ВТОРИЧНЫЕ СИГНАЛЫ ЯДЕРНОГО СПИНОВОГО ЭХА В ТОНКИХ ПЛЕНКАХ ЖЕЛЕЗО-ИТТРИЕВОГО ФЕРРИТ-ГРАНАТА

В. Н. Бержанский^а, А. А. Гиппиус^{b,c}, А. И. Горбованов^а, С. В. Журенко^{b,c}, С. Н. Полулях^{а*}

^а Физико-технический институт Крымского федерального университета им. В. И. Вернадского 295007, Симферополь, Россия

^b Физический факультет Московского государственного университета им. М. В. Ломоносова 119991, Москва, Россия

> ^с Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

> > Поступила в редакцию 4 апреля 2019 г., после переработки 19 июня 2019 г. Принята к публикации 19 июля 2019 г.

Представлены результаты экспериментального и теоретического исследования явления вторичного ядерного спинового эха в магнитоупорядоченных веществах, в которых формирование дополнительных эхо-сигналов обусловлено эффектами динамической сверхтонкой связи. Проведено численное моделирование влияния амплитуды (ω_1) и длительностей первого (t_1) и второго (t_2) возбуждающих импульсов на эхо-сигналы. Получено, что максимум амплитуды вторичного эха формируется при условии $\omega_1 \, t_1 \, = \, 0.5 \pi$ и $\omega_1 t_2 pprox 0.6\pi$. Показано, что сигналы вторичного эха могут наблюдаться при неоднородном возбуждении спектральной линии $\omega_1 \leq \Delta \omega$, где $\Delta \omega$ —неоднородная ширина спектральной линии. При температуре $T=4.2~{
m K}$ экспериментально обнаружены дополнительные сигналы двухимпульсного спинового 3 au-эха от ядер железа в эпитаксиальной пленке феррит-граната иттрия, обогащенной магнитным изотопом $^{57}{
m Fe}$ до 96 %. Экспериментально наблюдаемые фазовые соотношения между сигналами основного и дополнительного эхо, а также зависимости амплитуды эхо-сигнала от амплитуды и длительностей возбуждающих импульсов хорошо согласуются с результатами численного моделирования динамики ядерной намагниченности с учетом динамических эффектов сверхтонкой связи. Показано, что вторичное эхо демонстрирует эффект сужения спектральной линии, а амплитуда вторичного эха пропорциональна коэффициенту усиления ЯМР в магнетиках, η . В случае ЯМР ядер $^{57}{
m Fe}$ в пленке железо-иттриевого граната амплитуда 3 au-эха на два-три порядка меньше, чем амплитуда основного 2 au-эха, что соответствует $\etapprox 440$. Регистрация слабых сигналов вторичного эха оказалась возможной благодаря использованию фазо-когерентного ЯМР-спектрометра с цифровым квадратурным детектированием на несущей частоте и накоплению сигнала.

DOI: 10.31857/S0044451020010149

1. ВВЕДЕНИЕ

Явление ядерного магнитного резонанса (ЯМР) и, в частности, явление ядерного спинового эха в настоящее время не только находит применение для исследования физических свойств вещества на микроскопическом уровне [1–4], но и рассматривается как перспективное направление для разработки квантовых компьютеров [5, 6]. С точки зрения практического применения сигналов эхо представляется важным анализ особенностей формирования эхо-сигналов при различных параметрах возбуждающих импульсов в условиях доминирования различных механизмов формирования эха.

Сигналы спинового эха — отклик спиновой системы на частоте магнитного резонанса, формируемый с помощью возбуждающих импульсов так, что моменты появления эхо-сигналов определяются временными интервалами между возбуждающими импульсами. В случае двух возбуждающих импульсов,

^{*} E-mail: sergey.polulyakh@cfuv.ru

разделенных временным интервалом au и приложенных к спиновой системе с неоднородно уширенной спектральной линией, основным эхо-сигналом является эхо Хана, формирующееся в момент времени 27. Наряду с 27-эхом возможно формирование дополнительных эхо-сигналов в моменты времени 37. Формирование дополнительных эхо-сигналов может быть обусловлено возбуждением неравновесной спиновой системы (частота следования пар возбуждающих импульсов велика по сравнению с временем спин-решеточной релаксации), неэквидистантным энергетическим спектром спиновой системы и механизмом вторичного эха, в рамках которого основной сигнал 27-эхо эффективно выступает в качестве возбуждающего импульса. Последний механизм имеет место в магнитоупорядоченных веществах и обусловлен динамическими эффектами магнитной сверхтонкой связи. В настоящей работе экспериментально и теоретически исследуются особенности формирования сигналов вторичного ядерного спинового эха, появление которых обусловлено эффектами динамической сверхтонкой связи в магнитоупорядоченных веществах.

