НЕЛИНЕЙНАЯ ОПТИЧЕСКАЯ ДИНАМИКА И ВЫСОКАЯ ОТРАЖАТЕЛЬНАЯ СПОСОБНОСТЬ МОНОСЛОЯ ТРЕХУРОВНЕВЫХ КВАНТОВЫХ ИЗЛУЧАТЕЛЕЙ С ДУБЛЕТОМ В ВОЗБУЖДЕННОМ СОСТОЯНИИ

Д. Я. Байрамдурдыев^а, Р. Ф. Маликов^а, И. В. Рыжов^{b*}, В. А. Малышев^{b,c**}

^а Башкирский государственный педагогический университет им. М. Акмуллы 450008, Уфа, Россия

^b Российский государственный педагогический университет им. А. И. Герцена 198164, Санкт-Петербург, Россия

^c Zernike Institute for Advanced Materials, University of Groningen 9747 AG, Groningen, The Netherlands

> Поступила в редакцию 13 февраля 2020 г., после переработки 13 февраля 2020 г. Принята к публикации 3 марта 2020 г.

Теоретически исследуется нелинейный оптический отклик монослоя регулярно расположенных трехуровневых квантовых излучателей с дублетом в возбужденном состоянии на действие монохроматического электромагнитного поля, квазирезонансного оптическим переходам в излучателе. В приближении среднего поля учитывается полное запаздывающее диполь-дипольное взаимодействие излучателей. Это взаимодействие играет роль положительной обратной связи, которая, в сочетании с имманентной нелинейностью самих излучателей, приводит к мультистабильности отклика монослоя. Для анализа устойчивости различных ветвей последнего используется метод показателей Ляпунова. Найдено, что тип неустойчивости зависит от величины расщепления дублета и эволюционирует от автоколебаний к хаосу по мере увеличения расщепления. Другим важным оптическим свойством монослоя является его высокая (практически стопроцентная) отражательная способность в определенной полосе частот, т.е. в данной полосе монослой функционирует как идеальное нанометровое зеркало, причем, отражение может быть переключено на пропускание небольшим изменением амплитуды падающего поля (бистабильность). Обсуждаются возможности применения перечисленных оптических свойств монослоя в нанофотонике.

DOI: 10.31857/S0044451020080040

1. ВВЕДЕНИЕ

Методы современной микро- и нанотехнологии позволяют создавать объекты с необычными электромагнитными свойствами, так называемые метаматериалы [1–3], среди которых двумерные суперкристаллы (СК) полупроводниковых квантовых точек (КТ) [4–6] и органических полимеров [7] представляют особый интерес. Оптические свойства СК зависят от размера КТ, их формы, химического состава и геометрии решетки и могут быть целенаправленно контролируемы (см. работу [8] и ссылки в ней). К настоящему времени выполнен ряд теоретических исследований энергетической структуры [8–11] и линейных оптических свойств двумерных СК полупроводниковых КТ [12,13]. В этих работах были продемонстрированы широкие возможности управления линейным откликом двумерного СК, что создает платформу для практического применения подобных объектов в нанофотонике.

В то же время нелинейные оптические свойства двумерных СК исследованы в значительно меньшей степени. В недавних работах [14–17] было показано, что нелинейный оптический отклик СК квантовых излучателей (КИ) с лестничной схемой [14–16] и Л-схемой оптических переходов [17] обнаруживает мультистабильность, автоколебания и динамический хаос. Кроме того, в определенной полосе час-

^{*} E-mail: igoryzhov@yandex.ru

^{**} E-mail: v.malyshev@rug.nl

тот СК практически полностью отражает падающее поле, т.е. является идеальным нанометровым зеркалом, которое к тому же бистабильно. Другими словами, отражательная способность СК может быть переключена от значения, близкого к единице, к практически нулевому и обратно при незначительном изменении амплитуды внешнего или управляющего поля. В результате коэффициент отражения монослоя формирует петлю оптического гистерезиса при сканировании амплитуды внешнего поля вверх и обратно.

В настоящей работе мы теоретически исследуем нелинейный оптический отклик монослоя, состоящего из регулярно расположенных КИ с дублетом в возбужденном состоянии (V-КИ). В качестве такого излучателя может выступать, например, полупроводниковая КТ с вырожденной валентной зоной в магнитном поле [18]. Благодаря высокой плотности V-КИ и их большой силе осциллятора переходов, диполь-дипольное взаимодействие V-КИ играет определяющую роль в оптическом отклике монослоя. Так как средний дипольный момент V-КИ зависит от текущего квантового состояния последнего, КИ-КИ-взаимодействие также является функцией этого состояния. Это обеспечивает положительную обратную связь, которая в совокупности с имманентной нелинейностью самого V-КИ приводит, так же как и в случае монослоя КИ с лестничной [14–16] и А-схемами оптических переходов [17], к мультистабильности отклика монослоя, автоколебаниям, динамическому хаосу и к высокой отражательной способности в определенной полосе частот. Здесь уместно отметить, что, несмотря на глобальное подобие откликов указанных систем трехуровневых КИ, физика формирования оптического отклика монослоя V-КИ существенно отличается от двух других аналогов. В случае V-КИ оптические переходы в нем изначально связаны диполь-дипольным взаимодействием излучателей, образуя коллективную систему с собственными частотами и состояниями, существенно отличающимися от их исходных. Это обстоятельство и является главной причиной различий в оптическом отклике монослоя V-КИ и таковых с другими схемами оптических переходов.

Перечисленные свойства монослоя V-КИ делают данную систему перспективной для различных применений в нанофотонике. Предварительные результаты опубликованы в кратком сообщении [19]. Отметим также, что некоторые аспекты неустойчивого поведения оптического отклика тонкого слоя с высокой концентрацией V-КИ обсуждались в работах [20, 21]. Основу нашего подхода к описанию оптического отклика монослоя регулярно расположенных V-КИ составляет система уравнений для матрицы плотности 3 × 3 отдельного V-КИ и уравнений Максвелла для поля. Запаздывающее диполь-дипольное взаимодействие V-КИ учитывается в приближении среднего поля, в котором части КИ–КИ-взаимодействия в ближней и дальней зонах отвечают соответственно за коллективный сдвиг уровней и за коллективную радиационную релаксацию состояний, зависящие оба от разности населенностей уровней V-КИ.

Статья организована следующим образом. В разд. 2 мы представляем нашу модель монослоя и математический формализм для описания оптического отклика последнего. В разд. 3 приведены стационарные решения управляющих уравнений и анализ их стабильности (разд. 3.1). Здесь же представлены результаты исследования характера неустойчивостей оптического отклика монослоя (разд. 3.2) и обсуждаются качественно причины возникновения неустойчивостей (разд. 3.3). В разд. 4 рассматриваются особенности отражения падающего поля от монослоя. Раздел 5 резюмирует работу и содержит анализ возможностей наблюдения найденных особенностей оптического отклика монослоя V-КИ для параметров реальных систем.

