ИЗВЛЕЧЕНИЕ ИЗОСКАЛЯРНОГО И ИЗОВЕКТОРНОГО ФОРМФАКТОРОВ КАОНОВ ИЗ ДАННЫХ ПО e^+e^- -АННИГИЛЯЦИИ И РАСПАДАМ au-ЛЕПТОНА

К. И. Белобородов^{*}, В. П. Дружинин, С. И. Середняков

Институт ядерной физики им. Г. И. Будкера Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 31 января 2019 г., после переработки 5 апреля 2019 г. Принята к публикации 9 апреля 2019 г.

Недавние точные измерения сечений процессов $e^+e^- \to K_S K_L$ и $e^+e^- \to K^+ K^-$ и адронной спектральной функции в распаде $\tau^- \to K^- K_S \nu_{\tau}$ используются для модельно независимого извлечения изоскалярного и изовекторного электромагнитных формфакторов каона и относительной фазы между ними. Экспериментальные результаты сравниваются с аппроксимацией, сделанной в модели векторной доминантности.

DOI: 10.1134/S0044451019090086

Электромагнитные формфакторы каона являются ключевыми объектами в физике адронов, описывающими электромагнитное взаимодействие каонов и дающими важную информацию об их внутренней структуре.

В области времениподобных передач импульса формфакторы обычно извлекают из экспериментальных данных о реакциях $e^+e^- \rightarrow K_S K_L$ и $e^+e^- \rightarrow K^+K^-$. В резонансной области, которую мы обсуждаем в этой статье, при энергиях в центре масс \sqrt{s} < 2 ГэВ значительное улучшение точности данных по этим сечениям было достигнуто в недавних измерениях в экспериментах ВАВАЯ [1,2], СНД [3] и КМД-3 [4,5]. Детектором BABAR были измерены сечения процессов $e^+e^- \rightarrow$ $\rightarrow K^+K^-$ и $e^+e^ \rightarrow K_SK_L,$ используя метод радиационного возврата при энергиях соответственно $\sqrt{s} = 0.98-4.85$ ГэВ и $\sqrt{s} = 1.08-2.16$ ГэВ. В экспериментах СНД и КМД-3 использовалось прямое сканирование по энергии в системе центра масс. С помощью детектора КМД-3 были изучены оба процесса в области энергии вблизи пика резонанса $\phi(1020)$, а с помощью детектора СНД измерено сечеБорновские сечения рождения K^+K^- - и K_SK_L -пар параметризуются в терминах формфакторов заряженного и нейтрального каонов следующим образом:

$$\sigma_{K^+K^-}(s) = \frac{\pi \alpha^2 \beta^3}{3s} \left| F_{K+} \right|^2 C_{FS}(s), \qquad (1)$$

$$\sigma_{K_S K_L}(s) = \frac{\pi \alpha^2 \beta^3}{3s} \left| F_{K^0} \right|^2, \qquad (2)$$

где $\beta = \sqrt{1 - 4m_{K^{-}(0)}^2/s}$, а m_{K^-} и m_{K^0} — массы заряженного и нейтрального каонов для уравнений (1) и (2) соответственно. Коэффициент C_{FS} — это поправка, учитывающая излучение каонов и взаимодействие в конечном состоянии (см., например, работу [6]). Она существенно отклоняется от единицы только в узком интервале вблизи порога рождения K^+K^- -пары. Формфакторы F_{K^+} и F_{K^0} могут быть представлены как суммы изоскалярной и изовекторной частей:

$$F_{K^+} = F_{K^+}^{I=1} + F_{K^+}^{I=0}, (3)$$

$$F_{K^0} = F_{K^0}^{I=1} + F_{K^0}^{I=0}.$$
 (4)

ние $e^+e^- \to K^+K^-$ в диапазоне $\sqrt{s} = 1.05$ –2.00 ГэВ. В ближайшее время ожидаются новые результаты экспериментов СНД и КМД-3.