В магнитоупорядоченных веществах магнитные сверхтонкие взаимодействия (СТВ) приводят к появлению сильных магнитных полей на ядрах, что позволяет наблюдать ЯМР в нулевом внешнем магнитном поле [1–4]. Спектральная линия ЯМР в магнетиках характеризуется неоднородным уширением, вследствие чего для экспериментального наблюдения сигналов магнитного резонанса используется метод спинового эха. Переменное магнитное поле, прикладываемое к образцу во время действия возбуждающих импульсов, вызывает колебания электронной намагниченности, что приводит к появлению переменного сверхтонкого магнитного поля на ядрах. Величина этого поля может на несколько порядков превышать поле, приложенное к образцу, что определяется материальной константой — коэффициентом η усиления ЯМР. Кроме того, магнитные СТВ в магнитоупорядоченных веществах могут привести к дополнительным нелинейным эффектам, в результате чего сигнал ядерного спинового эха выступает как эффективный возбуждающий импульс, который приводит к появлению вторичных эхо-сигналов.

Дополнительные эхо-сигналы, 3τ и 4τ , наряду с основным эхо-сигналом 2τ , экспериментально наблюдались на ядрах ⁵⁷Fe (спин I = 1/2) в слабом ферромагнетике FeBO₃ при температуре T = 4.2 K [7,8]. Амплитуда дополнительных эхо-сигналов была велика настолько, что накопление сигнала не требовалось. Экспериментально наблюдаемые сигналы рассматриваются как сигналы вторичного эха, хотя детальных исследований особенностей формирования вторичного эха в работах [7,8] не приводится.

В работе [9] также сообщается об экспериментах по регистрации дополнительных сигналов 3τ -эха в ферромагнитной пленке железа, обогащенной магнитным изотопом ⁵⁷Fe при температуре T = 4.2 K. При этом также предлагается механизм вторичного эха без анализа особенностей формирования сигнала.

Формирование дополнительных эхо-сигналов в магнитоупорядоченных веществах возможно также благодаря многоквантовым эффектам в ЯМР квадрупольных ядер [10, 11]. Однако для многоквантовых и вторичных эхо амплитуда дополнительных эхо-сигналов по-разному зависит от амплитуды и длительности возбуждающих импульсов. Например, в работе [12] экспериментально наблюдались дополнительные эхо-сигналы от квадрупольных ядер ⁵⁹Со (спин I = 7/2) в тонкой ферромагнитной пленке кобальта. Анализ зависимости амплитуды дополнительных эхо-сигналов от амплитуды возбуждающих импульсов равной длительности показал, что экспериментальные результаты не могут быть интерпретированы в рамках модели многоквантовых эффектов [12]. Путем сравнения результатов эксперимента с результатами специально проведенного численного моделирования в работе [12] показано, что дополнительные эхо-сигналы от ядер ⁵⁹Со в пленке кобальта являются сигналами вторичного эха. Эксперименты по регистрации эхо-сигналов в работах [7-9,12] осуществлялись путем амплитудного детектирования, и фазовые соотношения между основным и дополнительными эхосигналами не обсуждались.

В настоящей работе сообщается об экспериментально обнаруженных дополнительных эхо-сигналах ядер ⁵⁷Fe в ферримагнитной пленке железо-иттриевого граната (ЖИГ) при температуре T =4.2 К. Дополнительные эхо-сигналы удалось =обнаружить благодаря цифровому квадратурному детектированию и фазо-когерентному накоплению сигнала. Экспериментально наблюдаемые зависимости амплитуды и формы эхо от амплитуды и длительностей возбуждающих импульсов, а также фазовые соотношения основного и дополнительного эхо-сигналов сравнивались с результатами специально проведенного численного моделирования, в результате чего получено хорошее согласие экспериментальных результатов с моделью вторичного эха.