2. МОДЕЛЬ И ФОРМАЛИЗМ

Мы рассматриваем монослой регулярно расположенных идентичных V-КИ. Схема уровней и переходов изолированного V-КИ изображена на рис. 1, где $|1\rangle$ — основное состояние с энергией $\varepsilon_1 = 0$, $|2\rangle$ и $|3\rangle$ — состояния дублета с энергиями соответственно $\varepsilon_2 = \hbar\omega_2$ и $\varepsilon_3 = \hbar\omega_3$. Оптически разрешенными являются переходы $|1\rangle \leftrightarrow |2\rangle$ и $|1\rangle \leftrightarrow |3\rangle$, характеризующиеся дипольными моментами переходов \mathbf{d}_{21} и \mathbf{d}_{31} (для простоты, вещественными и одинаково направленными). Состояния дублета $|2\rangle$ и $|3\rangle$ спонтанно затухают в основное состояние $|1\rangle$ с константами затухания соответственно γ_{21} и γ_{31} . Безызлучательная релаксация в дублете учитывается константой γ_{32} .

Предполагается, что на монослой падает плоская волна $\mathcal{E}_0(t) = \mathbf{E}_0 \cos(\omega_0 t)$ с частотой ω_0 , квазирезонансной оптическим переходам в V-КИ. Мы ограничиваемся геометрией нормального падения и условием коллинеарности внешнего поля и дипольных моментов переходов V-КИ (не являющемся принципиальным). В этом случае все векторные величины можно считать скалярами.

Рис. 1. Схема энергетических уровней изолированного V-КИ, включающая основное состояние $|1\rangle$ и дублет $|2\rangle$ и $|3\rangle$ в возбужденном состоянии: $\varepsilon_1 = \hbar\omega_1 = 0$, $\varepsilon_2 = \hbar\omega_2$ и $\varepsilon_3 = \hbar\omega_3$ — энергии этих состояний. Сплошными двунаправленными стрелками отмечены разрешенные оптические переходы, характеризующиеся дипольными моментами переходов d_{21} и d_{31} . Волнистые стрелки обозначают радиационное затухание состояний дублета $|2\rangle$ и $|3\rangle$ со скоростями γ_{21} and γ_{31} . Штриховая стрелка отвечает безызлучательной релаксации верхнего состояния дублета со скоростью γ_{32}

При описании оптического отклика монослоя мы принимаем приближение среднего поля, т.е. считаем, что все динамические переменные V-КИ и поля не зависят от положения в монослое. Данное приближение оправдано, строго говоря, лишь для монослоя бесконечной протяженности. Однако рассмотрение системы конечного размера наталкивается на серьезные вычислительные трудности, связанные с интегрированием системы нелинейных дифференциальных уравнений огромного ранга. Как мы увидим далее, решение нелинейной задачи даже в простейшем случае (среднее поле) требует определенной аккуратности ввиду возможности неустойчивого поведения отклика. В этой связи рассмотрение уже непростого «нулевого» приближения (среднее поле) имеет определенный смысл.

Оптическая динамика V-КИ в монослое управляется уравнением для оператора плотности $\rho(t)$ [22, 23], которое во вращающейся с частотой ω_0 внешнего поля системе отсчета имеет вид

$$\dot{\rho}(t) = -\frac{i}{\hbar} \left[H^{RWA}(t), \rho(t) \right] + \mathcal{L}\{\rho(t)\}, \qquad (1)$$

$$H^{RWA}(t) = \hbar \left(\Delta_{21} \sigma_{22} + \Delta_{31} \sigma_{33} \right) - i\hbar \left[\Omega_{31}(t) \sigma_{31} + \Omega_{21}(t) \sigma_{21} \right] + \text{H.c.}, \quad (2)$$

$$\mathcal{L}\{\rho(t)\} = \frac{1}{2}\gamma_{31} \left([\sigma_{13}\rho(t), \sigma_{31}] + [\sigma_{13}, \rho(t) \sigma_{31}] \right) + \frac{1}{2}\gamma_{21} \left([\sigma_{12}\rho(t), \sigma_{21}] + [\sigma_{12}, \rho(t) \sigma_{21}] \right) + \frac{1}{2}\gamma_{32} \left([\sigma_{32}\rho(t), \sigma_{23}] + [\sigma_{32}, \rho(t) \sigma_{32}] \right), \quad (3)$$

$$\sigma_{ij} = |i\rangle\langle j|, \quad i, j = 1, 2, 3, \tag{4}$$

где H^{RWA} — гамильтониан V-КИ во вращающейся системе отсчета, [A, B] — коммутатор, \mathcal{L} — релаксационный оператор Линдблада [22, 23], определенный уравнением (3). В уравнении (2) $\Delta_{21} = \omega_2 - \omega_0$ и $\Delta_{31} = \omega_3 - \omega_0$ — отстройки частоты ω_0 внешнего поля от частот переходов 2 \leftrightarrow 1 и 3 \leftrightarrow \leftrightarrow 1. Далее, $\Omega_{31}(t) = d_{31}E(t)/\hbar = \Omega(t)$ и $\Omega_{21}(t) = d_{21}E(t)/\hbar = \mu\Omega(t)$ ($\mu = d_{21}/d_3$) — амплитуды Раби действующего на V-КИ поля, отвечающие переходам 3 \leftrightarrow 1 и 2 \leftrightarrow 1. Амплитуда Раби $\Omega(t)$ есть сумма амплитуд Раби $\Omega_0 = d_{31}E_0/\hbar$ внешнего поля, и поля, создаваемого другими V-КИ в месте расположения данного. В приближении среднего поля $\Omega(t)$ дается уравнением [16] (здесь и в дальнейшем мы опускаем зависимость всех переменных от времени)

$$\Omega = \Omega_0 + (\gamma_R - i\Delta_L)(\rho_{31} + \mu\rho_{21}).$$
(5)

Выражения для констант γ_R и Δ_L зависят от соотношения между латеральным размером решетки Na~(N — латеральное число узлов, a — постоянная решетки) и длиной волны излучения $\lambda = 2\pi c/\omega_0, c$ скорость света. Для простой квадратной решетки с латеральным размером $Na \ll \lambda$ (точечная система) величины γ_R и Δ_L даются формулами [16]

$$\gamma_R = \frac{3}{8}\gamma_{31}N^2,\tag{6}$$

$$\Delta_L = 3.39\gamma_{31} \left(\frac{\lambda}{a}\right)^3,\tag{7}$$

где $\lambda = \lambda/2\pi$. В противоположном случае $Na \gg \lambda$ (протяженная система) [16]

$$\gamma_R = 4.51\gamma_{31} \left(\frac{\lambda}{a}\right)^2,\tag{8}$$

$$\Delta_L = 3.35\gamma_{31} \left(\frac{\lambda}{a}\right)^3. \tag{9}$$

Как следует из уравнений (6) и (8), константа γ_R для точечной системы зависит от полного числа V-KИ в решетке, N^2 , в то время как в случае

протяженной системы величина γ_R пропорциональна числу V-КИ внутри площади размером λ^2 . Здесь будет не лишним отметить, что γ_R есть не что иное, как сверхизлучательная константа Дике [16,24–26], отвечающая за коллективную релаксацию V-КИ в монослое. Параметр Δ_L практически не зависит от размера решетки и представляет собой не что иное, как статическое диполь-дипольное взаимодействие V-КИ. Подчеркнем, что при $\lambda \gg a$ (интересующий нас случай) независимо от размера решетки выполнено соотношение $\Delta_L \gg \gamma_R$, которое, как будет видно далее, является определяющим для оптической динамики монослоя.

