ЗОНДОВАЯ МЕССБАУЭРОВСКАЯ ДИАГНОСТИКА ЗАРЯДОВОГО УПОРЯДОЧЕНИЯ В МАНГАНИТАХ $CaCu_xMn_{7-x}O_{12} \ (0 \le x \le 1)$

Я. С. Глазкова^{*}, В. С. Русаков, А. В. Соболев, М. Е. Мацнев,

А. М. Гапочка, Т. В. Губайдулина, И. А. Пресняков

Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

> Поступила в редакцию 8 мая 2019 г., после переработки 11 июня 2019 г. Принята к публикации 12 июня 2019 г.

Представлены результаты мессбауэровского исследования на ядрах зондовых атомов ⁵⁷Fe в манганитах $\operatorname{CaCu}_x \operatorname{Mn}_{6.96-x}^{57}\operatorname{Fe}_{0.04}\operatorname{O}_{12}$ ($0 \le x \le 1$. Установлено, что для составов $0 \le x \le 0.15$ в области структурного перехода $R\overline{3} \leftrightarrow Im\overline{3}$ (при $T \approx T_{CO}$) увеличение температуры приводит к уменьшению содержания ромбоэдрической фазы ($R\overline{3}$) на фоне «зарождения» и постепенного увеличения доли кубической фазы ($Im\overline{3}$), в которой за счет электронного обмена $\operatorname{Mn}^{3+} \leftrightarrow \operatorname{Mn}^{4+}$ все октаэдрические позиции марганца становятся эквивалентными. Предполагается, что увеличение частоты электронного обмена связано с ослаблением при $x \to 0.4$ электрон-решеточного взаимодействия ян-теллеровских катионов Mn^{3+} . Увеличение содержания меди приводит к резкому уменьшению температуры фазового перехода T_{CO} . Начиная с состава $x \ge 0.4$, в спектрах присутствует единственная компонента, отвечающая кубической фазе ($Im\overline{3}$). На основании мессбауэровских данных построена фазовая T-x-диаграмма.

DOI: 10.1134/S0044451019120083

1. ВВЕДЕНИЕ

Перовскитоподобные манганиты, содержащие разновалентные катионы Mn^{3+} и Mn^{4+} , привлекают к себе большое внимание с точки зрения фундаментальных исследований и весьма широких перспектив практического использования [1]. Большинство выполненных к настоящему времени экспериментальных и теоретических работ посвящено изучению большого семейства (R,A)MnO₃ $(R = P3\Theta, A = Ca, Sr)$ [2], многие представители которого проявляют эффект колоссального магнитосопротивления (CMR). Согласно современным представлениям, необычные электрические и магнитные функциональные характеристики этих соединений во многом связаны с наличием в их электронной подсистеме зарядовой, орбитальной и спиновой степеней свободы [3]. При определенном сочетании структурных параметров, таких как степень искажения октаэдров (MnO₆), длины связей Mn–O и углы в цепочках Mn–O–Mn, а также внешних термодинамических условий могут происходить зарядовое (charge ordering, $T < T_{CO}$), орбитальное (orbital ordering, $T < T_{OO}$) или спиновое ($T < T_{C,N}$) упорядочения. При этом значения критических температур упорядочения T_{CO} , T_{OO} , $T_{C,N}$ в существенной степени зависят как от кристаллохимических характеристик катионов \mathbb{R}^{3+} и \mathbb{A}^{2+} , так и от их относительного содержания $[\mathbb{R}^{3+}]/[\mathbb{A}^{2+}]$ в манганитах. Подобные зависимости часто изображают в виде T–x-диаграмм, подробное обсуждение которых можно найти в работах [2,3].

В литературе обсуждаются две основные модели зарядового упорядочения [4, 5]. В первой, наиболее ранней из них, часто называемой «ионной», предполагается образование при $T < T_{CO}$ двух индивидуальных зарядовых состояний Mn^{3+} и Mn^{4+} , упорядоченных в октаэдрической подрешетке [6,7] (рис. 1*a*). Локальная симметрия практически идеальных ($Mn^{4+}O_6$) и тетрагонально искаженных ($Mn^{3+}O_6$) анионных полиэдров является следствием специфики электронных конфигура-

E-mail: janglaz@bk.ru

Рис. 1. Схематическое представление различных моделей зарядового распределения разновалентных катионов марганца в манганитах $CaCu_xMn_{7-x}O_{12}$ и $La_{1-x}(Ca,Sr)_xMnO_3$: a — «ионная» модель (Goodenough J. B.); δ — образование «поляронов Зинера» (Daoud-Aladine A.). Справа представлены различные варианты локального окружения зондовых атомов ${}^{57}\mathrm{Fe}$

ций разновалентных катионов марганца. Несмотря на наглядность и, казалось бы, внутреннюю непротиворечивость «ионной» модели, до сих пор ни один из резонансных рентгеновских методов, например, XAS или XANES [8], однозначно не подтвердил образование двух разновалентных состояний марганца. Кроме того, нейтронографические исследования монокристаллов $Pr_{0.6}Ca_{0.4}MnO_3$ [9] показали практически полное совпадение длин связей Mn–O (1.955–1.960 Å) и значений параметра дисторсии $\Delta_d \approx (6.51–6.99) \cdot 10^{-4}$ октаэдров (Mn1O₆) и (Mn2O₆) в моноклинной структуре при $T < T_{CO} = 240$ K.

Позже была предложена альтернативная модель (bond-centered model) [9–11], в основе которой лежит предположение об образовании при *T* < *T*_{CO} упорядоченных «димеров» $Mn^{(3+\eta)+}$ – О– $Mn^{(3+\eta')+}$ — поляронов Зинера (Zener-polaron state [9]), внутри которых между катионами марганца осуществляется быстрый электронный перескок, который делает их практически неразличимыми ($\delta \approx \delta'$) (рис. 16). Однако и эту модель нельзя считать окончательной, поскольку данные ЯМР-исследования ядер ¹⁷О в манганите Pr_{0.5}Ca_{0.5}MnO₃ [12] указывают на образование двух типов катионов марганца, т. е. в большей степени согласуются с «ионной» моделью. В ряде теоретических работ [4, 5] отмечалось, что обе модели являются лишь упрощенными «крайними» случаями более сложной реальной картины электронной структуры марганцевой подрешетки в области $T < T_{CO}$. Следует признать, что имеющийся в настоящее время экспериментальный материал не позволяет отдать предпочтение той или иной модели зарядового упорядочения.