^{*} E-mail: K.I.Beloborodov@inp.nsk.su

Изоспиновая инвариантность дает следующие соотношения между амплитудами для заряженных и нейтральных каонов [7]:

$$F_{K^0}^{I=0} = F_{K^+}^{I=0}, (5)$$

$$F_{K^0}^{I=1} = -F_{K^+}^{I=1}. (6)$$

С учетом этих соотношений сечения, пропорциональные квадратам модулей заряженного и нейтрального формфакторов, могут быть выражены через изовекторный и изоскалярный формфакторы $F_{K+}^{I=0}$ и $F_{K+}^{I=1}$:

$$|F_{K^{+}}|^{2} = |F_{K^{+}}^{I=1}|^{2} + 2|F_{K^{+}}^{I=1}||F_{K^{+}}^{I=0}|\cos(\Delta\phi_{K^{+}}) + |F_{K^{+}}^{I=0}|^{2}, \quad (7)$$
$$|F_{K^{0}}|^{2} = |F_{K^{+}}^{I=1}|^{2} - 2|F_{K^{+}}^{I=1}||F_{K^{+}}^{I=0}|\cos(\Delta\phi_{K^{+}}) + |F_{K^{+}}^{I=0}|^{2}, \quad (8)$$

где $\Delta \phi_{K^+} = \phi_{K^+}^{I=1} - \phi_{K^+}^{I=0}$ — относительная фаза между изоскалярным и изовекторным формфакторами. Видно, что данные о сечениях $e^+e^- \to K_S K_L$ и $e^+e^- \to K^+K^-$ не позволяют разделить изовекторный и изоскалярный вклады модельно независимым способом. Дополнительная экспериментальная информация может быть получена из распада $\tau^- \to K^- K^0 \nu_{\tau}$ с использованием гипотезы сохранения векторного тока (CBT). Недавно прецизионное измерение адронного спектра в этом распаде было выполнено в эксперименте BABAR [8].

Дифференциальная вероятность распада $\tau^- \to K^- K^0 \nu_{\tau}$, нормированная на его лептонную ширину, как функция инвариантной массы M системы $K^- K^0$ может быть записана следующим образом:

$$\frac{d\mathcal{B}(\tau^- \to K^- K^0 \nu_{\tau})}{\mathcal{B}(\tau^- \to \mu^- \bar{\nu_{\mu}} \nu_{\tau}) M dM} = \frac{|V_{ud}|^2 S_{EW}}{2m_{\tau}^2} \times \left(1 + \frac{2M^2}{m_{\tau}^2}\right) \left(1 - \frac{M^2}{m_{\tau}^2}\right)^2 \beta_-^3 |F_{K^- K^0}(M)|^2, \quad (9)$$

где $|V_{ud}| = 0.97420 \pm 0.00021$ [9] — элемент матрицы Кабиббо – Кобаяши – Маскава, $S_{EW} = 1.0235 \pm 0.003$ [10] — электрослабая поправка,

$$\beta_{-} = \sqrt{\left(1 - \frac{(m_{K^{-}} + m_{K^{0}})^{2}}{M^{2}}\right) \left(1 - \frac{(m_{K^{-}} - m_{K^{0}})^{2}}{M^{2}}\right)}.$$

Здесь мы вводим формфактор $F_{K^-K^0}$. Гипотеза СВТ в пределе изоспиновой инвариантности дает связь между этим формфактором и изовекторным электромагнитным формфактором, определенным выше [7]:

$$F_{K^-K^0} = -2F_{K^+}^{I=1}. (10)$$

Для распада $\tau^- \to \pi^- \pi^0 \nu_{\tau}$ было проверено, что гипотеза CBT работает с точностью до нескольких процентов без дополнительных поправок на нарушение изоспиновой симметрии [11].