В базисе состояний $|1\rangle$, $|2\rangle$ и $|3\rangle$ уравнение (1) представляет собой систему уравнений для матричных элементов $\rho_{\alpha\beta}$ ($\alpha, \beta = 1, 2, 3$):

$$\dot{\rho}_{11} = \gamma_{21}\rho_{22} + \gamma_{31}\rho_{33} + \Omega^*\rho_{31} + + \Omega\rho_{31}^* + \mu(\Omega^*\rho_{21} + \Omega\rho_{21}^*),$$
(10)

$$\dot{\rho}_{22} = \gamma_{32}\rho_{33} - \gamma_{21}\rho_{22} - \mu(\Omega^*\rho_{21} + \Omega\rho_{21}^*), \qquad (11)$$

$$\dot{\rho}_{33} = -(\gamma_{31} + \gamma_{32})\rho_{33} - \Omega^* \rho_{31} - \Omega \rho_{31}^*, \qquad (12)$$

$$\dot{\rho}_{31} = -\left[i\Delta_{31} + \frac{1}{2}(\gamma_{31} + \gamma_{32})\right]\rho_{31} + \Omega(\rho_{33} - \rho_{11}) + \mu\Omega\rho_{32},$$
(13)

$$\dot{\rho}_{21} = -\left[i\Delta_{21} + \frac{1}{2}\gamma_{21}\right]\rho_{21} + \mu\Omega(\rho_{22} - \rho_{11}) + \Omega\rho_{32}^*,$$
(14)

$$\dot{\rho}_{32} = -\left[i\Delta_{32} + \frac{1}{2}(\gamma_{31} + \gamma_{21} + \gamma_{32})\right]\rho_{32} - \\ -\mu\Omega^*\rho_{31} - \Omega\rho_{21}^*.$$
(15)

Отметим, что уравнения (10)–(15) сохраняют суммарную населенность, $\rho_{11} + \rho_{22} + \rho_{33} = 1$, т. е. мы не учитываем иных каналов релаксации населенностей, кроме радиационного. Дефазировкой состояний, отличной от радиационной, также пренебрегается.

3. РЕЗУЛЬТАТЫ

Мы провели численные расчеты оптического отклика монослоя, фиксируя константы, определяющие γ_R и Δ_L подобными двумерным СК полупроводниковых КТ [16]: $\lambda \sim 100-200$ нм, $a \sim 10-20$ нм и $\gamma_{31} \approx 3 \cdot 10^9$ с⁻¹. Тогда типичные значения параметров $\gamma_R = 100\gamma_{31}$ и $\Delta_L = 1000\gamma_{31}$. Константа релаксации в дублете γ_{32} выбиралась заданной, $\gamma_{32} = 0.01\gamma_{31}$. Фактически, в силу $\gamma_{32} \ll \gamma_{31}$, эта константа практически не влияет на результаты. Варьируемыми величинами являлись дублетное расщепление Δ_{32} и отстройка от резонанса Δ_{31} . Все расчеты выполнены в предположении $\gamma_{21} = \gamma_{31}$ ($\mu = 1$). В дальнейшем все величины размерности частоты даны в единицах γ_{31} , а время — в единицах γ_{31}^{-1} .

3.1. Стационарные решения

В качестве первого шага нашего анализа оптического отклика монослоя V-КИ рассмотрим стационарные решения управляющих уравнений (10)–(15), формально полагая в них нулю производные по времени. Здесь уместно пояснить, что стационарность решения не означает его устойчивости. Как будет видно далее, стационарное решение может быть как устойчивым, так и неустойчивым.

Для нахождения стационарных решений мы использовали параметрический метод [16], описанный в Приложении А. Результаты расчетов представлены на рис. 2 и З. Первый из них получен для случая возбуждения монослоя в резонанс с переходом $1 \leftrightarrow 3$ ($\Delta_{31} = 0$) в изолированном V-КИ, второй — в центр дублета ($\Delta_{31} = \Delta_{32}/2$). Отметим, что для V-КИ, находящегося в среднем поле («одетого» V-КИ) истинными резонансными условиями являются $\Delta_{31} =$ $= \Delta_{32}/2$ и $\Delta_{31} = 2\Delta_L$ (см. Приложение В). Таким образом, лишь возбуждение в центр дублета, нерезонансное для изолированного V-КИ, оказывается резонансным для одетого V-КИ.

Варьируемым параметром являлась величина дублетного расщепления Δ_{32} . Каждая панель на рис. 2 и 3 состоит из двух частей. На левой изображена зависимость абсолютного значение амплитуды Раби $|\Omega|$ поля в монослое от величины амплитуды Раби $|\Omega_0|$ внешнего поля. Правая часть представляет зависимость старшего показателя Ляпунова решения от $|\Omega|$ (см. ниже).

Как следует из рис. 2, для всех рассмотренных значений дублетного расщепления Δ_{32} зависимость $|\Omega|$ от $|\Omega_0|$ в некотором интервале изменения $|\Omega_0|$ многозначна, что означает мультистабильность отклика монослоя. При этом характер устойчивости различных ветвей стационарного решения различен: фрагменты, изображенные сплошными кривыми, устойчивы, штрихами показаны неустойчивые части. Характер устойчивости анализировался с помощью показателей Ляпунова [27, 28], а именно, рассчитывались собственные числа $\Lambda_k(k = 1, 2, ..., 8)$ матрицы Якоби правых частей уравнений (10)–(15) как функции |Ω|. Показатель Ляпунова Λ_k с максимальной действительной частью, $\max\{\operatorname{Re}[\Lambda]\}$, определяет, устойчиво решение или нет: если $\max\{\operatorname{Re}[\Lambda]\} < 0$, то решение устой-

Рис. 2. Стационарный оптический отклик монослоя при возбуждении монослоя в резонанс с переходом $1 \leftrightarrow 3$ $(\Delta_{31} = 0)$ в изолированном V-КИ. Левые части панелей — стационарное решение $|\Omega|(|\Omega_0|)$ системы уравнений (5) и (10)–(15), полученное параметрическим методом (см. Приложение A) для значений дублетного расщепления $\Delta_{32} = 20$ (*a*), 40 (*б*), 100 (*в*). Сплошные (штриховые) фрагменты кривых соответствуют устойчивым (неустойчивым) частям стационарных решений. Правые части панелей — старший показатель Ляпунова $\max{\text{Re}[\Lambda]}$. Кружками на нижней панели отмечены точки стационарного решения, для которых в разд. 3.2 рассчитана оптическая динамика отклика монослоя. Остальные параметры монослоя приведены в тексте. Все величины даны в единицах γ_{31}