Рис. 1. Экспериментально наблюдаемые сигналы спинового эха ядер 57 Fe (модуль сигнала $|V(t)| = \sqrt{V_x^2(t) + V_y^2(t)}$) для последовательности 1 мкс-40 мкс-1 мкс-t. Сигнал нормирован на максимум амплитуды 2 au-эха. Вставка вторичное эхо

2. ЭКСПЕРИМЕНТ

Для проведения экспериментов использована ферримагнитная пленка ЖИГ Y₃Fe₅O₁₂ толщиной 22 мкм, синтезированная методом жидкофазной эпитаксии на подложке из гадолиний-галлиевого граната, ориентированной в плоскости (111). Исследуемый образец обогащен магнитным изотопом $^{57}{\rm Fe}$ до 96 %. Эксперименты выполнялись при температуре T = 4.2 К в нулевом внешнем магнитном поле, а переменное магнитное поле возбуждающих импульсов прикладывалось в плоскости пленки. Для регистрации сигнала ЯМР использован фазо-когерентный импульсный ЯМР-спектрометр с цифровым квадратурным детектированием на несущей частоте [13]. Сигналы спинового эха наблюдались на частоте ЯМР ядер ⁵⁷Fe тетраэдрических ионов Fe³⁺ в ЖИГ. В этом случае спектр ЯМР представлен одиночной спектральной линией с максимумом на частоте 65 МГц и шириной линии $\Delta \omega$, оцененной по форме эхо-сигнала, $\Delta \omega \approx 2\pi \cdot 40$ кГц.

В качестве примера на рис. 1 приведены сигналы спинового эха ядер ⁵⁷Fe тетраэдрических ионов Fe³⁺ для последовательности из двух импульсов длительностью 1 мкс каждый, разделенных временным интервалом $\tau = 40$ мкс. Интервал между последовательностями возбуждающих импульсов составлял 300 мс, что как минимум на порядок превосходило время продольной релаксации. Начало отсчета времени t на рис. 1 соответствует моменту оконча-

0.2

0

Рис. 2. Экспериментально наблюдаемые сигналы спинового эха ядер ${}^{57}{
m Fe}$ (*x*- и *y*-компоненты сигнала) для последовательности 1 мкс-40 мкс-1 мкс-t. Сигнал нормирован на максимум модуля амплитуды 2τ -эха. Вставка — вторичное эхо

ния действия второго импульса. Сигналы нормированы на максимум модуля амплитуды сигнала 27эха. Амплитуда переменного магнитного поля во время действия возбуждающих импульсов подбиралась так, чтобы обеспечить максимум амплитуды хановского 2*т*-эха в последовательности из двух возбуждающих импульсов длительностями $t_1 = 1$ мкс и $t_2 = 2$ мкс. Сигнал индукции, появляющийся сразу после окончания действия второго импульса, обусловлен тем, что соотношение $\omega_1 \gg \Delta \omega$ между амплитудой ω_1 возбуждающих импульсов и шириной $\Delta \omega$ спектральной линии выполнялось не строго.

При 500-кратном накоплении сигнала, наряду с основным сигналом 27-эха, экспериментально зарегистрировано дополнительное 37-эхо (вставка на рис. 1). Фаза опорного напряжения приемника подбиралась так, чтобы обеспечить максимум отрицательного значения *и*-компоненты сигнала основного 2*т*-эха. При этом дополнительное 3*т*-эхо наблюдается для отрицательных значений *х*-компоненты сигнала (рис. 2). Осцилляции х-компоненты сигнала во время формирования основного 2τ -эха и *y*-компоненты дополнительного 3τ -эха обусловлены асимметрией неоднородного уширения спектральной линии.

Экспериментально наблюдаемый максимум амплитуды 27-эха реализуется при длительности второго импульса, примерно вдвое большей длительности первого, в то время как для формирования максимума амплитуды дополнительного 37-эха длительность второго импульса должна быть примерно равна или немного больше длительности первого импульса. При увеличении временного интервала τ между импульсами скорость экспоненциального затухания амплитуды дополнительного 3τ -эха примерно в два раза выше, чем скорость затухания амплитуды основного 2τ -эха. Отношение амплитуд основного $V_{2\tau}$ и дополнительного $V_{3\tau}$ эха, восстановленное к нулевой задержке между импульсами, составляло $V_{3\tau}/V_{2\tau} \approx 7 \cdot 10^{-3}$. Ширина дополнительного сигнала 3τ -эха (примерно 8.2 мкс) несколько больше, чем аналогичное значение для основного 2τ -эха (примерно 7.3 мкс).