Таким образом, используя данные по сечениям процессов $e^+e^- \to K_S K_L$ и $e^+e^- \to K^+K^-$ и адронной спектральной функции в распаде $\tau^- \to$ $\to K^-K^0\nu_{\tau}$, мы можем разделить изоскалярные и изовекторные вклады и определить модули изоскалярных и изовекторных формфакторов и косинус относительной фазы между ними:

$$|F_{K^+}^{I=1}|^2 = 4|F_{K^-K^0}|^2,$$

$$|F_{K^+}^{I=0}|^2 = \frac{|F_{K^+}|^2 + |F_{K^0}|^2}{2} - |F_{K^+}^{I=1}|^2,$$

$$\cos(\Delta\phi_{K^+}) = \frac{|F_{K^+}|^2 - |F_{K^0}|^2}{2|F_{K^+}^{I=1}||F_{K^+}^{I=0}|}.$$
(11)

Квадрат изовекторного формфактора каона, полученный с использованием уравнений (9), (10) из адронного спектра, измеренного в распаде $\tau^- \rightarrow$ $\rightarrow K^- K^0 \nu_{\tau}$ [8], показан на рис. 1*a*. Измерение охватывает энергетическую область от $m_{K^-} + m_{K^0}$ до m_{τ} . Эту область можно разделить на две подобласти, ниже и выше 1.06 ГэВ, где данные следует обрабатывать по-разному. Ниже 1.06 ГэВ изоскалярный формфактор содержит резонанс $\phi(1020)$, ширина которого значительно меньше ширины шага по энергии на рис. 16. Выше 1.06 ГэВ возбужденные векторные резонансы, дающие вклад в формфакторы, имеют ширину около нескольких сотен МэВ. Поэтому мы можем использовать уравнения (11) для расчета формфакторов в каждом интервале энергии измерения без существенной потери информации об их энергетической зависимости.

Формфакторы заряженного и нейтрального каонов выше 1,06 ГэВ показаны на рис. 16. Нейтральный формфактор был получен с использованием самых точных и полных на сегодняшний день данных о сечении процесса $e^+e^- \rightarrow K_S K_L$ из эксперимента BABAR [2]. Шаг энергии в измерениях сечения $e^+e^- \rightarrow K_S K_L$ и спектра в распаде τ одинаков от 1.06 до 1.54 ГэВ и составляет 40 МэВ. В диапазоне 1.54–1.78 ГэВ, соответствующем двум последним широким интервалам в данных по распаду τ , сечение усредняется по трем интервалам измерения. Для получения заряженного формфактора использовались данные BABAR по сечению процесса $e^+e^- \to K^+K^-$ [1]. Измерение этого сечения детектором СНД [3] в диапазоне 1.05–2.00 ГэВ, имеющее такую же точность, хорошо согласуется с данными BABAR. Следует отметить, что точность сечения

Рис. 1. *a*) Квадрат изовекторного формфактора каона, полученный из дифференциальной вероятности распада $\tau^- \to K^- K^0 \nu_{\tau}$ [8], как функция \sqrt{s} . *б*) Зависимости от \sqrt{s} квадратов заряженного (светлые кружки) и нейтрального (темные кружки) формфакторов каонов, полученных из данных по сечениям процессов $e^+e^- \to K^+K^-$ [1] и $e^+e^- \to K_S K_L$ [2] соответственно. На рис. *a*, *б* сплошные кривые — результаты аппроксимации (модель II), описанной в тексте. Пунктирная кривая на рис. *a* показывает вклад резонанса $\rho(770)$

 $e^+e^- \to K^+K^-$ значительно выше, чем точность измерений сечения $e^+e^- \to K_S K_L$ и спектра распада τ . В изучаемой энергетической области шаг энергии в измерении сечения $e^+e^- \to K^+K^-$ составляет 20 МэВ. Следовательно, в дальнейших вычислениях данные по сечению $e^+e^- \to K^+K^-$ усредняются по двум интервалам измерения в диапазоне энергий от 1.06 до 1.54 ГэВ и по шести интервалам в диапазоне от 1.54 до 1.78 ГэВ.

Изоскалярный формфактор каона и косинус относительной фазы между изоскалярным и изовекторным формфакторами, вычисленные с использованием уравнений (11) из данных по сечениям $e^+e^- \to K\bar{K}$ и адронному спектру в распаде $\tau^- \to$ $\to K^- K^0 \nu_{\tau}$, показаны на рис. 2.

