна $P_1 = y^{12}$ и при $1 - y \ll 1$ близка к единице. Напротив, вероятность того, что произвольно выбранная вакансия не изолирована, равна $P = 1 - y^{12}$ и при $1 - y \ll 1$ близка к нулю.

С увеличением концентрации вакансий (0 < 1 - y < 1) вероятность изоляции одной вакансии от другой быстро уменьшается, и в подрешетке образуются разной величины вакансионные кластеры. При некоторой критической концентрации вакансий $1 - y = p_c$ в системе образуется единый бесконечный вакансионный кластер, пронизывающий всю решетку. Согласно теории протекания, критическая доля свободных узлов для ГЦК-решетки равна 0.20 [20–22].

Таким образом, из теории протекания [20–22] следует, что в неупорядоченных карбидах $MC_y c y \le 0.80$ вакансии с вероятностью, равной единице, образуют бесконечный вакансионный кластер. При упорядочении бесконечный вакансионный кластер «разбивается» и в решетке наблюдаются изолированные или связанные вакансионные группы разного размера. Вероятность таких групп легко найти, если известна структура упорядоченных фаз.

Неметаллическую ГЦК-подрешетку нестехиометрических карбидов можно представить как совокупность кластеров в виде правильных тетраэдров, включающих четыре узла, которые могут быть заняты атомами углерода или быть вакантными. Все

Рис. 3. Ближайшее окружение атомов металла заполненными и вакантными узлами первой и второй координационных сфер неметаллической подрешетки в полностью упорядоченных фазах семейства M_5C_4 : *a* — моноклинная (пр. гр. *C*2/*m*) фаза, *б* — тетрагональная (пр. гр. *I*4/*m*) фаза, *в* — орторомбическая (пр. гр. *I*4/*m*) фаза

эти узлы расположены на расстоянии $(a_{B1}\sqrt{2})/2$ друг от друга. Как видно на рис. 3, в обсуждаемых сверхструктурах M_5C_4 в границах тетраэдрических кластеров наибольшими вакансионными группами являются пары вакансия–вакансия.

Рассмотрим, какова вероятность конфигураций, образованных занятыми и вакантными узлами, расположенными на минимальном расстоянии $(a_{B1}\sqrt{2})/2$ друг от друга. Вероятности конфигураций, образованных двумя атомами углерода,

Карбид	$P_{\rm C-C}$	$P_{\mathrm{C}-\Box}$	$P_{\Box - \Box}$
$MC_{0.80}$	0.64	0.32	0.04
${ m M}_5{ m C}_4$ (пр. гр. $C2/m)$	0.6556	0.3111	0.0333
М ₅ С ₄ (пр. гр. <i>I</i> 4/ <i>m</i>)	0.6	0.4	0
М ₅ С ₄ (пр. гр. <i>Immm</i>)	0.6333	0.3333	0.0333

Таблица 4. Вероятности парных конфигураций в неметаллической подрешетке неупорядоченного карбида $MC_{0.80}$ и сверхструктур M_5C_4

или атомом C и вакансией, или двумя вакансиями обозначим соответственно P_{C-C} , $P_{C-\Box}$, $P_{\Box-\Box}$. Для неупорядоченных карбидов MC_y вероятности определяются биномиальным распределением и равны

$$P_{C-C} = y^2$$
, $P_{C-\Box} = 2y(1-y)$, $P_{\Box-\Box} = (1-y)^2$.

Для сверхструктур вероятности всех конфигураций определяются из анализа кристаллической структуры этих фаз или типов ближайшего окружения. Численные значения вероятностей P_{C-C} , $P_{C-\Box}$ и $P_{\Box-\Box}$ для неупорядоченных карбидов $MC_{0.80}$ и моноклинной, тетрагональной и орторомбической сверхструктур M_5C_4 с тем же относительным содержанием углерода приведены в табл. 4.

Сравнение показывает, что в результате упорядочения вероятности конфигураций $P_{\Box-\Box}$ с соседними вакансиями уменьшаются (табл. 4). Парные вакансионные конфигурации в тетрагональной сверхструктуре M_5C_4 отсутствуют. Это позволяет предположить, что именно тетрагональная (пр. гр. I4/m) сверхструктура M_5C_4 будет наиболее стабильной среди трех рассмотренных сверхструктур семейства M_5C_4 .

В общем случае упорядочение нестехиометрических карбидов MC_y наблюдается при довольно высокой концентрации структурных вакансий (1-y) >> 0.12. В неупорядоченном карбиде при такой концентрации вакансий создаваемые ими области возмущения перекрываются, в результате чего возмущения распространяются по всему объему кристалла, приводя к быстрому понижению периода a_{B1} решетки с ростом концентрации вакансий. В результате упорядочения вакансии и атомы углерода перераспределяются по узлам неметаллической подрешетки таким образом, что относительное число вакансий, являющихся ближайшими соседями, в упорядоченном карбиде оказывается меньше, чем в неупорядоченном карбиде того же состава.