3. ТЕОРИЯ

Формирование сигналов вторичного эха можно пояснить следующим образом. Со стороны ядерной спиновой системы на электронную намагниченность действует магнитное сверхтонкое поле, величина которого пропорциональна ядерной намагниченности. В результате формируется дополнительная электронная намагниченность, которая создает на ядерных спинах сверхтонкое магнитное поле, величина которого в конечном итоге пропорциональна ядерной намагниченности.

При расчете намагниченности ядерной спиновой системы с неоднородно-уширенной спектральной линией представляется удобным выделить изохроматические группы спинов, для которых частоту ЯМР можно полагать одинаковой. Дополнительная электронная намагниченность определяется интегральной ядерной намагниченностью всей спиновой системы. В результате на изохроматическую группу ядерных спинов с резонансной частотой ω в некоторый момент времени t действует дополнительное сверхтонкое поле

$$\mathbf{h}_{HF}(t) = \chi A^2 \int \mathbf{m}(\omega, t) g(\omega) \, d\omega, \qquad (1)$$

где χ — тензор магнитной восприимчивости электронной спиновой системы, A — материальная константа СТВ, $\mathbf{m}(\omega, t)$ — намагниченность изохроматической группы ядерных спинов с резонансной частотой ω в момент времени $t, g(\omega)$ — функция, описывающая неоднородное уширение спектральной линии ЯМР.

Направление постоянного магнитного поля на ядре определяется направлением намагниченности магнитной подрешетки. В силу обменного упорядочения намагниченность подрешетки можно полагать равной намагниченности насыщения, так что величиной продольной компоненты дополнительного магнитного поля (1) можно пренебречь.

В случае ядер со спином I = 1/2 динамика вектора намагниченности $\mathbf{m}(\boldsymbol{\omega}, t)$ изохроматической группы спинов описывается классическими уравнениями движения

$$\frac{d\mathbf{m}(\boldsymbol{\omega},t)}{dt} = \mathbf{m}(\boldsymbol{\omega},t) \times \boldsymbol{\omega}, \qquad (2)$$

где вектор угловой скорости ω имеет вид

$$\boldsymbol{\omega} = \begin{pmatrix} \omega_1 + K \int m_x(\omega, t)g(\omega) \, d\omega \\ K \int m_y(\omega, t)g(\omega) \, d\omega \\ \omega \end{pmatrix}.$$
(3)

Здесь ω_1 — амплитуда переменного магнитного поля, выраженная в единицах частоты посредством гиромагнитного отношения γ , K — параметр динамической сверхтонкой связи

$$K = \gamma \chi A^2 m_0, \tag{4}$$

 m_0 — равновесное значение ядерной намагниченности. Ядерная намагниченность **m** в формулах (2) и (3) нормирована на равновесное значение m_0 .

Выражения (2), (3) описывают динамику ядерной намагниченности в системе координат, вращающейся с частотой переменного магнитного поля, и под ω следует понимать расстройку между резонансной частотой изохроматической группы спинов и частотой вращения системы координат. Амплитуда переменного магнитного поля ω_1 в соотношении (3) отлична от нуля только во время действия возбуждающих импульсов, а в промежутках между импульсами $\omega_1 = 0$.

При численном интегрировании уравнений (2) весь интервал наблюдения над системой разделим на временные интервалы длительностью Δt так, что в течение этого интервала вектор угловой скорости $\boldsymbol{\omega}$ можно полагать не зависящим от времени. Для интегральной намагниченности ядерной спиновой системы будем использовать намагниченность, рассчитанную на момент начала этого временного интервала. Если вектор угловой скорости $\boldsymbol{\omega}$ не зависит от времени, то намагниченность изохроматической группы спинов в момент времени $t + \Delta t$ вычисляется как поворот вектора намагниченности, сформировавшейся в момент времени t, на угол $\phi = \omega \Delta t$ вокруг вектора $\boldsymbol{\omega}$.