Как изоскалярный, так и изовекторный формфакторы монотонно уменьшаются в диапазоне энергии ниже 1.4 ГэВ. Это означает, что большой вклад в формфакторы дают хвосты резонанса $\rho(770)$ в изовекторном случае и $\omega(782)$ и $\phi(1020)$ в изоскалярном случае. Ожидается, что последние два вклада будут конструктивно интерферировать [7], делая изоскалярный формфактор значительно большим, чем изовекторный. Неожиданной особенностью формфакторов является почти постоянная, близкая к нулю разность фаз между изовекторным и изоскалярным формфакторами в диапазоне энергий от 1.06 до 1.5 ГэВ. Ожидается, что в этой области вклад в формфакторы дают резонансы $\rho(1450)$ и $\omega(1420)$, которые интерферируют с сильно разными по величине изовекторной амплитудой от $\rho(770)$ и изоскалярной амплитудой от $\omega(782) + \phi(1020)$. Выше 1.5 ГэВ резонансные структуры, связанные с состояниями $\rho(1700)$, $\omega(1650)$ и $\phi(1680)$, видны как в энергетических зависимостях квадратов модулей формфакторов, так и в разности фаз.

Вторая часть этой статьи посвящена одновременной аппроксимации данных по рождению каонных пар в e^+e^- -аннигиляции и распадах τ в рамках модели векторной доминантности (МВД), в предположении изоспиновой инвариантности и СВТ. В этой модели амплитуда однофотонного перехода $A_{\gamma^* \to K\bar{K}}$ описывается как сумма амплитуд векторных резонансов семейств ρ, ω и ϕ .

Сечения заряженного и нейтрального каонов определяются формулами (1) и (2). Для описания заряженного и нейтрального формфакторов мы используем параметризацию из работы [7]:

$$\begin{aligned} F_{K^{+}}(s) &= \frac{1}{2} \sum_{V=\rho,\rho',\dots} c_{V} B W_{V} + \\ &+ \frac{1}{6} \sum_{V=\omega,\omega',\dots} c_{V} B W_{V} + \frac{1}{3} \sum_{V=\phi,\phi',\dots} c_{V} B W_{V}, \quad (12) \\ F_{K^{0}}(s) &= -\frac{1}{2} \sum_{V=\rho,\rho',\dots} c_{V} B W_{V} + \\ &+ \frac{1}{6} \sum_{V=\omega,\omega',\dots} c_{V} B W_{V} + \frac{1}{3} \sum_{V=\phi,\phi',\dots} c_{V} B W_{V}, \quad (13) \end{aligned}$$

Рис. 2. *а*) Квадрат изоскалярного формфактора как функция \sqrt{s} , вычисленный с использованием уравнений (11) из данных по сечениям процесса $e^+e^- \to K\bar{K}$ и адронному спектру в распаде $\tau^- \to K^- K^0 \nu_{\tau}$. Сплошная кривая — результат аппроксимации (модель II), описанной в тексте. Пунктирная кривая показывает вклад резонансов $\omega(782)$ и $\phi(1020)$. *б*) Зависимость от \sqrt{s} косинуса относительной фазы между изоскалярным и изовекторным формфакторами, вычисленного с использованием уравнений (11) из данных по сечениям процесса $e^+e^- \to K\bar{K}$ и адронному спектру в распаде $\tau^- \to K^- K^0 \nu_{\tau}$. Штриховые и сплошные кривые — результаты аппроксимации в моделях соответственно I и II, описанных в тексте

где суммы берутся по резонансам семейств ρ , ω или ϕ , а коэффициенты c_V действительны. В аппроксимации участвуют данные по сечениям из энергетического диапазона ниже 2.1 ГэВ. Следующие резонансы включены в аппроксимацию: $\rho(770)$, $\rho(1450)$, $\rho(1700)$ и $\rho(2150)$, обозначаемые как ρ , ρ' , ρ'' и ρ''' соответственно, $\omega(782)$, $\omega(1420)$, $\omega(1680)$ и $\omega(2150)$, обозначаемые как ω , ω'' и ω''' соответственно, и $\phi(1020)$, $\phi(1680)$ и $\phi(2170)$, обозначаемые как ϕ , ϕ' и ϕ'' соответственно. Резонансы ρ''' , ω''' и ϕ'' необходимы для описания измеренных энергетических зависимостей сечений выше 1.9 ГэВ. Партнер резонанса $\rho(2150)$ из семейства ω пока не наблюдался. Он вводится в аппроксимацию с массой и шириной такими же, как у $\rho(2150)$.