Обычно зарядовое упорядочение сопровождается изменениями кристаллической и магнитной структур исследуемых соединений. На примере многих перовскитоподобных манганитов установлено, что наиболее важными структурными параметрами, влияющими на значение T_{CO} , являются длины $R_{\rm Mn-O}$ связей Mn–O и углы ϑ в цепочках Mn–O–Mn. Оба этих параметра определяют ширину электронной зоны $W \propto \cos \vartheta / (\langle R_{\rm Mn-O} \rangle)^{7/2}$, образующейся в результате перекрывания атомных 3d(Mn)- и 2p(O)-орбиталей. В литературе обсуждаются вопросы, связанные с влиянием на зарядовое упорядочение локальных и кооперативных ян-теллеровских (ЯТ) искажений октаэдров (Mn³⁺O₆) [1–3]. Степень ЯТ-искажения и характер кооперативного упорядочения октаэдров $(Mn^{3+}O_6)$ (кооперативный эффект ЯТ) в значительной степени зависят от химического состава манганитов, внешнего давления и температуры [1-3]. Наконец, особое внимание исследователей привлекает так называемое фазовое расслоение, т.е. образование для одной структуры микрообластей (доменов) с разным относительным содержанием разновалентных катионов $[Mn^{4+}]/[Mn^{3+}]$, которые могут обладать различным характером электронной проводимости и магнитного упорядочения.

Для понимания сложных механизмов, лежащих в основе зарядового упорядочения, перед исследователями стоит задача поиска новых семейств манганитов, содержащих разновалентные катионы Mn³⁺ и Mn⁴⁺. Примером таких систем являются так называемые «двойные» перовскитоподобные манганиты АС₃В₄О₁₂, в которых крупные диамагнитные катионы A (= La³⁺, Bi³⁺, Ca²⁺, Na⁺...) занимают позиции с искаженной додекаэдрической кислородной координацией, ян-теллеровские катионы $C (= Mn^{3+}, Cu^{2+})$ располагаются в позициях с квадратным кислородным окружением, а разновалентные катионы $\mathrm{Mn}^{3+}/\mathrm{Mn}^{4+}$ занимают октаэдрические позиции (ВО₆) с различной степенью искажения [13]. Наиболее важной отличительной особенностью этих соединений является то, что их физические свойства определяются не только внутриподрешеточными взаимодействиями В-О-В, как это происходит в случае перовскитоподобных оксидов $R_{1-x}A_xMnO_3$, но также и межподрешеточными взаимодействиями С-О-В. Варьирование составов подрешеток «А» и «С» позволяет с одной стороны менять относительное содержание разновалентных катионов Mn⁴⁺ и Mn³⁺, с другой — влиять на силу С-О-В-взаимодействий, которые за счет конкуренции с обменными В-О-В-взаимодействиями приводят к необычным магнитным свойствам рассматриваемых оксидов [13].

внимание Особое исследователей привлекают медьсодержащие двойные манганиты $CaCu_xMn_{7-x}O_{12}$ (0 $\leq x \leq 3$) [13], в которых ян-теллеровские катионы Cu²⁺ занимают позиции с квадратной кислородной координацией. Интерес к этому семейству твердых растворов связан с возможностью существенного варьирования их магнитных и электрических свойств при различных степенях замещения (x) катионами меди [13]. Ранее для исследования локальной структуры одного из крайних членов семейства CaCu_xMn_{7-x}O₁₂ $(0 \le x \le 3)$ — двойного манганита CaMn₇O₁₂ (x == 0) — мы использовали зондовую мессбауэровскую спектроскопию на ядрах ⁵⁷Fe [14, 15]. Показано, что зондовые атомы ⁵⁷Fe стабилизируются в трехвалентном высокоспиновом состоянии, замещая в структуре данного манганита катионы Mn³⁺ и Mn⁴⁺ в октаэдрической подрешетке. Важно отметить, что сверхтонкие параметры мессбауэровских спектров зондовых атомов ⁵⁷Fe оказались очень чувствительными к особенностям локального окружения замещаемых ими разновалентных катионов марганца в октаэдрах (Mn³⁺O₆) и (Mn⁴⁺O₆). С помощью этого метода установлено сосуществование ромбоэдрической $(R\bar{3})$ и кубической $(Im\bar{3})$ фаз $CaMn_7O_{12}$ в области структурного перехода $R\bar{3} \leftrightarrow Im\bar{3}$, вызванного протеканием в октаэдрической подрешетке быстрых электронных перескоков $Mn^{3+} \rightarrow Mn^{4+}$ [13, 16, 17].

Целью настоящей работы является детальное мессбауэровское исследование на ядрах зондовых атомов ⁵⁷Fe эволюции локальной структуры манганитов $\operatorname{CaCu}_x \operatorname{Mn}_{7-x} \operatorname{O}_{12} (0 \le x \le 1)$, а также анализ механизмов протекания зарядового упорядочения в области температур структурного фазового перехода.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез допированных зондовыми атомами 57 Fe (1 ат. % по отношению к атомам Mn в октаэдрической подрешетке) образцов $CaCu_x Mn_{6.96-x} {}^{57}Fe_{0.04}O_{12} \ (0 \le x \le 1)$ осуществлялся в несколько стадий. На первой стадии проводилось растворение стехиометрической смеси солей $CaCO_3$, MnC_2O_4 и $Cu(NO_3)_2$ в избытке концентрированной азотной кислоты. К полученному раствору нитратов добавлялось рассчитанное количество раствора нитрата 57 Fe(NO₃)₃, предварительно приготовленного путем растворения обогащенного изотопом ⁵⁷Fe металлического железа в азотной кислоте. Затем полученный гомогенный раствор смеси прекурсоров упаривался, высушивался и прокаливался в течение 2 ч в печи при T = 600 °C в токе кислорода. На последнем этапе синтеза к образовавшейся гомогенной смеси оксидов металлов добавляли хлорид калия (KCl, 10 масс. %), из полученного порошка прессовались таблетки, которые затем отжигались в токе кислорода в течение 48 ч при T = 950 °C.

Рентгеновские дифрактограммы синтезированных образцов подтвердили отсутствие каких-либо посторонних примесных фаз. Полученные при их индицировании параметры ромбоэдрической решетки практически не отличались от соответствующих значений для недопированных железом образцов CaCu_xMn_{7-x}O₁₂ [18–20]. Индицирование рентгенограмм в рамках двух пространственных групп $R\bar{3}$ (при $0 \le x \le 0.3$) и $Im\bar{3}$ (при $x \ge 0.4$) не позволило зафиксировать каких-либо существенных изменений параметров ячеек по сравнению с литературными данными для недопированных ⁵⁷Fe образцов CaCu_xMn_{7-x}O₁₂.