Амплитуда переменного магнитного поля во время действия возбуждающих импульсов выбиралась

Рис. 3. Расчетные зависимости ядерной намагниченности (6) от времени для последовательности 1 мкс-40 мкс-1 мкс-t при параметре динамической сверхтонкой связи $K = 2\pi \cdot 5$ кГц

равной $\omega_1 = 2\pi \cdot 250$ кГц, что можно получить, полагая длительность $\pi/2$ -импульса равной примерно 1 мкс. В качестве модельной функции $g(\omega)$ использована функция Гаусса

$$g(\omega) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\omega-\omega_0)^2}{2\sigma^2}\right).$$
 (5)

Если возбуждающие импульсы подаются на частоте, соответствующей максимуму функции (5), то во вращающейся системе координат $\omega_0 = 0$. Дисперсия $\sigma = 2\pi \cdot 40$ кГц подбиралась таким образом, чтобы обеспечить согласование расчетной и экспериментально наблюдаемой форм сигналов 2τ -эха.

В качестве примера на рис. З приведена расчетная зависимость модуля ядерной намагниченности для двух импульсов длительностью 1 мкс каждый при временном интервале между импульсами $\tau = 40$ мкс, что соответствует последовательности $\pi/2-\tau-\pi/2-t$. Данные на рис. З получены для K = $= 2\pi \cdot 5$ кГц. Расчетные значения интегральной ядерной намагниченности (нормированной на m_0),

$$m_{x,y}(t) = \int m_{x,y}(\omega, t)g(\omega) \, d\omega, \qquad (6)$$

приведены начиная с момента времени, соответствующего окончанию действия второго импульса.

В результате численных расчетов получено, что учет динамических эффектов сверхтонкой связи действительно приводит к появлению дополнительного 3 τ -эха. Без учета релаксации расчетная амплитуда дополнительного 3 τ -эха не зависит от за-

Рис. 4. Влияние длительности второго импульса на расчетную форму сигнала вторичного эха. Длительность первого импульса $t_1 = 1$ мкс

держки τ между возбуждающими импульсами. Сигнал дополнительного 3τ -эха сдвинут по фазе на $\pi/2$ относительно основного сигнала 2τ -эха, что хорошо согласуется как с моделью вторичного эха, так и с экспериментально наблюдаемыми результатами. Для модуля намагниченности

$$m(t) = \sqrt{m_x^2(t) + m_y^2(t)}$$
(7)

получено, что при $K \leq 2\pi \cdot 50$ кГц амплитуда $m(2\tau)$ основного эха не зависит от K с точностью не хуже 1%, а амплитуда $m(3\tau)$ дополнительного эха линейно растет с ростом $K: m(3\tau) = \alpha K$, где коэффициент пропорциональности α зависит от параметров (амплитуд и длительностей) возбуждающих импульсов и для последовательности $\pi/2-\tau-\pi/2-t$ равен $\alpha \approx 2.05$ мкс.

Увеличение параметра динамической связи K приводит также к дополнительному фазовому сдвигу как для основного 2τ -эха (*x*-компонента намагниченности отлична от нуля для временного интервала, соответствующего эхо-сигналу), так и для дополнительного 3τ -эха (отлична от нуля *y*-компонента намагниченности).

Увеличение длительности второго импульса приводит к росту амплитуды 2τ -эха. При этом форма дополнительного 3τ -эха изменяется — форма эхо-сигнала перестает быть колоколообразной (рис. 4). Дальнейшее увеличение длительности второго импульса, $t_2 > \pi/\omega_1$, также приводит к изменению формы сигнала основного 2τ -эха. Изменение расчетной формы эхо-сигнала, обусловленное увеличением длительности импульсов подобно искажениям формы эхо-сигналов в случае больших углов поворота намагниченности при неоднородном возбуждении спектральной линии, $\omega_1 \ll \Delta \omega$ [14].