Формы резонансов описываются функцией Брейта – Вигнера

$$BW_V(s) = \frac{M_V^2}{M_V^2 - s - iM_V\Gamma_V(s)},$$
 (14)

где M_V и $\Gamma_V(s)$ — масса резонанса и его ширина, зависящая от энергии. В ширинах для ω - и ϕ -мезонов учитываются все значимые моды их распада: $\pi^+\pi^-\pi^0, \pi^0\gamma, \pi^+\pi^-$ для $\omega, K^+K^-, K_SK_L, \pi^+\pi^-\pi^0,$ $\eta\gamma$ для ϕ . Для $\rho(770)$ мы учитываем основной распад $\pi^+\pi^-$ и переход $\rho \to \omega\pi^0$ (см., например, работу [12]) с константой связи $g_{\rho\omega\pi} = 15.9 \ \Gamma \Rightarrow B^{-1}$ [13]. Для описания ширины возбужденных векторных мезонов используется только один доминирующий канал: KK^* для семейства ϕ , $\omega \pi$ для ρ' и $\rho \pi \pi$ для более высоких возбужденных состояний семейства ρ , $\rho \pi$ для ω' и $\omega \pi \pi$ для остальных состояний семейства ω . Энергетическая зависимость парциальных ширин рассчитывается по формулам из работ [14, 15].

Дифференциальная вероятность распада $\tau^- \to K^- K^0 \nu_{\tau}$ описывается формулой (9) с формфактором

$$F_{K^-K^0}(s) = -\sum_{V=\rho,\rho',\dots} c_V B W_V.$$
 (15)

В аппроксимации используются данные по сечениям $e^+e^- \rightarrow K^+K^-$ и $e^+e^- \rightarrow K_SK_L$ из работ КМД-3 [4, 5] для области резонанса ϕ и из работ ВАВАR [1, 2] для области 1.06–2.16 ГэВ. Данные ВАВАR по сечению $e^+e^- \rightarrow K^+K^-$ ниже 1.06 ГэВ не включены в аппроксимацию, чтобы избежать трудностей, связанных с систематическим различием в форме и положении резонанса ϕ между данными КМД-3 и ВАВАR.

Свободными параметрами аппроксимации являются масса и ширина ϕ -мезона, параметр $\eta_{\phi} = g_{\phi K_S K_L}/g_{\phi K^+K^-}$, описывающий возможную нарушающую изоспиновую инвариантность разницу между константами распадов $\phi \to K_S K_L$ и $\phi \to K^+K^-$, и восемь параметров c_V . Параметры $c_{\rho'''}$ и $c_{\phi''}$ определяются из условий

$$\sum_{V=\rho,\rho',\dots} c_V = 1, \qquad (16)$$

$$\frac{1}{3} \sum_{V=\omega,\omega',\dots} c_V + \frac{2}{3} \sum_{V=\phi,\phi',\dots} c_V = 1, \qquad (17)$$

которые обеспечивают нормировку формфакторов: $F_{K^+}(0) = 1$ и $F_{K^0}(0) = 0$. Параметр $c_{\omega'''}$ принимается равным $c_{\rho'''}$, как ожидается в кварковой модели [7]. Массы и ширины ρ , ω и возбужденных векторных резонансов фиксируются на их номинальных значениях [9]. Во время аппроксимации они могут варьироваться в пределах ошибок.