Таким образом, упорядочение уменьшает вероятность существования конфигураций с соседними вакансиями и тем самым снижает степень перекрывания областей возмущения, создаваемых вакансиями. В результате можно ожидать, что период базисной решетки a_{B1} карбидных сверхструктур M_5C_4 будет больше по сравнению с периодом решетки неупорядоченного карбида $MC_{0.80}$.

5. ПОНИЖЕНИЕ СИММЕТРИИ ПРИ ОБРАЗОВАНИИ СВЕРХСТРУКТУР M_5C_4

Неупорядоченная углеродная ГЦК-подрешетка кубических карбидов МС_и имеет точечную группу $m\overline{3}m$, которая включает все 48 элементов симметрии $h_1 - h_{48}$ группы полной симметрии куба. Точечные группы симметрии моноклинной (пр. гр. C2/m), тетрагональной (пр. гр. I4/m) и орторомбической сверхструктур M_5C_4 включают четыре (h_1 , $h_4, h_{25}, h_{28}), 8 (h_1, h_4, h_{14}, h_{15}, h_{25}, h_{28}, h_{38}, h_{39})$ и 8 $(h_1 - h_4, h_{25} - h_{28})$ элементов симметрии [1-3, 23, 24]и являются подгруппами точечной группы базисной неупорядоченной кубической (пр. гр. $Fm\overline{3}m$) фазы MC_{y} . Поэтому переход от неупорядоченного карбида к любой из этих сверхструктур является превращением беспорядок-порядок. Понижения поворотной (вращательной) симметрии для моноклинной, тетрагональной и орторомбической сверхструктур равны соответственно 12, 6 и 6.

Понижение трансляционной симметрии равно отношению объемов элементарных ячеек упорядоченной и неупорядоченной фаз. Для рассматриваемых сверхструктур M_5C_4 понижение трансляционной симметрии одинаково и равно 2.5. Общее понижение симметрии есть произведение поворотного (вращательного) и трансляционного понижений симметрии. Поэтому при переходах MC_y (пр. гр. $Fm\overline{3}m) \rightarrow M_5C_4$ (пр. гр. C2/m), MC_y (пр. гр. $Fm\overline{3}m) \rightarrow M_5C_4$ (пр. гр. I4/m) и MC_y (пр. гр. $Fm\overline{3}m) \rightarrow M_5C_4$ (пр. гр. I4/m) и MC_y (пр. гр. $Fm\overline{3}m) \rightarrow M_5C_4$ (пр. гр. Immm) общее понижение симметрии равно соответственно 30, 15 и 15.

Превращения беспорядок–порядок, связанные с образованием сверхструктур M_5C_4 , могут быть только переходами первого рода, поскольку при рассматриваемом упорядочении искажение симметрии происходит по нелифшицевским звездам $\{k_1\}, \{k_2\}$ или $\{k_4\}$ и не удовлетворяет критерию Ландау для фазовых переходов второго рода. Согласно [5], при фазовом превращении второго рода выполняется условие

Это значит, что фазовое превращение второго рода возможно лишь в том случае, если из векторов звезды, связанных с этим превращением, нельзя выбрать три (не обязательно различных) вектора, сумма которых была бы равна нулю или структурному вектору Н обратной решетки неупорядоченного кристалла. Для моноклинной (пр. гр. C2/m) сверхструктуры M_5C_4 сумма трех сверхструктурных векторов $(2\mathbf{k}_{2(1)}^{(4)} + \mathbf{k}_{2(2)}^{(6)}) = (0\ 0\ 2)$ равна структурному вектору, поэтому образование моноклинной фазы М₅С₄ может быть только переходом первого рода. Для тетрагональной (пр. гр. I4/m) сверхструктуры М₅С₄ сумма трех сверхструктурных векторов $(2\mathbf{k}_{1}^{(1)} + \mathbf{k}_{1}^{(14)})$ тоже равна структурному вектору (0 2 0). Таким образом, условие (7), определяющее возможность фазового перехода второго рода, не выполняется, и образование тетрагональной (пр. гр. I4/m) сверхструктуры M_5C_4 может происходить только как фазовый переход первого рода. Образование орторомбической (пр. гр. Immm) сверхструктуры М₅С₄ тоже возможно только как переход первого рода, поскольку для нее сумма трех сверх-структурных векторов $(2\mathbf{k}_{4(1)}^{(3)} + \mathbf{k}_{4(2)}^{(3)}) = (2-2\ 0)$ есть структурный вектор.