При неоднородном возбуждении спектральной линии ($\omega_1 \ll \Delta \omega$) ширина эхо-сигнала определяется длительностями возбуждающих импульсов [14], а при однородном возбуждении ($\omega_1 \gg \Delta \omega$) ширина эхо-сигнала определяется обратной шириной спектральной линии, т. е. ширина эхо-сигнала больше ширины импульса. Специально проведенные компьютерные расчеты показали, что в промежуточном случае $\Delta \omega < \omega_1 < 10\Delta \omega$ ширина эхо-сигнала также больше, чем длительность возбуждающего импульса, и основной вклад в ширину эхо-сигнала определяется обратной шириной спектральной линии. Искажения расчетной формы эхо-сигналов при увеличении длительности возбуждающих импульсов практически исчезают при $\omega_1 > 10\Delta \omega$.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Специально проведенные расчеты показали, что в случае $\omega_1 \approx \Delta \omega$ искажения формы эхо-сигнала появляются в том случае, когда длительность хотя бы одного из импульсов больше оптимальной, т. е. если углы поворота намагниченности первым импульсом больше $\pi/2$ ($t_1\omega_1 > \pi/2$), вторым импульсом — больше π ($t_2\omega_1 > \pi$, основное 2τ -эхо) и больше 0.6π ($t_2\omega_1 > 0.6\pi$, дополнительное 3τ -эхо). Фактически колоколообразная форма эхо-сигналов реализуется для импульсов, длительность которых меньше, чем длительность импульсов, обеспечивающих максимум амплитуды эхо-сигнала.

Зависимость расчетной амплитуды основного 2τ -эха при $\omega_1 \approx \Delta \omega$ от длительностей возбуждающих импульсов в области формирования колоколообразного эхо-сигнала хорошо описывается известным выражением [7]

$$V_{2\tau} = V_{max} \sin \theta_1 \sin^2 \frac{\theta_2}{2}.$$
 (8)

Амплитуду $V_{2\tau} = m(2\tau)$ эхо-сигнала будем полагать равной модулю поперечной намагниченности (7), $\theta_1 = t_1 \omega_1$ и $\theta_2 = t_2 \omega_1$ — углы поворота намагниченности первым и вторым импульсами длительностями соответственно t_1 и t_2 . Для экспериментально наблюдаемых эхо-сигналов наблюдается хорошее согласие с выражением (8) (см., например, рис. 4) при $\theta_1 \leq \pi/2$ и $\theta_2 \leq \pi$. Вследствие достаточно сильных шумов в качестве экспериментальных значений на

Рис. 5. Зависимость амплитуды основного сигнала 2τ -эха от длительности второго импульса. Экспериментальные значения получены при длительности первого импульса $t_1 = 1$ мкс. Сплошная линия — аппроксимация выражением (8)

рис. 5 приведена интегральная амплитуда эхо-сигнала, соответствующая площади эхо-сигнала для его модуля. Вопрос о том, что понимать под амплитудой эхо в случае импульсов большей длительности остается открытым в силу искажения формы эхо.

Используя подход работы [7], дополнительное 3τ -эхо будем рассматривать как эхо-сигнал, формируемый тремя возбуждающими импульсами: два возбуждающих импульса и эхо-импульс. При этом угол поворота намагниченности третьим импульсом (θ_3) будем полагать пропорциональным амплитуде сигнала 2τ -эха (8) и параметру динамической сверхтонкой связи K (4). Считая угол поворота малым, $\theta_3 \ll 1$, для амплитуды дополнительного 3τ -эха получаем

$$V_{3\tau} = V_{max} K \sin^2 \theta_1 \sin \theta_2 \sin^2 \frac{\theta_2}{2}.$$
 (9)

Зависимость как расчетной, так и экспериментально наблюдаемой амплитуды сигналов дополнительного 3τ -эха от длительностей возбуждающих импульсов (рис. 6) хорошо описывается выражением (9) в области формирования колоколообразного эхо-сигнала ($\theta_1 \leq 0.5\pi$ и $\theta_2 \leq 0.65\pi$).

Исходя из экспериментально наблюдаемых значений для основного и дополнительного эхо, для параметра динамической сверхтонкой связи получаем $K \approx 2\pi \cdot 1.7$ кГц. По аналогии с работой [7] для ядер ⁵⁷Fe тетраэдрических ионов Fe³⁺ получаем $Am \approx 28 \cdot 10^{-3}$ Гс. Используя выражение (4) при

Рис. 6. Зависимость амплитуды сигнала вторичного 3τ -эха от длительности второго импульса. Экспериментальные значения получены при длительности первого импульса $t_1 = 1$ мкс. Сплошная линия — аппроксимация выражением (9)

 $\gamma=137.6$ Гц/Гс, для коэффициента усиления ЯМР $\eta=\chi A$ получаем $\eta\approx 440.$