Рис. 2. Модельная расшифровка мессбауэровских спектров ядер ${}^{57}{
m Fe}$ в манганитах состава (x=0-0.70), измеренных при $T=275~{
m K}$

Мессбауэровские спектры на ядрах ⁵⁷Fe измерялись на спектрометре MS-1104Em, работающем в режиме постоянных ускорений. Для обработки и анализа мессбауэровских данных были использованы методы модельной расшифровки спектров, реализо-

ванные в программе SpectrRelax [21,22]. Химические сдвиги мессбауэровских спектров ядер 57 Fe в исследуемых образцах приведены относительно α -Fe при комнатной температуре.

Таблица. Сверхтонкие параметры мессбауэровских спектров ${}^{57}{
m Fe}$ образцов ${
m CaCu}_x{
m Mn}_{6.96-x}{}^{57}{
m Fe}_{0.04}{
m O}_{12}$ ($0\leq x\leq 1$) при $T=275~{
m K}$

x	Позиция ⁵⁷ Fe	δ , mm/c	Δ , mm/c	I, %
0.00	$\operatorname{Fe}(1)$	0.38(1)	0.59(1)	71(1)
	$\operatorname{Fe}(2)$	0.39(1)	0.12(1)	29(1)
0.05	$\operatorname{Fe}(1)$	0.38(1)	0.54(1)	70(1)
	$\operatorname{Fe}(2)$	0.38(1)	0.17(1)	30(1)
0.15	$\operatorname{Fe}(1)$	0.37(1)	0.46(1)	58(2)
	$\operatorname{Fe}(2)$	0.37(1)	0.26(1)	42(2)
0.2	$\operatorname{Fe}(1)$	0.38(1)	0.48(1)	50(2)
	$\operatorname{Fe}(2)$	0.38(1)	0.20(1)	50(2)
0.3	$\operatorname{Fe}(1)$	0.38(1)	0.42(1)	41(1)
	$\operatorname{Fe}(2)$	0.38(1)	0.18(1)	59(1)
0.4	$\overline{\mathrm{Fe}}(3)$	0.38(1)	0.18(1)	100
0.5	$\overline{\mathrm{Fe}}(3)$	0.39(1)	0.15(1)	100
0.7	$\overline{\mathrm{Fe}}(3)$	0.37(1)	0.15(1)	100

3. РЕЗУЛЬТАТЫ

Согласно результатам мессбауэровских измерений образцов $\text{CaCu}_x \text{Mn}_{6.96-x}^{57} \text{Fe}_{0.04} \text{O}_{12} \ (0 \le x \le 1)$, проведенных в области температур выше точек магнитного упорядочения (T_N, T_C) , все исследуемые нами составы манганитов условно можно разделить на две группы.

К первой группе относятся образцы составов x == 0, 0.05, 0.15, 0.2, 0.3, спектры которых при T == 275 К представляют собой суперпозицию двух квадрупольных дублетов Fe(1) и Fe(2) (рис. 2). В соответствии с результатами наших предыдущих исследований [14, 15], оба парциальных спектра соответствуют зондовым катионам железа Fe³⁺, локализованным в двух разных октаэдрических позициях ромбоэдрической фазы (R3). Парциальный спектр Fe(1) с наибольшим значением квадрупольного расщепления Δ_1 (таблица) отвечает катионам Fe³⁺, замещающим ян-теллеровские катионы $\mathrm{Mn}^{3+}(t^3_{2a}e^1_a)$ в искаженных октаэдрах (Mn³⁺O₆). Второй парциальный спектр Fe(2) (рис. 2) соответствует катионам Fe³⁺ в практически неискаженных октаэдрах (Mn⁴⁺O₆). Расшифровка спектров показала, что все значения химических сдвигов δ_1 и δ_2 , в пределах ошибки измерения, совпадают друг с другом и практически не изменяются с составом (x) манганитов. В то же время, значения квадрупольных расщепле-

Рис. 3. Экспериментальные $(\Delta_{1,2}^{exp})$ и расчетные $(\Delta_{1,2}^{calc})$ зависимости значений квадрупольных расщеплений парциальных квадрупольных дублетов $\operatorname{Fe}(1)$ и $\operatorname{Fe}(2)$ от состава (x) манганитов

ний $\Delta_{1,2}$ (рис. 3) оказываются чувствительными к содержанию в исследуемых образцах катионов меди.

Начиная с некоторой температуры T* в области температур структурного фазового перехода $R\bar{3} \leftrightarrow Im\bar{3}$ (при $T^* < T_{CO}$) в спектрах манганитов первой группы появляется третья компонента Fe(3), вклад которой резко увеличивается с температурой, достигая максимального значения $I_3 \approx 100\%$ при *T* = *T*_{CO} (рис. 4). Ранее при исследовании манганита CaMn_{6.96}⁵⁷Fe_{0.04}O₁₂ [14,15] мы показали, что парциальный спектр Fe(3) отвечает зондовым катионам Fe³⁺, стабилизированным в кубической фазе $(Im\bar{3})$, в которой из-за электронных перескоков $Mn^{3+} \leftrightarrow Mn^{4+}$ все октаэдрические позиции марганца становятся структурно эквивалентными. Как и в случае не замещенного медью манганита $CaMn_7O_{12}$ (x = 0), для составов x = 0.05 и x == 0.15 также существует узкая область температур $\Delta T_{CO} = (T_{CO} - T^*),$ в которой сосуществуют ромбоэдрическая и кубическая фазы (рис. 5). Как следует из построенной на основании мессбауэровских данных T-x-диаграммы (рис. 6), по мере увеличения x температура T_{CO} , выше которой полностью исчезает фаза $R\bar{3}$, монотонно уменьшается.

Следует отметить, что согласно данным дифракции синхротронного излучения для составов x = 0.2и x = 0.3 вплоть до самых низких температур со-

Рис. 4. Модельная расшифровка спектров манганитов $CaCu_x Mn_{6.96-x} {}^{57}Fe_{0.04}O_{12}$ (x = 0.05, 0.15), измеренных в области температур структурного фазового перехода ($R\bar{3} \leftrightarrow Im\bar{3}$)

Рис. 5. Температурные зависимости относительных интенсивностей (I_i) парциальных спектров $Fe(Im\bar{3})$ и $Fe(R\bar{3})$, соответствующих кубической $(Im\bar{3})$ и ромбоэдрической $(R\bar{3})$ фазам $CaCu_x Mn_{6.96-x}$ ⁵⁷ $Fe_{0.04}O_{12}$ (x = 0.05, 0.15)

существуют ромбоэдрическая и «низкотемпературная» кубическая фазы [19, 20]. В то же время, наши мессбауэровские исследования этих составов показывают присутствие в их спектрах двух квадрупольных дублетов Fe(1) и Fe(2), по своим параметрам отвечающих ромбоэдрической фазе $R\bar{3}$. Для объяснения этого противоречия необходимо отметить, что при низких температурах электронные перескоки $Mn^{3+} \leftrightarrow Mn^{4+}$ должны быть полностью «замороженными». Таким образом, присут-

