СВЕРХПРОВОДИМОСТЬ, ЛОКАЛИЗОВАННАЯ НА КРАЕВОЙ ДИСЛОКАЦИИ

Е. Р. Подоляк*

Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

Поступила в редакцию 25 декабря 2018 г., после переработки 14 февраля 2019 г. Принята к публикации 15 февраля 2019 г.

Рассматривается пространственно-неоднородный сверхпроводник в приближении Гинзбурга–Ландау. Пространственная неоднородность (краевая дислокация) описывается через локальный сдвиг критичес-кой температуры в ее окрестности. Предполагается, что сдвиг $\delta T_c(\mathbf{R})$ пропорционален упругому напряжению, создаваемому дислокацией. Показано, что в этом случае существуют локализованные сверхпроводящие состояния при температуре, превышающей T_c однородного сверхпроводника. Получены основные характеристики таких состояний. Этот же подход использован для описания пиннинга абрикосовских вихрей на краевой дислокации.

DOI: 10.1134/S0044451019070125

1. ВВЕДЕНИЕ

Обычно, в теории Гинзбурга – Ландау рассматривается пространственно-однородный и изотропный сверхпроводник. При этом температура сверхпроводящего перехода, в окрестности которой применима теория Гинзбурга – Ландау, является материальной константой — критической температурой сверхпроводника. Пространственные зависимости сверхпроводящего параметра порядка в таких сверхпроводниках связаны, как правило, с геометрией образца, особенностями граничных условий на его поверхности или влиянием внешнего магнитного поля.

С другой стороны, известно, что критическая температура сверхпроводника может меняться при изменении давления [1]. Поскольку упругие напряжения, возникающие в окрестности дислокации, действуют на кристаллическую решетку образца так же, как внешнее давление, можно предположить, что в окрестности дислокации будет меняться и локальное значение критической температуры. В данной работе рассматриваются свойства сверхпроводника, полученные в рамках этого предположения. Будем считать, что дислокация ориентирована вдоль оси z. В плоскости xy дислокация расположена в начале координат, а ось x направлена в сторону наибольшей деформации. В окрестности дислокации диагональные компоненты тензора напряжений (см. задачу 4 к § 27 в [2]) $\sigma_{zz} = 0$ и

$$\sigma_{xx}, \sigma_{yy} \propto \frac{\cos \theta}{R},$$
 (1)

где R — это расстояние (в плоскости xy) от дислокации до точки наблюдения, а θ — это угол с осью x. Идея использовать потенциал (1) для описания окрестности дислокации была предложена [3] при изучении электронного спектра в полупроводниках.

Мы будем предполагать, что $\delta T_c(\mathbf{R}) \propto \sigma_{ii}$:

$$\delta T_c(\mathbf{R}) = U_0 \frac{\cos \theta}{R}.$$
 (2)

Отметим, что расходимость в начале координат в (2) является существенной лишь на атомных размерах. При описании сверхпроводимости важно лишь, чтобы величина (2) была мала на масштабе корреляционной длины.

Теперь мы воспроизведем феноменологический подход теории Гинзбурга–Ландау [4] для рассматриваемой задачи. Здесь и далее мы будем предполагать, что внешнее магнитное поле приложено вдоль оси дислокации.

^{*} E-mail: podolyak@kapitza.ras.ru

Рассмотрим выражение для плотности энергии Гинзбурга – Ландау с учетом формулы (2):

$$F = g \left| \nabla \Psi - i \frac{2\pi}{\Phi_0} \mathbf{A} \Psi \right|^2 + \alpha \left[T - T_c - U_0 \frac{\cos \theta}{R} \right] |\Psi|^2 + \frac{\beta}{2} |\Psi|^4 + \frac{|\mathbf{B}|^2}{8\pi}, \quad (3)$$

где $\Phi_0 = hc/2|e|$ и $g = \hbar^2/4m$. Строго говоря, координатную зависимость должны приобрести все коэффициенты разложения энергии. Однако этими зависимостями можно пренебречь по сравнению с поправкой к члену пропорциональному $|\Psi|^2$.