Рис. 3. То же, что на рис. 2, только для случая возбуждения монослоя в центр дублетного расщепления V-КИ ($\Delta_{31} = \Delta_{32}/2$) в изолированном V-КИ. Стрелками на средней панели указаны значения амплитуды Раби $|\Omega_0|$ внешнего поля, для которых в разд. 3.2 рассчитана оптическая динамика отклика монослоя

чиво и наоборот. Другими словами, в первом случае малые отклонения от стационарного решения будут затухать, возвращая систему в стационарное состояние, а во втором — возрастать, уводя систему от него. Старший показатель Ляпунова $\max{\operatorname{Re}[\Lambda]}$ изображен на правых частях панелей рис. 2 и 3. Ин-

4 ЖЭТФ, вып. 2 (8)

тересно, что неустойчивыми оказываются не только ветви с отрицательным наклоном, что обычно, но также ветви с положительным наклоном.

Следует отметить тот факт, что поведение стационарного отклика монослоя при возбуждении в центр дублета ($\Delta_{31} = \Delta_{32}/2$), представленное на рис. 3, существенно отличается от такового при возбуждении в резонанс с переходом 1 \leftrightarrow 3 ($\Delta_{31} = 0$) в изолированном V-КИ. А именно, в первом случае, в противоположность второму, стационарные решения обнаруживают многозначность только для значения дублетного расщепления $\Delta_{32} = 20$. В частности, для $\Delta_{32} = 40$, 100 зависимость $|\Omega|$ от $|\Omega_0|$ является однозначной. Более того, стационарные решения в существенном являются неустойчивыми. Характер неустойчивостей стационарных решений обсуждается в следующем разделе.

3.2. Динамика

В этом разделе мы исследуем характер неустойчивостей оптического отклика монослоя при двух способах его возбуждения, рассмотренных выше: в резонанс с переходом $1 \leftrightarrow 3$ в изолированном V-КИ ($\Delta_{31} = 0$) и в центр дублетного расщепления ($\Delta_{31} = \Delta_{32}/2$). С этой целью система динамических уравнений (5) и (10)–(15) интегрировалась численно. Здесь уместно подчеркнуть, что данная система уравнений включает в себя несколько сильно различающихся временных масштабов ($\gamma_{31}^{-1} \gg$ $\gg \gamma_R^{-1} \gg \Delta_L^{-1}, |\Omega_0|^{-1}),$ т.е. принадлежит к классу так называемых жестких дифференциальных уравнений, для которых традиционный метод Рунге-Кутта оказывается несостоятельным. Для их интегрирования мы использовали специальные коды, как, например, ODE23tb пакета MATLAB.

Начальные условия выбирались в зависимости от типа возбуждения монослоя. В случае возбуждения в резонанс с переходом $1 \leftrightarrow 3$ в изолированном V-КИ ($\Delta_{31} = 0$) в качестве начальных брались точки, принадлежащие стационарному решению (см. рис. 2, нижняя панель). Отметим, что эти точки недостижимы из основного состояния V-КИ, но в них можно попасть, возбуждая стабильную часть верхней ветви стационарного решения и далее адиабатически уменьшая амплитуду $|\Omega_0|$ внешнего поля. При возбуждении в центр дублетного расщепления ($\Delta_{31} = \Delta_{32}/2$) нестабильные решения верхней ветви стационарной характеристики могут быть достигнуты из основного состояния V-КИ, $\rho_{11}(0) = 1$.

Результаты расчетов представлены на рис. 4 и 5 (условия возбуждения оговорены в подписях к рисункам). На левых панелях изображена динамика абсолютной величины $|\Omega|$ амплитуды Раби поля в монослое, демонстрирующая, независимо от величины дублетного расщепления Δ_{32} и условий возбуждения, одинаковый сценарий: после некоторой переходной фазы сигнал приобретает устойчивую форму — аттрактор [29–31]. Средние панели рис. 4 и 5 показывают спектр Фурье аттрактора, $|\int \exp(i\omega t)\Omega(t) dt|$, правые — его фазовую траекторию на плоскости ($\operatorname{Re}[\Omega]$, $\operatorname{Im}[\Omega]$).

Характер аттрактора кардинально зависит от типа возбуждения и начальных условий. Так, в случае возбуждения монослоя в резонанс с переходом $1 \leftrightarrow 3$ в изолированном V-КИ ($\Delta_{31} = 0$) и селектированных начальных условиях (на верхней нестабильной ветви стационарного решения, рис. 2, нижняя панель) мы наблюдаем следующее. Для точки $(|\Omega_0| = 100, |\Omega| = 8.7879)$ спектр Фурье аттрактора содержит конечное число гармоник, а его фазовая траектория представляет собой замкнутую кривую, означая, что аттрактором в данном случае является предельный цикл [29–31]. Для точки ($|\Omega_0| = 200$, $|\Omega| = 18.9398$) в качестве начальной спектр Фурье состоит из набора несоизмеримых частот. Соответственно, фазовая траектория в этом случае описывает незамкнутую кривую, лежащую на торе в восьмимерном фазовом пространстве рассматриваемой системы. И, наконец, для точки ($|\Omega_0| = 330, |\Omega| =$ = 210.9087) аттрактором опять является предельный цикл.

Оптическая динамика монослоя при возбуждении в центр дублетного расщепления ($\Delta_{31} = \Delta_{32}/2$), представленная на рис. 5, рассчитывалась для условий, когда V-КИ в начальный момент времени находился в основном состоянии, $\rho_{11}(0) = 1$. Расчеты были выполнены для четырех значений амплитуды Раби $|\Omega_0|$ внешнего поля, указанных стрелками на рис. 3 (средняя панель). В данном случае реализуются следующие типы аттракторов. Для $|\Omega_0| =$ $= 26 \text{ и } |\Omega_0| = 100$ система с течением времени выходит в предельный цикл. Для двух других значений, $|\Omega_0| = 50$ и $|\Omega_0| = 75$, аттракторы имеют хаотический характер: их спектры представляют собой непрерывный набор частот, а фазовые траектории заполняют плотно конечную площадь на фазовой плоскости ($\operatorname{Re}[\Omega], \operatorname{Im}[\Omega]$).