Рис. 6. Обобщенная T-x-диаграмма областей существования различных фаз системы $CaCu_xMn_{6.96-x}{}^{57}Fe_{0.04}O_{12}$ ($0 \le x \le 1$), построенная на основании результатов мессбауэровских измерений

ствующая на дифрактограммах синхротронного излучения при низких температурах кубическая фаза будет иметь структуру, в которой разновалентные катионы Mn³⁺ и Mn⁴⁺ занимают разупорядоченные позиции в октаэдрической подрешетке. Можно предположить, что при замещении в таких позициях катионов марганца на катионы Fe³⁺ со сферическисимметричной высокоспиновой электронной конфигурацией d^5 последние будут «подстраивать» свое октаэдрическое кислородное окружение (${\rm Fe}^{3+}{\rm O}_6$) до того, которое характерно для их собственных оксидных фаз. По-видимому, сверхтонкие параметры зондовых катионов Fe³⁺, находящихся в таком кислородном окружении разупорядоченной кубической фазы $Im\bar{3}$, будут близки к соответствующим параметрам катионов железа, замещающих Mn⁴⁺ в практически не искаженных кислородных полиэдрах (MnO₆) ромбоэдрической фазы. Как результат, в экспериментальном спектре следует ожидать появления двух квадрупольных дублетов. Первый дублет Fe(1) соответствует катионам Fe^{3+} , замещающим ян-теллеровские катионы Mn³⁺ в упорядоченной ромбоэдрической фазе. Второй дублет Fe(2) представляет собой суперпозицию двух парциальных компонент с близкими параметрами, соответствующих катионам Fe³⁺ в симметричных позициях $(Mn^{4+}O_6)$ фазы $R\bar{3}$, а также замещающих катионы Mn^{3+} и Mn^{4+} в структурно-неупорядоченной фазе $Im\bar{3}$. При переходе в область высоких температур $T > T_{CO}$, из-за быстрого электронного переноса $\mathrm{Mn}^{3+} \leftrightarrow \mathrm{Mn}^{4+}$, все октаэдрические позиции марганца становятся эквивалентными, и оба квадрупольных дублета Fe(1) и Fe(2) трансформируются в единственный дублет Fe(3) с небольшим квадрупольным расщеплением.

В спектрах манганитов второй группы, составы которых находятся в диапазоне $0.4 \le x \le 1$, во всей парамагнитной области температур ($T > T_N$) присутствует единственная компонента Fe(3) (рис. 2). Этот результат полностью согласуется с данными дифракции синхротронного излучения [19, 20], согласно которым все обозначенные составы имеют кубическую структуру. На основании мессбауэровских данных можно утверждать, что в структуре этих манганитов все зондовые катионы Fe³⁺ занимают эквивалентные позиции.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как и для ранее исследованного нами оксида CaMn_{6.96}⁵⁷Fe_{0.04}O₁₂ [14, 15], можно предположить, что присутствующие в спектрах манганитов CaCu_xMn_{6.96-x}⁵⁷Fe_{0.04}O₁₂ (x = 0.05, 0.15, 0.2, 0.3) квадрупольные дублеты Fe(1) и Fe(2) относятся к зондовым катионам Fe³⁺, замещающим соответственно катионы Mn³⁺ и Mn⁴⁺ в подрешетке с октаэдрическим кислородным окружением. На рис. 3 вместе со значениями квадрупольных расщеплений Δ_1^{exp} и Δ_2^{exp} приведены теоретические значения Δ_1^{calc} и Δ_2^{calc} :

$$\Delta^{calc} = (1 - \gamma_{\infty}) \frac{eQ|V_{ZZ}|}{2} \left(1 + \frac{\eta^2}{3}\right)^{1/2}, \quad (1)$$

где γ_{∞} — фактор антиэкранирования Штернхеймера, eQ — квадрупольный момент ядра ⁵⁷Fe в первом возбужденном состоянии: V_{ZZ} , V_{YY} , V_{XX} — главные компоненты тензора градиента электрического поля (ГЭП) на ядрах ⁵⁷Fe, обусловленного искажениями их атомного окружения в кристалле, $\eta = (V_{YY} - V_{XX})/V_{ZZ}$ — параметр асимметрии, при этом $|V_{ZZ}| \ge |V_{YY}| \ge |V_{XX}|$. Для расчета параметров ГЭП мы использовали структурные данные для незамещенных манганитов CaCu_xMn_{7-x}O₁₂ [18–20]. Расчеты проводились в рамках «ионной» модели, подробное описание которой можно найти в наших предыдущих работах [15, 23].

Рис. 7. Компоненты тензора ГЭП (V_{ZZ}) от ионов Mn^{3+} , Mn^{4+} , Ca^{2+} и $O^{2-}(1,2)$ внутри сферы радиуса r, рассчитанные для позиций катионов Mn^{3+} (a) и Mn^{4+} (δ) в октаэдрической подрешетке манганита $CaMn_7O_{12}$

Несмотря на различие рассчитанных $\Delta_{1,2}^{calc}$ и экспериментальных $\Delta_{1,2}^{exp}$ значений квадрупольных расщеплений, их отношения $\Delta_1^{calc}/\Delta_2^{calc}$ и $\Delta_1^{exp}/\Delta_2^{exp}$ согласуются друг с другом, а также наблюдается согласованное изменение зависимостей $\Delta_{1,2}^{calc}$ и $\Delta_{1,2}^{exp}$ от состава x образцов CaCu_xMn_{6.96-x}⁵⁷Fe_{0.04}O₁₂ (рис. 3). Данный результат демонстрирует чувствительность параметров сверхтонких взаимодействий ядер ⁵⁷Fe не только к симметрии их локального окружения замещаемых ими катионов марганца, но также и к характеру изменения этого окружения с составом исследуемых манганитов. Расхождение значений $\Delta_{1,2}^{calc}$ и $\Delta_{1,2}^{exp}$ может быть связано с грубостью «ионной» модели, а также с неопределенностью значений γ_{∞} и eQ, входящих в уравнение (1). Для того чтобы выяснить, какие из ионов оказывают наибольшее влияние на величины квадрупольных расщеплений парциальных спектров Fe(1) и Fe(2), мы рассчитали парциальные главные компоненты $\{V_{ii}\}_{i=X,Y,Z}$ тензора ГЭП от отдельных ионов в кристаллографических позициях 3a (Ca²⁺), 9e (Cu²⁺, Mn³⁺), 9d (Mn³⁺) и 3b (Mn⁴⁺), расположенных внутри сферы радиуса r = 100 Å. В качестве примера на рис. 7 приведены зависимости наибольшей по величине компоненты $V_{ZZ}(r)$ для образца CaMn_{6.96}⁵⁷Fe_{0.04}O₁₂.