В теории Гинзбурга – Ландау для однородного сверхпроводника в качестве единиц используются равновесное значение параметра порядка в нулевом поле

$$|\Psi_0(T)| = \sqrt{\frac{\alpha(T_c - T)}{\beta}},\tag{4}$$

термодинамическое критическое поле

$$H_c(T) = \alpha (T_c - T) \sqrt{\frac{4\pi}{\beta}}$$
(5)

и корреляционная длина

$$\xi(T) = \sqrt{\frac{g}{\alpha(T_c - T)}}.$$
(6)

Переход к единицам (4)–(6) в теории Гинзбурга–Ландау позволяет исключить температурные зависимости и выразить (3) в безразмерном виде. В рассматриваемой задаче при таком подходе возникает температурная зависимость в слагаемом, описывающем дислокацию, и, более того, эта зависимость имеет расходимость в T_c .

Определим температуру $T_0^{(1)}$, характеризующую дислокацию,

$$T_0 = T_c - \delta T_0,$$

$$\delta T_0 = U_0^2 \frac{\alpha}{q} > 0,$$
(7)

и в качестве размерных единиц выберем величины (4), (6) при $T = T_0$, т.е. $\Psi_0(T_0)$, $\xi(T_0)$, а единицей магнитного поля выберем поле абсолютной неустойчивости нормальной фазы в однородном сверхпроводнике

$$H_{c2}(T_0) = \frac{\Phi_0}{2\pi} \frac{1}{\xi^2(T_0)}.$$
(8)

Энергия Гинзбурга – Ландау на единицу длины дислокации приобретает вид

$$E = \frac{H_c^2(T_0)\,\xi^2(T_0)}{4\pi} \int d\mathbf{r} \left\{ \left| \nabla \psi - i\mathbf{a}\psi \right|^2 + \left[t - \frac{\cos\theta}{r} \right] |\psi|^2 + \frac{1}{2} |\psi|^4 + \varkappa^2 b^2 \right\}.$$
 (9)

Это выражение явно зависит от приведенной температуры

$$t = \frac{T - T_c}{\delta T_0},\tag{10}$$

но не зависит от U_0 , т. е. не содержит характеристик конкретной дислокации.

Вдали от дислокации потенциал (2) стремится к нулю, и сверхпроводник можно считать однородным. Ниже приведены выражения для некоторых безразмерных величин в однородном сверхпроводнике при t < 0.

Равновесное значение параметра порядка

$$|\psi_0| = \frac{|\Psi_0(T)|}{|\Psi_0(T_0)|} = \sqrt{-t},\tag{11}$$

поле абсолютной неустойчивости нормальной фазы

$$h_{c2} = \frac{H_{c2}(T)}{H_{c2}(T_0)} = -t,$$
(12)

термодинамическое критическое поле

$$h_c = \frac{H_c(T)}{H_{c2}(T_0)} = \frac{-t}{\varkappa \sqrt{2}},$$
(13)

где параметр Гинзбурга – Ландау \varkappa имеет стандартное определение:

$$\varkappa = \frac{\Phi_0}{2\pi} \sqrt{\frac{b}{8\pi g^2}}.$$
 (14)

Отметим, что условие применимости теории Гинзбурга – Ландау

$$\frac{|T - T_c|}{T_c} \ll 1$$

в рассматриваемой задаче дополняется требованием

$$\frac{\delta T_0}{T_c} \ll 1.$$

При этом величина t может быть любой.

 $^{^{1)}}$ Приближенно можно считать, что $U_0\approx |dT_c/dP|$ Kb, где K- модуль всестороннего сжатия, b- вектор Бюргерса. Для олова $U_0\approx 1.5\cdot 10^{-6}~{\rm K}\cdot {\rm см}$ и $\delta T_0\approx 0.7~{\rm mK}.$

2. СВОЙСТВА ЛОКАЛИЗОВАННОЙ СВЕРХПРОВОДИМОСТИ

Сначала рассмотрим сверхпроводящие состояния в нулевом поле:

$$E = \int d\mathbf{r} \left\{ |\nabla \psi|^2 + \left[t - \frac{\cos \theta}{r} \right] |\psi|^2 + \frac{1}{2} |\psi|^4 \right\}.$$
 (15)