Исходя из изложенного, можно заключить, что характер оптической динамики монослоя кардинально зависит от начальных условий и условий возбуждения. При некоторых значениях амплитуды Раби $|\Omega_0|$ внешнего поля происходит смена динамического режима (аттрактора). Говорят, что систе-

Рис. 4. Оптическая динамика монослоя при возбуждении монослоя в резонанс с переходом $1 \leftrightarrow 3$ в изолированном V-КИ $(\Delta_{31} = 0)$. Левые панели — динамика поля $|\Omega(t)|$ в монослое, полученная решением системы уравнений (5) и (10)–(15) для точек на стационарной кривой, указанных на рис. 2 (нижняя панель): $a - |\Omega_0| = 100$, $|\Omega| = 8.7879$; $\delta - |\Omega_0| = 200$, $|\Omega| = 18.9398$; $a - |\Omega_0| = 330$, $|\Omega| = 210.9087$. Средние панели — спектр Фурье аттрактора. Правые панели — фазовый портрет аттрактора на плоскости ($\operatorname{Re}[\Omega]$, $\operatorname{Im}[\Omega]$). На вставках показаны детали основных графиков. Величины, имеющие размерность частоты, даны в единицах γ_{31} , время — в единицах γ_{31}^{-1}

ма испытывает бифуркацию [29–31]. В случае возбуждения монослоя в резонанс с переходом $1 \leftrightarrow 3$ в изолированном V-КИ ($\Delta_{31} = 0$) мы наблюдаем бифуркации Андронова – Хопфа [29–31] предельный цикл–тор–предельный цикл. При возбуждении в центр дублетного расщепления происходят бифуркации типа предельный цикл–хаос–предельный цикл. Точки, где случаются бифуркации, определяются из расчета бифуркационной диаграммы отклика, что представляет собой самостоятельную задачу.

3.3. Качественные соображения

Представленные выше результаты показывают, что оптический отклик монослоя может быть муль-

тистабильным, а также неустойчивым, демонстрируя автоколебания и динамический хаос. Причиной такого поведения является поле (действующее), производимое другими излучателями в месте расположения данного. Это поле зависит от текущего квантового состояния излучателей, что порождает положительную обратную связь, приводящую в конечном итоге к многозначности и неустойчивости отклика монослоя. Отметим, что тонкий слой двухуровневых излучателей. кроме бистабильности, не обнаруживает подобных свойств [32–42].

В этом разделе мы обсудим качественно принципиальные нелинейности, которые ответственны за экстраординарные свойства оптического отклика монослоя V-КИ. В наиболее явной форме это прояв-

Рис. 5. То же, что на рис. 4, только для случая возбуждения монослоя в центр дублетного расщепления ($\Delta_{31} = \Delta_{32}/2$) для значений амплитуды Раби $|\Omega_0|$ внешнего поля, указанных стрелками на рис. 3 (средняя панель): $a - |\Omega_0| = 26$; $\delta - |\Omega_0| = 50$; $e - |\Omega_0| = 75$; $e - |\Omega_0| = 100$ при начальном условии $\rho_{11}(0) = 1$

ляется в уравнениях для оптических когерентностей ρ_{31} и ρ_{21} . Подставляя в уравнения (13) и (14) выражение (5) для поля Ω , получаем

$$\dot{\rho}_{31} = \\ = -\left[i(\Delta_{31} + \Delta_L Z_{31}) + \frac{1}{2}(\gamma_{31} + \gamma_{32}) - \gamma_R Z_{31}\right]\rho_{31} + \\ + \mu(\gamma_R - i\Delta_L)Z_{31}\rho_{21} + \mu(\gamma_R - i\Delta_L)(\rho_{31} + \mu\rho_{21})\rho_{32} + \\ + \Omega_0(Z_{31} + \mu\rho_{32}), \quad (16)$$

$$\rho_{21} = -\left[i(\Delta_{21} + \mu^2 \Delta_L Z_{21}) + \frac{1}{2}\gamma_{21} - \mu^2 \gamma_R Z_{21}\right]\rho_{21} + \mu(\gamma_R - i\Delta_L)Z_{21}\rho_{31} + (\gamma_R - i\Delta_L)(\rho_{31} + \mu\rho_{21})\rho_{32}^* + \Omega_0(\mu Z_{21} + \rho_{32}^*).$$
(17)

Рассмотрим первые слагаемые в правых частях уравнений (16) и (17). Обращают на себя внимание члены $\Delta_L Z_{31}$, $\mu^2 \Delta_L Z_{21}$, $\gamma_R Z_{31}$ и $\mu^2 \gamma_R Z_{21}$ в квад-

ратных скобах, которые отсутствуют в уравнениях для изолированного V-КИ и являются прямым следствием поля, действующего на V-КИ в монослое. Как видно, это поле приводит, во-первых, к сдвигу резонансных частот V-КИ на величины $\Delta_L Z_{31}$ и $\mu^2 \Delta_L Z_{21}$ для переходов соответственно 1 \leftrightarrow 3 и 1 $\leftrightarrow \leftrightarrow 2$:

$$\omega_3 \to \omega_3 + \Delta_L Z_{31}, \quad \omega_2 \to \omega_2 + \mu^2 \Delta_L Z_{21},$$

и, во-вторых, к дополнительному (коллективному) уширению этих переходов:

$$(1/2)(\gamma_{31} + \gamma_{32}) \rightarrow (1/2)(\gamma_{31} + \gamma_{32} - \gamma_R Z_{31}),$$

 $(1/2)\gamma_{21} \rightarrow (1/2)(\gamma_{21} - \mu^2 \gamma_R Z_{21}).$

Следует особо подчеркнуть, что и сдвиги, и уширения зависят от разности населенностей переходов, т. е. имеют динамическую природу.

Вторые слагаемые в правых частях уравнений (16) и (17) описывают связь оптических переходов 1 \leftrightarrow 3 и 1 \leftrightarrow 2 через действующее поле и, в силу этого, пропорциональны его амплитуде $\gamma_R - i\Delta_L$, а также разности населенностей Z_{31} и Z_{21} . Сдвиги частот переходов и их связь приводит к тому, что собственные частоты одетого V-КИ (в монослое), на которых он резонансно откликается на внешнее поле, существенно отличаются от значений ω_3 и ω_2 в изолированном V-КИ (см. Приложение В для деталей).

После включения внешнего поля уровни одетого V-КИ начинают заселяться и, соответственно, сдвигаться, приводя одновременно к изменению резонансных условий и перераспределению населенностей. Взаимное влияние этих факторов и является главной причиной сложной оптической динамики монослоя.