Результаты аппроксимации показаны пунктирными кривыми (модель I) на рис. 3 для сечений процессов $e^+e^- \to K^+K^-$ и $e^+e^- \to K_SK_L$ и дифференциальной вероятности распада $\tau^- \to K^-K^0\nu_{\tau}$, а также на рис. 26 для косинуса относительной фазы между изоскалярным и изовекторным формфакторами. Видно, что аппроксимирующая кривая не очень хорошо воспроизводит форму спектра в распаде τ на рис. 36. Поэтому была выполнена аппроксимация в другой параметризации (модель II), в которой условия нормировки (16) и (17) были удалены. Из-за близости масс резонансов ω'' и ϕ' параметры $c_{\omega''}$ и $c_{\phi'}$ сильно коррелированы и не могут быть определены в модели II независимо. Поэтому было введено дополнительное ограничение $c_{\omega''} = c_{\rho''}$.

Результаты аппроксимации в модели II показаны на рис. 1–3 сплошными кривыми. Эта модель описывает данные по распаду au значительно лучше и уменьшает χ^2 аппроксимации на 16 единиц. Результирующий $\chi^2/\nu = 183/142$, где ν — количество степеней свободы, не очень хороший, но приемлемый, если учесть, что систематические неопределенности измерений не учитываются при аппроксимации. Следует также отметить, что значительный вклад в χ^2 (85 при 62 энергетических точках) вносят данные ВАВАЯ по сечению процесса $e^+e^- \rightarrow K^+K^-$, для которых вместо полной матрицы ошибок используются ее диагональные члены. Суммы в левой части условий нормировки (16) и (17) равны соответственно 0.87 ± 0.04 и 0.98 ± 0.05 . Отклонение от единицы для первой суммы в 13% указывает на то, что описание форм резонансов семейства ρ , в частности, хвоста от $\rho(770)$, при аппроксимации может быть не совсем правильным. Разница в параметрах су между моделями I и II может использоваться в качестве оценки их модельной неопределенности.

Полученное при аппроксимации значение параметра $\eta_{\phi} = 0.990 \pm 0.001$ согласуется с единицей. Значение η_{ϕ} , масса и ширина ϕ -мезона, $M_{\phi} = 1019.461 \pm 0.004$ и $\Gamma_{\phi} = 4.248 \pm 0.006$ МэВ, хорошо согласу-

Таблица. Значения коэффициентов c_V , полученные в двух моделях аппроксимации

	Модель I	Модель II
$c_{ ho}$	1.162 ± 0.005	1.067 ± 0.041
$c_{\rho'}$	-0.063 ± 0.014	-0.025 ± 0.008
$c_{\rho^{\prime\prime}}$	-0.160 ± 0.014	-0.234 ± 0.013
$c_{ ho^{\prime\prime\prime}}$	$\equiv 1 - c_{\rho} - c_{\rho'} - c_{\rho''}$	0.063 ± 0.007
c_{ω}	1.26 ± 0.06	1.28 ± 0.14
$c_{\omega'}$	-0.13 ± 0.03	-0.13 ± 0.02
$C_{\omega^{\prime\prime}}$	-0.37 ± 0.05	$\equiv c_{\rho^{\prime\prime}}$
$c_{\omega^{\prime\prime\prime\prime}}$	$\equiv c_{\rho^{\prime\prime\prime}}$	$\equiv c_{\rho^{\prime\prime\prime}}$
c_{ϕ}	1.037 ± 0.001	1.038 ± 0.001
$c_{\phi'}$	-0.117 ± 0.020	-0.150 ± 0.009
$c_{\phi^{\prime\prime}}$	$\equiv \frac{3}{2} - c_{\phi} - c_{\phi'} - \frac{1}{2} \sum_{V=\omega,\omega',\dots} c_V$	0.089 ± 0.015
χ^2/ν	199/143	183/142

ются со значениями этих параметров, полученными в работах [4,5]. Полученные при аппроксимации значения параметров c_V приведены в таблице. Интересной особенностью обеих аппроксимаций является большое отклонение от предсказаний кварковой модели для возбужденных резонансов семейств ρ и ω , в которой ожидается, что $c_{\omega'} = c_{\rho'}$ и $c_{\omega''} = c_{\rho''}$. Эти отклонения необходимы, в частности, чтобы обеспечить близкую к постоянной величину разности фаз в диапазоне энергий 1.06–1.5 ГэВ, как показано на рис. 26.