Анализ полученных данных показывает, что для позиций катионов Mn⁴⁺, ближайшее анионное окружение которых представляет собой практически неискаженные полиэдры (Mn⁴⁺O₆), наибольший вклад в ГЭП обусловлен катионами Mn³⁺ и Ca²⁺ с квадратной (MnO₄) и додекаэдрической (CaO₁₂) координацией. В случае же ян-теллеровских катионов Mn^{3+} наибольшее влияние на значения ГЭП оказывают ионы $O^{2-}(1,2)$ (рис. 7), образующие тетрагонально-искаженные октаэдры (Mn³⁺O₆) с четырьмя удлиненными $\langle Mn-O(1)\rangle \approx 2.06$ Å и двумя короткими $(Mn-O(2)) \approx 1.88 \text{ Å}$ связями Mn-O(i)[18-20]. Таким образом, наблюдаемое высокое значение Δ_1 в первую очередь связано с сильным тетрагональным искажением полиэдров ($Fe(1)O_6$), которое «наследуется» у катионов марганца. Заметим, что, в отличие от ян-теллеровских катионов ${\rm Mn^{3+}},$ замещающие их катионы ${\rm Fe^{3+}}$ обладают симметричной электронной конфигурацией, тем не менее, их локальное кислородное окружение остается таким же искаженным, как и в случае октаэдров (Mn³⁺O₆). Данный результат обусловлен кооперативным характером ян-теллеровского искажения октаэдров ($Mn^{3+}O_6$), которое способствует понижению упругой энергии кристаллической решетки.

Согласованное расположение в структуре искаженных октаэдров (MnO₆) приводит к орбитальному упорядочению катионов марганца [1–3], в результате которого происходит снятие двукратного вырождения по энергии e_g -орбиталей $|z^2\rangle$ и $|x^2 - y^2\rangle$ с образованием новых электронных состояний [24]:

Рис. 8. а) Схема орбитального упорядочения катионов в октаэдрической подрешетке $CaMn_7O_{12}$; δ) конфигурационное пространство (Q_2 , Q_3) мод нормальных колебаний в полиэдрах ($Mn^{3+}O_6$) (отложены значения параметра дисторсии (σ_{JT}), угла «орбитального смешивания» (ϕ) и координаты, отвечающие основному состоянию катионов Mn^{3+})

$$\begin{aligned} |\phi_i\rangle^{(+)} &= \cos(\phi_i/2)|z^2\rangle + \sin(\phi_i/2)|x^2 - y^2\rangle, \\ |\phi_i\rangle^{(-)} &= \sin(\phi_i/2)|z^2\rangle + \cos(\phi_i/2)|x^2 - y^2\rangle, \end{aligned}$$
(2)

где $|\phi_i\rangle^{(+)}$ и $|\phi_i\rangle^{(-)}$ — волновые функции соответствующих электронных состояний для катионов Mn^{3+} в *i*-й позиции элементарной ячейки (рис. 8*a*). Значение углов ϕ_i определяется как

$$\phi_i = -\left[\text{tg}^{-1} \left(Q_{2(i)} / Q_{3(i)} \right) \right],$$

где

$$Q_{2(i)} \equiv \left(l_{x(i)} - l_{y(i)}\right),$$

$$Q_{3(i)} \equiv \left(2l_{z(i)} - l_{x(i)} - l_{y(i)}\right) / \sqrt{3}$$

— нормальные моды орторомбического искажения октаэдров ($Mn^{3+}O_6$) ($l_{x(i)}, l_{y(i)}, l_{z(i)}$ — длины связей Mn–О вдоль соответствующих осей); индексы «+» и «-» соответствуют основному (заполненная орбиталь) и возбужденному (пустая орбиталь) состояниям.

В случае манганитов CaCu_xMn_{7-x}O₁₂ с ромбоэдрической структурой ($R\bar{3}$) катионы (Mn^{3+})_{9d} занимают в псевдокубической элементарной ячейке три эквивалентные позиции, обозначенные на рис. 8а как А, В, С. Воспользовавшись известными из литературы структурными данными для составов $0 \le x \le 0.38$ [18–20], мы рассчитали моды $Q_{3(i)}$ и $Q_{2(i)}$, с помощью которых для каждой *i*-й позиции были определены значения углов ϕ_i , а также параметры дисторси
и $\sigma_{0(i)}=(Q^2_{3(i)}\ +\ Q^2_{2(i)})^{1/2},$ характеризующие степень искажения октаэдров (MnO₆). Полученные таким образом значения ϕ_i и $\sigma_{0(i)}$ представлены в виде полярной диаграммы (рис. 86), из которой видно, что для составов $0 \le x \le 0.3$ основной вклад в заполненные состояния «+» дают атомные орбитали:

$$|\phi_A\rangle \propto |x^2 - y^2\rangle, \quad |\phi_B\rangle \propto |z^2 - x^2\rangle, \quad |\phi_C\rangle \propto |y^2 - z^2\rangle,$$

согласуясь тем самым с локальной симметрией «сжатых» октаэдров ($Mn^{3+}O_6$). Увеличение содержания катионов Cu^{2+} (увеличение концентрации Mn^{4+} в октаэдрической подрешетке) практически не сказывается на характере тетрагонального искажения полиэдров ($Mn^{3+}O_6$), но вызывает существенное понижение степени тетрагонального искажения (σ_0) (рис. 8δ), вызванного эффектом Яна – Теллера. Энергия ян-теллеровской стабилизации (ε_{JT}) может быть оценена с помощью следующего выражения [25–27]:

$$\varepsilon_{JT} \approx \frac{2e}{7} \sqrt{\frac{5}{\pi}} A_{20} \langle r^2 \rangle_{3d},$$
 (3)

где $\langle r^2 \rangle_{3d}$ — среднее значение квадрата расстояния от электрона до ядра для 3d-орбиталей $(\langle r^2 \rangle_{3d}(\mathrm{Mn}^{3+}) = 0.3535 \,\mathrm{\AA}^2), A_{20}$ — разность радиальных интегралов второго порядка [25–27].

Как уже было отмечено, изовалентное замещение $Fe^{3+} \rightarrow Mn^{3+}$ в решетках оксидов $CaCu_xMn_{7-x}O_{12}$, обладающих определенной «жесткостью», не приводит к восстановлению кубической симметрии полиэдров ($Fe^{3+}O_6$), оставляя тем самым $x^2 - y^2$ - и z^2 -орбитали Fe^{3+} невырожденными.