4. ОТРАЖЕНИЕ

В нашем анализе нелинейного отклика монослоя V-КИ мы использовали поле Ω , действующее на V-КИ. В эксперименте, как правило, измеряются отраженное Ω_{refl} или прошедшее Ω_{tr} поля, которые отличаются от действующего поля Ω . Поля Ω_{refl} и Ω_{tr} определяются частью Ω в дальней зоне и даются выражениями (см., например, ссылки [16,26,36]):

$$\Omega_{refl} = \gamma_R(\rho_{31} + \mu \rho_{21}), \tag{18}$$

$$\Omega_{tr} = \Omega_0 + \gamma_R(\rho_{31} + \mu \rho_{21}).$$
(19)

Нас интересует, в частности, отражательная способность монослоя или, другими словами, коэффициент отражения R светового потока (мощности), который определяется как

$$R = \left| \frac{\Omega_{refl}}{\Omega_0} \right|^2.$$
 (20)

4.1. Линейный режим

Рассмотрим прежде всего линейный режимом отражения ($|\Omega_0 \ll 1, \rho_{11} \approx 1$). С этой целью удержим в уравнениях (13) и (14) лишь линейные по Ω_0 слагаемые. Ограничимся также исследованием установившегося (стационарного) режима. Подставляя в формулу (20) линейное решение уравнений для ρ_{31} и ρ_{21} , для коэффициента отражения R найдем

$$R = \gamma_R^2 \left| \frac{\mu^2 \left[i\Delta_{31} + \frac{1}{2}(\gamma_{31} + \gamma_{32}) \right] + i\Delta_{21} + \frac{1}{2}\gamma_{21}}{\left[i(\Delta_{31} - \Delta_L) + \frac{1}{2}(\gamma_{31} + \gamma_{32}) + \gamma_R \right] \left[i(\Delta_{21} - \mu^2 \Delta_L) + \frac{1}{2}\gamma_{21} + \mu^2 \gamma_R \right] - \mu^2 (\gamma_R - i\Delta_L)^2} \right|^2.$$
(21)

Г

Зависимость $R(\Delta_{31})$ в широком диапазоне изменения дублетного расщепления Δ_{32} приведена на рис. 6. Как видно, отражение от монослоя имеет два пика на собственных частотах одетого V-КИ. Пику слабого отражения ($R \ll 1$) при $\Delta_{31} \approx \Delta_{32}/2$ отвечает антисимметричное («темное») состояние одетого V-КИ, в то время как пику сильного ($R \approx 1$) при $\Delta_{31} \approx 2\Delta_L = 2000$ — симметричное («светлое») состояние (см. Приложение B).

4.2. Нелинейный режим

Рассмотрим теперь нелинейный режим отражения. На рис. 7 показана зависимость коэффициента отражения R монослоя от интенсивности $|\Omega_0|^2$ внешнего поля, рассчитанная для различных значений отстройки от резонанса Δ_{31} в окрестности пика полного отражения ($R \approx 1$). Результаты практически не зависят от величины дублетного расщепления Δ_{32} .

Рис. 6. (В цвете онлайн) Контурное изображение линейного коэффициента отражения R монослоя, рассчитанное на основании формулы (9). Виден слабый пик отражения в области $\Delta_{31} \approx \Delta_{32}/2$ (*a*) и пик практически полного отражения ($R \approx 1$) в области $\Delta_{31} \approx 2\Delta_L$ (*б*)

Рис. 7. Бистабильность (нелинейного) коэффициента отражения R монослоя в зависимости от отстройки Δ_{31} от резонанса, значения которой указаны около кривых. Кривые получены решением нелинейной стационарной задачи методом, описанным в Приложении А. Дублетное расщепление $\Delta_{32} = 100$; $\Delta_{31}^{th} = 1750$ — порог возникновения бистабильности. Сплошные (штриховые) фрагменты кривых

отвечают устойчивым (неустойчивым) участкам R

Поэтому в целях иллюстрации мы приводим данные, полученные для $\Delta_{32} = 100$ (ср. с рис. 6). Из рис. 7 следует, что в диапазоне отстройки Δ_{31} выше пика линейного отражения при $\Delta_{31} = 2\Delta_L = 2000$ коэффициент отражения R является трехзначной функцией интенсивности $|\Omega_0|^2$. Анализ стабильности (показателей Ляпунова) различных ветвей показал, что ветви с отрицательным наклоном неустойчивы, подразумевая, тем самым, бистабильность отражения, т. е. отражательная способность монослоя может быть переключена от низкого значения к высокому и обратно небольшим изменением интенсивности внешнего поля. Другими словами, в области пика сильного отражения ($R \approx 1$) монослой может функционировать как бистабильное зеркало. Порог бистабильности (возникновение трехзначного решения) для принятых значений параметров оказывается $\Delta_{31}^{th} = 1750$. Это значение с высокой степенью точности совпадает с таковым для двухуровневой модели КИ, в которой $\Delta_{21}^{th} = \sqrt{3}\Delta_L = 1732$ [26, 36].

5. ЗАКЛЮЧЕНИЕ

Мы провели теоретическое исследование оптического отклика монослоя регулярно расположенных квантовых излучателей с дублетом в возбужденном состоянии (V типа) с учетом их полного запаздывающего диполь-дипольного взаимодействия, которое рассмотрено в приближении среднего поля. Данное взаимодействие, в силу его зависимости от текущего квантового состояния излучателя, обеспечивает положительную обратную связь, которая вместе с имманентной нелинейностью самих излучателей приводит к мультистабильности, периодическим и апериодическим автоколебаниям и динамическому хаосу в оптическом отклике монослоя. В качестве реализации такой системы могут рассматриваться суперкристаллы полупроводниковых КТ с вырожденной валентной зоной в магнитном поле [18], которое вызывает зеемановское расщепление зоны проводимости квантовой точки. Асимметричные полупроводниковые квантовые точки, в которых анизотропное обменное взаимодействие электрона и дырки является причиной дублетного расщепления одноэкситонного состояния (см., например, работу [43]), также могут служить моделью квантового излучателя V типа.

Для параметров реальных суперкристаллов полупроводниковых квантовых точек частоты автоколебаний попадают в терагерцевый диапазон, т. е. автоколебательный режим отклика монослоя, представляет интерес для терагерцевых источников излучения. Чувствительность отклика монослоя к начальным условиям в режиме динамического хаоса может быть использована для кодирования информации [44].

В определенной полосе частот монослой функционирует как бистабильное зеркало, т.е. его отражательная способность может быть переключена небольшим изменением амплитуды внешнего поля от состояния практически полного отражения к пропусканию. В недавних работах [45, 46] сообщалось об аналогичных свойствах двумерных полупроводников дихалькогенидов переходных металлов. Рассмотренный в настоящей работе (мета)монослой квантовых излучателей со схемой оптических переходов V типа представляет собой еще один пример нанометрового бистабильного зеркала.

Перечисленные особенности нелинейного оптического отклика монослоя квантовых излучателей с дублетом в возбужденном состоянии представляются чрезвычайно перспективными для применений в нанофотонике.