Поскольку сверхструктуры M_5C_4 образуются по механизму фазовых переходов первого рода, последовательность образования этих фаз при понижении температуры определяется соотношением их энергий [8, 14, 25], а не изменением симметрии.

6. ЗАКЛЮЧЕНИЕ

Проведенный симметрийный анализ сверхструктур семейства M_5C_4 показал, что их образование обусловлено искажениями симметрии, которые связаны с нелифшицевскими звездами $\{\mathbf{k}_1\}, \{\mathbf{k}_2\}$ или $\{\mathbf{k}_4\}$, и происходит по механизму фазовых переходов первого рода. Перераспределение атомов углерода и вакансий по узлам неметаллической подрешетки нестехиометрических карбидов означает, что сверхструктуры M_5C_4 являются производными от базисной кубической структуры *B*1. Сверхструктуры M_5C_4 с максимальной величиной параметра дальнего порядка $\eta_i = 1$ имеют состав $MC_{0.80}$.

Изучение ближайшего окружения атомов металла в сверхструктурах M_5C_4 и оценка вероятностей существования в них парных вакансионных конфигураций позволяет предположить, что наиболее стабильной является тетрагональная сверхструктура M_5C_4 .

Для определения симметрии возможных карбидных сверхструктур M_5C_4 требуется проведение комплексных экспериментальных исследований, включающих структурную нейтронографию нестехиометрических карбидов, содержащих примерно 20 ат. % структурных вакансий, как оптимальный инструмент. Следует отдельно изучить влияние режимов термообработки, а также размера карбидных частиц на тип и симметрию сверхструктур, образующихся при атомно-вакансионном упорядочении.

Финансирование. Исследование выполнено при поддержке Российского фонда фундаментальных исследований (проект № 20-52-53010).

ЛИТЕРАТУРА

- A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides, Springer, Berlin-Heidelberg-New York-London (2001).
- А. И. Гусев, Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле, Физматлит, Москва (2007).
- А. А. Ремпель, А. И. Гусев, Нестехиометрия в твердом теле, Физматлит, Москва (2018).
- 4. А. И. Гусев, УФН 184, 905 (2014).
- A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York (1983).
- Ю. М. Гуфан, Структурные фазовые переходы, Наука, Москва (1982).
- Ю. А. Изюмов, В. Н. Сыромятников, Фазовые переходы и симметрия кристаллов, Наука, Москва (1984).
- Д. М. Штерн, Э. В. Козлов, Изв. ВУЗов. Физика, № 6, 25 (1985).
- **9**. А. И. Гусев, ЖЭТФ **136**, 486 (2009).
- **10**. А. И. Гусев, Письма в ЖЭТФ **91**, 130 (2010).
- 11. A. I. Gusev, J. Solid State Chem. 199, 181 (2013).
- 12. А. И. Гусев, ЖЭТФ 144, 340 (2013).
- М. Г. Костенко, А. В. Лукоянов, А. А. Валеева, А. И. Гусев, ЖЭТФ 156, 934 (2019).
- 14. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).

- A. R. Oganov, A. O. Lyakhov, and M. Valle, Acc. Chem. Res. 44, 227 (2011).
- 16. A. O. Lyakhov, A. R. Oganov, H. T. Stoke, and Q. Zhu, Comp. Phys. Comm. 184, 1172 (2013).
- 17. Q. Zeng, J. Peng, A. R. Oganov, Q. Zhu, C. Xie, X. Zhang, D. Dong, L. Zhang, and L. Cheng, Phys. Rev. B 88, 214107 (2013).
- 18. C. Xie, A. R. Oganov, D. Li, T. T. Debela, N. Liu, D. Dong, and Q. Zeng, Phys. Chem. Chem. Phys. 18, 12299 (2016).
- 19. E. Parthe and K. Yvon, Acta Crystallogr. B 26, 153 (1970).

- **20**. А. Л. Эфрос, *Физика и геометрия беспорядка*, Наука, Москва (1982).
- **21**. H. Kesten, *Percolation Theory for Mathematicians*, Birkhüser, Boston–Basel–Stuttgart (1982).
- 22. A. I. Gusev, Phys. Stat. Sol. (a) 111, 443 (1989).
- **23**. О. В. Ковалев, *Неприводимые представления пространственных групп*, Изд-во АН УССР, Киев (1961).
- 24. О. В. Ковалев, *Неприводимые и индуцирован*ные представления и копредставления федоровских групп, Наука, Москва (1986).
- 25. В. Г. Вакс, В. И. Зиненко, В. Е. Шнейдер, УФН
 141, 629 (1983).