В ферримагнитной эпитаксиальной пленке ЖИГ в отсутствие внешнего магнитного поля реализуется доменная структура, определяемая кубической магнитной анизотропией, что подтверждается наблюдением этой структуры в поляризованном свете благодаря эффекту Фарадея. Полученное значение η по порядку величины соответствует ожидаемому коэффициенту усиления ЯМР в доменных границах достаточно толстой пленки ЖИГ. В слабом ферромагнетике FeBO₃ с магнитной анизотропией типа легкая плоскость коэффициент усиления ЯМР η существенно больше, а величина неоднородной ширины $\Delta \omega$ спектральной линии ЯМР меньше, чем в пленке ЖИГ, что и объясняет наблюдаемые различия в амплитудах вторичных эхо-сигналов в этих двух образцах.

Анализ экспериментально наблюдаемой и расчетной формы сигналов вторичного 3τ -эха показал, что ширина этого сигнала примерно на 10% больше, чем ширина основного сигнала 2τ -эха. Сужение спектральной линии для дополнительного эха обусловлено тем, что в качестве третьего возбуждающего импульса эффективно выступает сигнал основного эха, форма которого близка к гауссовой, а амплитуда существенно меньше, чем ширина спектральной линии.

5. ЗАКЛЮЧЕНИЕ

Прецессирующая ядерная намагниченность в магнитоупорядоченных веществах приводит к появлению переменной электронной намагниченности, благодаря чему имеет место не только усиление сигнала ядерной индукции, но и появление дополнительного переменного магнитного поля на ядрах, и величина этого поля прямо пропорциональна ядерной намагниченности. Численное решение уравнений движения для ядерной намагниченности с учетом этого дополнительного поля показывает, что в спиновой системе с неоднородно-уширенной спектральной линией появляется дополнительный сигнал ядерного спинового 37-эха, для которого основной сигнал 27-эха эффективно выступает в качестве возбуждающего импульса. Экспериментально наблюдаемые особенности формирования сигналов вторичного эха хорошо согласуются с расчетными как в случае зависимости амплитуды, фазы и формы эхо-сигналов от амплитуды и длительностей возбуждающих импульсов, так и в случае магнетиков, различающихся коэффициентом усиления ЯМР и величиной неоднородного уширения спектральной линии.

Интересно отметить, что использование когерентного возбуждения и регистрации сигналов ядерного спинового эха в магнитоупорядоченных веществах оказывается полезным не только для накопления сигнала с целью повышения отношения сигнал/шум, но также и для анализа фазовых соотношений между различными эхо-сигналами.

Финансирование. Работа выполнена при частичной финансовой поддержке программы развития Крымского федерального университета им. В. И. Вернадского.

ЛИТЕРАТУРА

- А. В. Пащенко, В. П. Пащенко, В. К. Прокопенко и др., ЖЭТФ 151, 116 (2017).
- M. Manjunatha, R. Kumar, B. Sahoo et al., J. Magn. Magn. Mater. 453, 125 (2018).
- L. N. Mahour, M. Manjunatha, H. K. Choudhary et al., J. Alloys Comp. 773, 612 (2018).
- A. V. Anupama, M. Manjunatha, V. Rathod et al., J. Magn. Reson. 286, 68 (2018).
- L. M. K. Vandersypen, M. Steffen, G. Breyta et al., Nature 414, 883 (2001).

- В. И. Тарханов, Научное приборостроение 13(1), 51 (2003).
- М. П. Петров, В. В. Москалев, Г. А. Смоленский, Письма в ЖЭТФ 15, 132 (1972).
- Е. А. Глозман, В. А. Игнатченко, В. И. Цифринович, ФТТ 20, 3112 (1978).
- В. О. Голуб, В. В. Котов, А. Н. Погорелый, ФТТ 40, 1056 (1998).
- **10**. Г. Н. Абеляшев, В. Н. Бержанский, Н. А. Сергеев и др., ЖЭТФ **94**, 227 (1988).

- С. Н. Полулях, Н. А. Сергеев, А. А. Шемяков, ФТТ 42, 1628 (2000).
- В. Н. Бержанский, С. В. Капельницкий, В. С. Покатилов и др., ФТТ 44, 83 (2002).
- 13. А. В. Ткачев, Дисс. на соискание ученой степени кандидата физ.-мат. наук, МГУ им. М. В. Ломоносова, Москва (2017).
- 14. W. B. Mims, Phys. Rev. 141, 499 (1966).