ПРИЛОЖЕНИЕ А

Решение стационарной задачи

Стационарные решения рассматриваемой задачи $(\dot{\rho}_{\alpha\beta} = 0, \, \alpha, \beta = 1, 2, 3)$ находятся из следующей системы нелинейных алгебраических уравнений:

$$(\gamma_{21} + 2\gamma_{32})Z_{31} - (2\gamma_{21} + \gamma_{32})Z_{21} - - 3\mu(\Omega^*\rho_{21} + \Omega\rho_{21}^*) = \gamma_{21} - \gamma_{32}, \qquad (22)$$
$$2(\gamma_{31} + \gamma_{32})Z_{31} - (\gamma_{31} + \gamma_{32})Z_{21} +$$

$$+ 3(\Omega^* \rho_{31} + \Omega \rho_{31}^*) = -(\gamma_{31} + \gamma_{32}) Z_{21} + 3(\Omega^* \rho_{31} + \Omega \rho_{31}^*) = -(\gamma_{31} + \gamma_{32}),$$
 (23)

$$\Omega Z_{31} - \left[i\Delta_{31} + \frac{1}{2}(\gamma_{31} + \gamma_{32})\right]\rho_{31} +$$

$$+\mu\Omega\rho_{32} = 0, \tag{24}$$

$$\mu\Omega Z_{21} - \left(i\Delta_{21} + \frac{1}{2}\gamma_{21}\right)\rho_{21} + \Omega\rho_{32}^* = 0, \qquad (25)$$

$$\mu \Omega^* \rho_{31} + \left[i \Delta_{32} + \frac{1}{2} (\gamma_{31} + \gamma_{21} + \gamma_{32}) \right] \rho_{32} + \\ + \Omega \rho_{21}^* = 0, \qquad (26)$$

$$\Omega = \Omega_0 + (\gamma_R - i\Delta_L)(\rho_{31} + \mu\rho_{21}), \qquad (27)$$

где мы использовали подстановку

$$\rho_{22} = \frac{1}{3}(1 - Z_{31} + 2Z_{21}), \quad \rho_{33} = \frac{1}{3}(1 + 2Z_{31} - Z_{21}).$$

Далее, определим два вектора:

$$\mathbf{r} = (Z_{31}, Z_{21}, \rho_{31}, \rho_{21}, \rho_{32}, \rho_{31}^*, \rho_{21}^*, \rho_{32}^*),$$

$$\mathbf{r}_0 = (\gamma_{21} - \gamma_{32}, -(\gamma_{31} + \gamma_{32}), 0, 0, 0, 0, 0, 0, 0)$$

Тогда система уравнений (22)–(26) может быть переписана в матричной форме:

$$\mathcal{M}\mathbf{r}^T = \mathbf{r}_0^T, \tag{28}$$

где символ T означает транспонирование, а явный вид матрицы \mathcal{M}_{ij} , $i, j = 1, 2, \ldots, 8$ может быть легко восстановлен из уравнений (22)–(26). Формальное решение уравнения (28) имеет вид

$$\mathbf{r}^T = \mathcal{M}^{-1} \mathbf{r}_0^T, \tag{29}$$

где обратная матрица \mathcal{M}^{-1} может быть найдена в явном виде. Подчеркнем, что как \mathcal{M} , так и \mathcal{M}^{-1} и, соответственно, решение уравнения (29) параметрически зависят от Ω . После того как вектор **r** найден, мы можем использовать его в выражении (27) и получить замкнутое уравнение для Ω . Зная Ω , нетрудно восстановить все элементы матрицы плотности, используя решение (29) (для деталей см. работу [16]). Таким образом, стационарная задача может быть решена точно.

приложение в

Нормальные моды одетого V-КИ

Как отмечалось в разд. 3.3, оптические переходы $1 \leftrightarrow 2$ и $1 \leftrightarrow 3$ одетого V-КИ, во-первых, приобретают частотные сдвиги и дополнительные уширения и, во-вторых, взаимодействуют благодаря действующему полю. Мы интересуемся нормальными модами этой системы в линейном случае ($|\Omega_0| \ll 1, \rho_{11} \approx \approx 1$). Они находятся из решения однородной задачи ($\Omega_0 = 0$):

$$\dot{\rho}_{31} = [i\Delta_L - \Gamma_3] \,\rho_{31} - \mu(\gamma_R - i\Delta_L)\rho_{21}, \qquad (30)$$

$$\dot{\rho}_{21} = \left[i(\Delta_{32} + \mu^2 \Delta_L) - \Gamma_2\right] \rho_{21} - \mu(\gamma_R - i\Delta_L)\rho_{31},$$
(31)

где мы положили $\Delta_{31} = 0$ и $\Delta_{21} = -\Delta_{32}$ (внешнее поле отсутствует) и ввели обозначения

$$\Gamma_2 = \frac{1}{2}\gamma_{21} + \mu^2\gamma_R, \quad \Gamma_3 = \frac{1}{2}(\gamma_{31} + \gamma_{32}) + \gamma_R.$$

Далее, ищем стандартным образом решение в виде $\rho_{\alpha\beta} = R_{\alpha\beta} \exp(\kappa t)$. Приравнивая нулю определитель получившейся системы алгебраических уравнений, найдем уравнение для собственных частот нормальных мод:

$$\kappa^{2} - \left\{ i \left[(1+\mu^{2})\Delta_{L} + \Delta_{32} \right] - \Gamma_{2} - \Gamma_{3} \right\} \kappa + (i\Delta_{L} - \Gamma_{3}) \times \\ \times \left[i (\Delta_{32} + \mu^{2}\Delta_{L}) - \Gamma_{2} \right] - \mu^{2} (\gamma_{R} - i\Delta_{L})^{2} = 0.$$
(32)

Мы не приводим общего выражения для корней κ_{\pm} уравнения (32) в силу его громоздкости. Ограничимся случаем $\mu = 1$. Тогда

$$\kappa_{\pm} = \frac{1}{2} \left[i(2\Delta_L + \Delta_{32}) - \Gamma_2 - \Gamma_3 \right] \pm \\ \pm \frac{1}{2} \left[(i\Delta_{32} + \Gamma_3 - \Gamma_2)^2 + 4(i\Delta_L - \gamma_R)^2 \right]^{1/2}.$$
 (33)

Далее, учтем то обстоятельство, что для рассматриваемых в работе условий величина Δ_L много больше всех остальных ($\Delta_{32}, \Gamma_2, \Gamma_3, \gamma_R$), так что в κ_{\pm} можно использовать разложение в ряд Тейлора по малым параметрам $\Delta_{32}/\Delta_L, \Gamma_2/\Delta_L, \Gamma_3/\Delta_L, \gamma_R/\Delta_L$. При этих предположениях выражения для корней κ_{\pm} приобретают вид

$$\kappa_{+} = i \left(2\Delta_{L} + \frac{1}{2}\Delta_{32} \right) - \frac{1}{2} (\Gamma_{2} + \Gamma_{3} + 2\gamma_{R}) = i \left(2\Delta_{L} + \frac{1}{2}\Delta_{32} \right) - \frac{1}{4} (\gamma_{21} + \gamma_{31} + \gamma_{32}) - 2\gamma_{R}, \quad (34)$$

$$\kappa_{-} = \frac{1}{2}i\Delta_{32} - \frac{1}{2}(\Gamma_{2} + \Gamma_{3} - 2\gamma_{R}) = \frac{1}{2}i\Delta_{32} - \frac{1}{4}(\gamma_{21} + \gamma_{31} + \gamma_{32}).$$
 (35)

Отсюда следует, что исходные частоты $-\Delta_L$ и $-(\Delta_L + \Delta_{32})$ (см. уравнения (30) и (31)), отстроенные одна от другой на величину Δ_L , кардинальным образом перенормируются вследствие взаимодействия: частоты нормальных мод имеют значения $-\Delta_{32}/2$ и $-(2\Delta_L + \Delta_{32}/2)$ и отстоят друг от друга на величину $2\Delta_L$. Релаксационные константы нормальных мод также значительно модифицируются: мода «+» содержит теперь удвоенную коллективную константу γ_R , в то время как в моде «-» она вовсе отсутствует.