Входящий в уравнение (3) параметр A_{20} может быть независимо оценен из модуля $|V_{ZZ}|$ главной компоненты тензора ГЭП, которая, как было показано выше, определяется в основном степенью тетрагонального искажения октаэдров (FeO₆):

$$|V_{ZZ}| \approx \left|\sum_{i} \frac{Z_i (3\cos^2\theta_i - 1)}{R_i^3}\right| = \sqrt{\frac{5}{\pi}} A_{20}, \quad (4)$$

где R_i — расстояние (Fe–O_(i)) в полиэдре (FeO₆), Z_i — заряд анионов кислорода (принимался равным формальному заряду –2), θ_i — полярный угол, определяющий положение *i*-го аниона O²⁻ в локальной системе ГЭП, в которой ось Z совпадает с осью тетрагонального искажения октаэдров (MnO₆).

Несмотря на приближенный характер этого уравнения, его использование в комбинации с выражением (1) позволяет из экспериментальной величины расщепления Δ_1^{exp} провести оценочные расчеты энергии ε_{JT} , получая тем самым информацию о характере изменения энергетики ян-теллеровской стабилизации катионов Mn^{3+} при вариации состава манганитов. На рис. 3, наряду с экспериментальными значениями $\Delta_{1,2}^{exp}$, отложены рассчитанные с помощью (1) и (4) значения энергий ε_{JT} для катионов Mn^{3+} в октаэдрической подрешетке $CaCu_xMn_{7-x}O_{12}$ (0 $\leq x \leq 1$).

Для того чтобы убедиться в реалистичности проводимых выше оценочных расчетов, мы воспользовались ранее полученными результатами мессбауэровского исследования допированного манганита LaMn_{0.99}⁵⁷Fe_{0.01}O₃ [28], для которого величина квадрупольного расщепления спектров зондовых катионов ⁵⁷Fe³⁺ составляет $\Delta \approx 1.09$ мм/с (при T == 300 K). С помощью уравнений (1) и (4) была рассчитана энергия ян-теллеровской стабилизации $\varepsilon_{JT}^{MS} \approx 0.69$ эВ. С другой стороны, эта же энергия может быть рассчитана в приближении «среднего поля» [1,29,30]:

$$\varepsilon_{JT}^{MF} = 2\lambda \sqrt{Q_2^2 + Q_3^2} = 2\lambda \sigma_{JT}, \qquad (5)$$

где σ_{JT} — амплитуда ЯТ-деформации, λ — постоянная ЯТ-взаимодействия. Известно, что манганит LaMnO₃ (при $T < T_{JT}$) имеет упорядоченную x^2/y^2 — орбитальную структуру с величиной амплитуды ЯТ-деформации полиэдров (Mn³⁺O₆) $\sigma_{JT} =$ = 0.432 Å [29]. В работе [29] было также рассчитано значение константы $\lambda = 0.73$. Подставляя значения этих параметров в уравнение (5), получаем оценку энергии $\varepsilon_{JT}^{MF} \approx 0.69$ эВ, которая находится в хорошем согласии с аналогичной величиной ε_{JT}^{MS} , определенной из мессбауэровских данных. Полученный результат ни в коей мере не означает, что зондовая мессбауэровская спектроскопия способна заменить традиционные экспериментальные методы определения ε_{JT} , например, оптическую спектроскопию. Однако можно с определенной уверенностью утверждать, что комбинированное использование структурных и мессбауэровских данных в ряде случаев оказывается полезным для получения информации о динамике локальной электронной структуры исследуемых фаз.

Воспользовавшись экспериментальными значениями квадрупольных расщеплений Δ_1^{exp} парциальных спектров Fe(1) для ромбоэдрических фаз ${\rm CaMn}_{6.96}{
m Fe}_{0.04}{
m O}_{12}$ (Δ_1^{exp} = 0.59(1) мм/с) и ${
m CaCu}_{0.1}{
m Mn}_{6.86}{
m Fe}_{0.04}{
m O}_{12}$ ($\Delta_1^{exp}=0.52(1)$ мм/с), мы рассчитали значения энергий ЯТ-стабилизации для катионов марганца Mn^{3+} в полиэдрах (MnO_6): ε_{JT}^{MS} (x = 0) = 0.37 эВ и ε_{JT}^{MS} (x = 0.1) = 0.33 эВ. Далее, используя структурные данные для этих же составов CaMn₇O₁₂ ($\sigma_{JT} = 0.302$ Å) и CaCu_{0.1}Mn_{6.9}O₁₂ $(\sigma_{JT} = 0.265 \text{ Å}),$ а также принимая $\varepsilon_{JT}^{MS} \approx \varepsilon_{JT}^{MF},$ из уравнения (5) мы рассчитали константы ЯТ-взаимодействия (γ) , оказавшиеся для обоих составов, в пределах ошибки вычисления, равными друг другу. Полученное значение $\lambda = 0.62$ соответствует случаю так называемых средних по силе электрон-решеточных взаимодействий, при которых электронный перенос $Mn^{3+} \leftrightarrow Mn^{4+}$ существенно замедлен и носит явно активационный характер [29]. Частота электронных перескоков ω_h (= τ_h^{-1}), прямо пропорциональная интегралу переноса (t_{σ}) в цепочках Mn³⁺–O–Mn⁴⁺, будет определяться как геометрией цепочек Mn–O–Mn (ϑ , $r_{\rm Mn–O}$), так и параметрами электрон-решеточных взаимодействий $(\lambda, \varepsilon_{JT})$:

$$\omega_h = t_\sigma / \hbar \propto \frac{\cos\vartheta}{r_{\rm Mn-O}^{7/2}} \exp\left(-\frac{\lambda\varepsilon_{JT}}{\hbar\omega_0}\right), \qquad (6)$$

где $r_{\rm Mn-O}$ и ϑ — среднее расстояние $\langle {\rm Mn-O} \rangle$ и угол в цепочках Mn–O–Mn, ω_0 — оптическая частота фононного спектра колебаний. Согласно литературным данным [18–20], в ряду манганитов СаСu_xMn_{7-x}O₁₂ оба структурных параметра ϑ и $r_{\rm Mn-O}$ остаются практически неизменными. Поэтому в качестве основной причины изменения с составом манганитов частоты ω_h можно считать уменьшение (при $x \to 0.4$) значений энергии ε_{JT} (рис. 3), а также константы ЯТ-взаимодействия $\lambda \propto \varepsilon_{JT}/t_{\sigma}$ [29]. В области составов $0 \leq x \leq 0.3$ период электронного обмена ($\tau_h \propto \omega_h^{-1}$) превышает характеристическое время мессбауэровских измерений τ_{MS} (составляющий примерно 10^{-9} – 10^{-8} с). Это означает, что зондовые катионы ⁵⁷Fe³⁺ «чув-

Рис. 9. Зависимости логарифмов температур магнитного (T_N, T_C) , зарядового (T_{CO}) упорядочений и энергии янтеллеровской стабилизации (ε_{JT}) от состава (x) манганитов $\operatorname{CaCu}_x \operatorname{Mn}_{6.96-x}^{57} \operatorname{Fe}_{0.04} \operatorname{O}_{12}$