Была также проведена аппроксимация с дополнительным параметром α_{CVC} , который описывает возможное отклонение от гипотезы CBT. Этот параметр используется в качестве масштабного коэффициента для данных по распаду τ , показанных на рис. 36. Полученное при аппроксимации значение этого параметра составляет $\alpha_{CVC} = 0.986(0.991) \pm \pm 0.020$ для модели I (II). Это показывает, что гипотеза CBT для системы $K\bar{K}$ применима с точностью до нескольких процентов.

В заключение перечислим основные результаты, полученные в статье. Недавние прецизионные измерения сечений процессов $e^+e^- \to K\bar{K}$ и спектра масс системы K^-K_S в распаде $\tau^- \to K^-K_S\nu_{\tau}$ были использованы для модельно независимого разделения изоскалярного и изовекторного электромагнитных формфакторов каона и определения относительной фазы между ними. Относительная

Рис. 3. *a*) Сечения процессов $e^+e^- \to K^+K^-$ и $e^+e^- \to K_SK_L$ как функции \sqrt{s} . *б*) Дифференциальная вероятность распада $\tau^- \to K^-K^0\nu_{\tau}$ как функции инвариантной массы системы K^-K^0 . Пунктирные и сплошные кривые представляют собой результаты аппроксимации в моделях соответственно I и II, описанных в тексте

фаза показывает неожиданное энергетическое поведение в диапазоне энергий от 1.06 до 1.5 ГэВ, где она почти постоянна и близка к нулю. Была проведена совместная аппроксимация данных по сечениям процессов $e^+e^- \to K^+K^-$ и $e^+e^- \to K_SK_L$ и спектра адронных масс в распаде $\tau^- \to K^- K_S \nu_{\tau}$ в рамках модели векторной доминантности. Аппроксимация достаточно хорошо воспроизводит данные и показывает, что гипотеза CBT для системы $K\bar{K}$ работает с точностью несколько процентов. Чтобы объяснить специфическую энергетическую зависимость относительной фазы между изоскалярным и изовекторным формфакторами, требуется большое отклонение от предсказаний кварковой модели для отношений между амплитудами возбужденных состояний семейств ρ и ω .

Финансирование. Работа частично поддержана Российским фондом фундаментальных исследований (грант № 16-02-00327-а).

ЛИТЕРАТУРА

- J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 88, 032013 (2013).
- J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 89, 092002 (2014).
- M. N. Achasov et al., (SND Collaboration), Phys. Rev. D 94, 112006 (2016).

- E. A. Kozyrev et al. (CMD-3 Collaboration), Phys. Lett. B 760, 314 (2016).
- E. A. Kozyrev et al. (CMD-3 Collaboration), Phys. Lett. B 779, 64 (2018).
- A. Hoefer, J. Gluza, and F. Jegerlehner, Eur. Phys. J. C 24, 51 (2002).
- C. Bruch, A. Khodjamirian, and J. H. Kuhn, Eur. Phys. J. C 39, 41 (2005).
- J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 98, 032010 (2018).
- M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
- 10. M. Davier et al., Eur. Phys. J. C 66, 127 (2010).
- M. Davier, S. Eidelman, A. Hocker, and Z. Zhang, Eur. Phys. J. C 27, 497 (2003).
- M. N. Achasov et al. (SND Collaboration), Phys. Lett. B 486, 29 (2000).
- M. N. Achasov et al. (SND Collaboration), Phys. Rev. D 94, 112001 (2016).
- 14. N. N. Achasov and A. A. Kozhevnikov, Phys. Rev. D 55, 2663 (1997).
- N. N. Achasov and A. A. Kozhevnikov, Phys. Rev. D 57, 4334 (1998).