Используя алгебраические уравнения для амплитуд R_{31} и R_{21} , можно найти отношение R_{31}/R_{21} в модах «+» и «-». Несложные вычисления показывают, что

$$R_{31}^+/R_{21}^+ = 1 + O(\Delta_{32}/\Delta_L),$$

$$R_{31}^-/R_{21}^- = -1 + O(\Delta_{32}/\Delta_L),$$

т. е. в моде «+» амплитуды R_{31} и R_{21} складываются в фазе (симметричная, или светлая мода), а в моде «-» в противофазе (антисимметричная, или темная мода). Это и определяет связь этих мод с внешним полем: соответственно сильную или слабую. Смешение мод линейно зависит от величины дублетного расщепления Δ_{32} . Это находит свое подтверждение в линейном режиме отражения (см. рис. 6).

ЛИТЕРАТУРА

- 1. N. I. Zheludev, Science **328**, 582 (2010).
- C. M. Soukoulis and M. Wegener, Science 330, 1633 (2010).

- Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494 (2011).
- 4. W. H. Evers, B. Goris, S. Bals, M. Casavola, J. de Graaf, R. van Roij, M. Dijkstra, and D. Vanmaekelbergh, Nano Lett. 13, 2317 (2013).
- M. P. Boneschanscher, W. H. Evers, J. J. Geuchies, T. Altantzis, B. Goris, F. T. Rabouw, S. A. P. van Rossum, H. S. J. van der Zant, L. D. A. Siebbeles, G. Van Tendeloo, I. Swart, J. Hilhorst, A. V. Petukhov, S. Bals, and D. Vanmaekelbergh, Science **344**, 1377 (2014).
- A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, Langmuir **31**, 506 (2015).
- W. Liu, X. Luo, Y. Bao, Y. P. Liu, G.-H. Ning, I. Abdelwahab, L. Li, C. T. Nai, Z. G. Hu, D. Zhao, B. Liu, S. Y. Quek, and K. P. Loh, Nature Chem. 9, 563 (2017).
- A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, Sci. Rep. 3, 1727 (2013).
- A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, Opt. Lett. 38, 2259 (2013).
- A. S. Baimuratov, A. I. Shlykov, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Opt. Lett. 42, 2223 (2017).
- I. A. Vovk, N. V. Tepliakov, A. S. Baimuratov, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Phys. Chem. Phys. 20, 25023 (2018).
- J. F. Nossa and A. S. Camacho, Microelectron. J. 38, 1251 (2008).
- A. S. Baimuratov, Y. K. Gun'ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Sci. Rep. 6, 23321 (2016).
- R. Malikov, I. Ryzhov, and V. Malyshev, Eur. Phys. J. Web Conf. 161, 02014 (2017).
- V. A. Malyshev, P. Á. Zapatero, A. V. Malyshev, R. F. Malikov, and I. V. Ryzhov, J. Phys.: Conf. Ser. 1220, 012006 (2019).
- 16. I. V. Ryzhov, R. F. Malikov, A. V. Malyshev, and V. A. Malyshev, Phys. Rev. A 100, 033820 (2019).
- 17. I. Ryzhov, R. Malikov, A. Malyshev, and V. Malyshev, Eur. Phys. J. Web Conf. 220, 02012 (2019).
- 18. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B. 54, 4843 (1996).

- D. Bayramdurdiyev, R. Malikov, I. Ryzhov, and V. Malyshev, Eur. Phys. J. Web Conf. 220, 03004 (2019).
- 20. Р. А. Власов, А. М. Демеза, М. Г. Гладуш, Ж. прикладной спектр. 80, 711 (2013).
- 21. R. A. Vlasov, A. M. Lemeza, and M. G. Gladush, Las. Phys. Lett. 10, 045401 (2013).
- 22. G. Lindblad, Comm. Math. Phys. 48, 119 (1976).
- **23.** K. Blum, *Density Matrix: Theory and Applications*, Springer, Berlin (2012).
- 24. R. H. Dicke. Phys. Rev. 93, 99 (1954).
- 25. Р. Ф. Маликов, Е. Д. Трифонов, А. И. Зайцев, ЖЭТФ 76, 65 (1979).
- 26. M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov, *Super-Radiance: Multiatomic Coherent Emission*, IOP Publ., Bristol (1996).
- 27. J. -P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
- A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press (1997).
- **29**. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, *Theory of Oscillators*, Pergamon Press, New York (1966).
- J. Guckenheimerand P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, Berlin (1986).
- 31. V. I. Arnol'd (Ed.), V. S. Afrajmovich, Yu. S. Il'yashenko, and L. P. Shil'nikov, *Dynamical Systems V: Bifurcation Theory and Catastrophe Theory*, Springer, Berlin (1994).

- 32. Y. Ben-Aryeh, C. M. Bowden, and J. C. Englund, Phys. Rev. A 34, 3917 (1086).
- 33. С. М. Захаров, Э. А. Маныкин, Поверхность 2, 137 (1988).
- **34**. А. М. Башаров, ЖЭТФ **94**, 82 (1988).
- 35. М. Г. Бенедикт, А. И. Зайцев, В. А. Малышев, Е. Д. Трифонов, Опт. и спектр. 68, 812 (1990).
- 36. M. G. Benedict, A. I. Zaitsev, V. A. Malyshev, and E. D. Trifonov, Phys. Rev. A 43, 3845 (1991).
- 37. A. N. Oraevsky, D. J. Jones, and D. K. Bandy, Opt. Commun. 111, 163 (1994).
- V. A. Malyshev and E. Conejero Jarque, Opt. Experess 6, 227 (2000).
- 39. H. Glaeske, V. A. Malyshev, and K.-H. Feller, J. Chem. Phys. 113, 1170 (2000).
- 40. J. A. Klugkist, V. A. Malyshev, and J. Knoester, J. Chem. Phys. 127, 164705 (2007).
- Р. Ф. Маликов, В. А. Малышев, Опт. и спектр. 122, 1000 (2017).
- 42. R. F. Malikov and V. A. Malyshev, Eur. Phys. J. Web Conf. 161, 03005 (2017).
- 43. S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, Phys. Rev. B 73, 125304 (2006).
- 44. T. Gao and Z. Chen, Phys. Lett. A 372, 394 (2008).
- 45. P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoğlu, Phys. Rev. Lett. **120**, 037401 (2018).
- 46. G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, Phys. Rev. Lett. 120, 037402 (2018).