ствуют» в своем ближайшем окружении различные конфигурации из катионов Mn³⁺ и Mn⁴⁺ (присутствие в спектре двух парциальных компонент Fe(1) и Fe(2), см. рис. 2). Напротив, начиная с состава $x > 0.3 \ (\varepsilon_{JT} \rightarrow 0)$, увеличение частоты ω_h приводит к неравенству $\omega_h^{-1} < \tau_{MS}$, что с точки зрения зондовых катионов Fe³⁺ означает «усреднение» электронного состояния катионов марганца в октаэдрической подрешетке (появление единственной компоненты в мессбауэровском спектре, рис. 2). Если считать, что ЯТ-стабилизация (ε_{JT}) катионов Mn³⁺ является одним из определяющих факторов, оказывающих заметное влияние на зарядовое упорядочение Mn^{3+}/Mn^{4+} , то следует ожидать выполнения условия $k_B T_{CO} \propto \varepsilon_{JT}$. Косвенным подтверждением этого могут служить полученные нами экспериментальные зависимости $\ln(T_{CO}(x))$ и $\ln(\varepsilon_{JT}(x))$ (рис. 9) с очень близкими значениями угловых коэффициентов $d \ln(T_{CO}(x))/dx \approx -0.8$ и $d\ln(\varepsilon_{JT}(x))/dx \approx -0.9.$

Если принять, что энергия ян-теллеровской стабилизации ε_{JT} является одним из основных факторов, влияющих на частоту электронных прыжков Mn³⁺ \leftrightarrow Mn⁴⁺, а также воспользоваться результатами настоящей работы $\omega_h < \tau_{MS}^{-1}$ для составов $0 \le x \le 0.3$ ($\varepsilon_{JT} \approx 0.35$) и $\omega_h > \tau_{MS}^{-1}$ для $0.3 < x \le 1.0$ ($\varepsilon_{JT} \approx 0$), то можно провести оценку диапазона частот электронного обмена $\omega_h \approx \tau_{MS}^{-1} \exp(-\lambda \varepsilon_{JT}/\hbar \omega_0) \approx 10^{8} - 10^{10} \text{ c}^{-1}$ (при $\lambda = 0.62$ и $\hbar \omega_0 = 8 \cdot 10^{-2}$ эВ). Результаты этих оценок по порядку величины согласуются с частотой $\omega_h = 10^{8} - 10^{9} \text{ c}^{-1}$, полученной методом ЯМР на ядрах ¹³⁹La манганита LaMnO₃ [31].

Одним из наиболее важных результатов является то, что в области температур зарядового упорядочения манганитов, имеющих состав $0 \le x \le 0.3$, зондовые катионы Fe³⁺ занимают в их структуре две кристаллографические позиции. Параметры сверхтонких взаимодействий зондовых атомов в этих позициях качественно согласуются с геометрией локального окружения разновалентных катионов марганца в полиэдрах (MnO₆). Данный результат полностью противоречит данным мессбауэровских исследований легированных манганитов $R_{1-x}A_{x}Mn_{0.99}{}^{57}Fe_{0.01}O_{3}$ (R = P39; A = Ca, Sr) [32-34], согласно которым при всех температурах, включая область $T < T_{CO}$, зондовые ионы Fe^{3+} находятся в эквивалентном кристаллографическом окружении.

Возможная причина разногласия мессбауэровских данных для двух схожих по своей структуре семейств манганитов может быть связана с различиями электронного состояния катионов марганца в области температур «зарядового упорядочения». Мы предполагаем, что зондовые катионы Fe³⁺, оказавшиеся в подрешетках марганца с различным характером зарядового упорядочения, будут иметь неодинаковое локальное окружение, по-разному проявляющееся в мессбауэровских спектрах. Как уже было отмечено, один из подходов к описанию электронного состояния марганцевой подрешетки при $T < T_{CO}$ основывается на предположении об образовании упорядоченных поляронов Зинера $Mn^{(3+\eta)+}-O-Mn^{(3+\eta')+}$ [4, 5, 9–11], в которых между катионами марганца происходит быстрый электронный обмен. Из-за существенного различия в энергиях е_д-орбиталей катионов марганца и железа последние не смогут принимать участия в двойном электронном обмене Зинера Fe^{3+} + Mn^{4+} \leftrightarrow Fe^{4+} + Mn^{3+} (равновесие в этом процессе сильно смещено влево). В этом случае замещение катионами железа любого из двух образующих димер $Mn^{(3+\eta)+}-O-Mn^{(3+\eta')+}$ катионов марганца будет приводить к одинаковому с точки зрения зондовых катионов Fe³⁺ локальному окружению (рис. 1а), проявляясь в виде единственной компоненты в их мессбауэровском спектре. Подобное поведение атомов ⁵⁷Fe можно предположить для манганитов $R_{1-x}A_xMn_{0.99}Fe_{0.01}O_3$ (R = P3Э; A = Ca, Sr) [32–34].

В случае же, когда зондовые катионы железа замещают марганец в подрешетке, образованной в результате упорядоченного распределения индивидуальных валентных состояний Mn³⁺ и Mn⁴⁺, как это предполагается в «ионной» модели зарядового упорядочения, в мессбауэровских спектрах будут присутствовать две компоненты: $Fe(1) (\rightarrow Mn^{3+})$ и Fe(2) (\rightarrow Mn⁴⁺) (рис. 1*б*), что, по-видимому, соответствует случаю ромбоэдрической структуры двойных манганитов $CaCu_x Mn_{6.96-x} {}^{57}Fe_{0.04}O_{12}$ (0 \leq $\leq x \leq 0.3$). Таким образом, основываясь на анализе мессбауэровских данных, демонстрирующих различное поведение зондовых атомов ⁵⁷Fe в манганитах $CaCu_xMn_{7-x}O_{12}$ и $R_{1-x}A_xMnO_3$, можно предположить принципиально разный характер электронной структуры подрешеток марганца в области температур зарядового упорядочения.

5. ВЫВОДЫ

Методом мессбауэровской спектроскопии на ядрах зондовых атомов ⁵⁷Fe получены новые ланные 0 локальной кристаллографической и магнитной структурах двойных манганитов $CaCu_xMn_{6.96-x}Fe_{0.04}O_{12}$ (0 $\leq x \leq 1$), специфика которых непосредственно связана с особенностями механизмов зарядового упорядочения в 3*d*-электронной подсистеме этих оксидов. Представленные конкретные результаты демонстрируют ниже высокую эффективность и перспективность дальнейшего использования зондовых мессбауэровских нуклидов ⁵⁷Fe для исследования как локальных, так и кооперативных электронных явлений в сильнокоррелированных соединениях переходных металлов.

1. Для манганитов составов $0 \le x \le 0.3$ показано, что ниже температуры зарядового упорядочения (T_{CO}) зондовые катионы Fe^{3+} занимают в ромбоэдрической структуре $(R\bar{3})$ две кристаллографически неэквивалентные позиции, указывая на образование при $T < T_{CO}$ разновалентных состояний Mn^{3+} и Mn^{4+} . Параметры сверхтонких взаимодействий зондовых катионов Fe^{3+} в этих позициях согласуются с симметрией локального окружения разновалентных катионов марганца в октаэдрах ($\mathrm{Mn}^{3+}\mathrm{O}_6$) и ($\mathrm{Mn}^{4+}\mathrm{O}_6$).

2. Предложено качественное объяснение неодинакового поведения зондовых атомов ⁵⁷Fe в двойных манганитах $CaCu_xMn_{7-x}O_{12}$ и ранее исследованных манганитах $R_{1-x}A_xMnO_3$ (R = P3Э; A = Ca, Sr). В случае двойных манганитов поведение зондовых атомов согласуется с моделью зарядового упорядочения катионов Mn^{3+}/Mn^{4+} , образующих два типа кристаллографических позиций в октаэдрической подрешетке. Напротив, в случае $R_{1-x}A_xMnO_3$ зондовые катионы Fe^{3+} занимают один тип позиций согласно модели поляронов Зинера.

3. Анализ экспериментальных значений квадрупольного расщепления парциальных мессбауэровских спектров исследованных манганитов позволил получить информацию о характере изменения энергии ян-теллеровской стабилизации (ε_{JT}) катионов марганца в полиэдрах ($\mathrm{Mn^{3+}O_6}$) при вариации состава ($d\ln(\varepsilon_{JT}(x))/dx \approx -0.9$). Полученные результаты свидетельствуют о важной роли электрон-решеточных взаимодействий, влияющих как на динамику электронного переноса $\mathrm{Mn^{3+}} \leftrightarrow \mathrm{Mn^{4+}}$, так и на значение температуры T_{CO} , которая уменьшается ($d\ln(T_{CO}(x))/dx \approx -0.8$) при $x \to 0.4$.

4. Установлено, что для манганитов составов $0 \le \le x \le 0.15$ в области температур $T \approx T_{CO}$ структурного фазового перехода $R\bar{3} \leftrightarrow Im\bar{3}$ с ростом температуры происходит «зарождение» и постепенное увеличение содержания кубической фазы $(Im\bar{3})$, в которой за счет электронных прыжков $Mn^{3+} \leftrightarrow Mn^{4+}$ все позиции в октаэдрической подрешетке становятся эквивалентными. По мере увеличения содержания меди (x) температура фазового перехода T_{CO} уменьшается. Начиная с состава $x \ge 0.4$, стабилизируется лишь кубическая фаза.

Финансирование. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 18-33-20214).

ЛИТЕРАТУРА

- **1**. В. М. Локтев, Ю. Г. Погорелов, ФНТ **26**, 231 (2000).
- C. N. R. Rao, A. Arulraj, P. N. Santosh et al., Chem. Mater. 10, 2714 (1998).
- 3. C. N. R. Rao, J. Phys. Chem. B 104, 5877 (2000).
- D. V. Efremov, J. van den Brink, and D. I. Khomskii, Physica B 359–361, 1433 (2005).
- D. V. Efremov, J. van den Brink, and D. I. Khomskii, Nature Mater. 3, 853 (2004).
- 6. J. B. Goodenough, Phys. Rev. 100, 564 (1955).
- E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

- J. García, M. C. Sánchez, J. Blasco et al., J. Phys.: Condens. Matter 13, 3243 (2001).
- J. Rodríguez-Carvajal, A. Daoud-Aladine, L. Pinsard-Gaudart et al., Physica B 320, 1 (2002).
- A. Daoud-Aladine, J. Rodríguez-Carvajal, L. Pinsard-Gaudart et al., Phys. Rev. Lett. 89, 097205 (2002).
- A. Daoud-Aladine, C. Perca, L. Pinsard-Gaudart et al., Phys. Rev. Lett. 101, 166404 (2008).
- A. Trokiner, A. Yakubovskii, S. Verkhovskii et al., Phys. Rev. B 74, 092403 (2006).
- 13. А. Н. Васильев, О. С. Волкова, ФНТ 33, 1181 (2007).
- 14. I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina et al., Sol. St. Commun. 142, 509 (2007).
- 15. I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina et al., Phys. Rev. B 76, 214407 (2007).
- B. Bochu, J. L. Buevoz, J. Chenavas et al., Sol. St. Commun. 36, 133 (1980).
- И. О. Троянчук, А. Н. Чобот, Кристаллография 42, 1058 (1997).
- R. Przenioslo, I. Sosnowska, D. Hohlwein et al., Sol. St. Commun. 111, 687 (1999).
- W. Sławinski, R. Przeniosło, I. Sosnowska et al., J. Sol. St. Chem. **179**, 2443 (2006).
- 20. R. Przeniosło, I. Sosnowska, W. Van Beek et al., J. Alloys Comp. 362, 218 (2004).
- M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).
- 22. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1622, 40 (2014).
- A. V. Sobolev, V. S. Rusakov, A. S. Moskvin et al., J. Phys.: Condens. Matter. 29, 275803 (2017).
- 24. J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 77, 172409 (2008).
- Z. Cheng, Z. Wang, N. Di et al., Appl. Phys. Lett. 83, 1587 (2003).
- 26. E. K Abdel-Khalek, W. M. EL-Meligy, E. A. Mohamed et al., J. Phys.: Condens. Matter 21, 026003 (2009).
- 27. X. Ma, Z. Kou, N. Di et al., Phys. Stat. Sol. 241(b), 3029 (2004).

- 28. M. Pissas and A. Simopoulos, J. Phys.: Condens. Matter. 16, 7419 (2004).
- 29. J.-S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 96, 247202 (2006).
- 30. F. Rivadulla, M. Otero-Leal, A. Espinosa et al., Phys. Rev. Lett. 96, 016402 (2006).
- 31. A. Trokiner, S. Verkhovskii, A. Gerashenko et al., Phys. Rev. B 87, 125142 (2013).
- 32. M. Pissas, G. Papavassiliou, E. Devlin et al., Eur. Phys. J. B 47, 221 (2005).
- 33. A. Simopoulos, M. Pissas, G. Kallias et al., Phys. Rev. B 59, 1263 (1999).
- 34. J. M. Barandiaran, J. M. Greneche, T. Hernandez et al., J. Phys.: Condens. Matter. 14, 12563 (2002).