Здесь и далее мы опускаем размерный множитель у энергии. В отсутствие магнитного поля можно положить фазу параметра порядка равной нулю и перейти к функции $f(\mathbf{r}) = |\psi(\mathbf{r})|$. Уравнение Гинзбурга – Ландау

$$\Delta f = f\left\{t - \frac{\cos\theta}{r} + f^2\right\} \tag{16}$$

в данном случае приобрело зависимость от температуры, причем при $t \to -\infty$ влияние дислокации становится пренебрежимо малым.

Естественные граничные условия для уравнения (16) являются результатом обращения в нуль поверхностного интеграла при варьировании первого слагаемого в правой части (15):

$$(\mathbf{n}, \nabla f) = 0, \tag{17}$$

где ${\bf n}$ — вектор нормали к внешней границе, что эквивалентно

$$f(\infty) = \text{const.} \tag{18}$$

Поскольку при $r \to \infty$ дислокационным потенциалом можно пренебречь по сравнению с t, из теории Гинзбурга–Ландау для однородного сверхпроводника следует, что в рассматриваемой задаче существуют два типа состояний: при $f(\infty) = |\psi_0| -$ объемная сверхпроводимость и при $f(\infty) = 0 -$ сверхпроводимость, у которой параметр порядка отличен от нуля только вблизи дислокации. При этом объемное состояние является равновесным при t < 0, а при t > 0 существует только состояние, локализованное у дислокации.

Для численного решения уравнений Гинзбурга – Ландау мы пользуемся программой FlexPDE [5], в которой интегрирование дифференциальных уравнений по частям и концепция «естественных» граничных условий заложены в алгоритм вычислений. При использовании этой программы нужно обращать внимание на то, чтобы неизвестные функции были достаточно гладкими, а особенности в правой части уравнений приходились на узлы сетки конечных элементов.

На рис. 1 показано сечение равновесного параметра порядка вдоль оси x при нескольких характерных значениях температуры: t = -1, -0.04,

Рис. 1. Зависимость равновесного параметра порядка f(x,0) в нулевом поле при нескольких температурах: t - -1, -0.04, +0.04

+0.04. Отметим, что при температуре выше T_c сверхпроводника (t>0) параметр порядка отличен от нуля и при x<0, т.е. в «запрещенной» области, где ($t-\cos\theta/r$) > 0.

Максимальная температура, при которой существует сверхпроводимость в нулевом внешнем поле, определяется из решения линеаризованной задачи на собственные значения

$$\Delta f = f\left(t_{crit} - \frac{\cos\theta}{r}\right) \tag{19}$$

с граничным условием $f(\mathbf{r}) = 0$ при $|\mathbf{r}| \to \infty$. Эта температура равна $t_{crit} \approx 0.137$. Таким образом, из измерения сдвига температуры перехода в нулевом поле можно определить параметр U_0 для данной дислокации.

В магнитном поле h_0 равновесное локализованное сверхпроводящее состояние соответствует минимуму свободной энергии при постоянном внешнем поле:

$$\widetilde{F} = \left|\nabla\psi - i\mathbf{a}\psi\right|^2 + \left[t - \frac{\cos\theta}{r}\right]\left|\psi\right|^2 + \frac{1}{2}\left|\psi\right|^4 + \varkappa^2(b - h_0)^2.$$
(20)

Вариационные уравнения для (20)

$$\Delta \psi = \psi \left(|\mathbf{a}|^2 + t - \frac{\cos \theta}{r} + |\psi|^2 \right) + 2i(\mathbf{a}, \nabla \psi),$$

$$-\varkappa^2 \left[\nabla \times \mathbf{b} \right] = |\psi|^2 \mathbf{a} + \frac{i}{2} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right),$$
 (21)

Рис. 2. Поле абсолютной неустойчивости нормальной фазы $h_{sc}(t)$ и критическое значение параметра Гинзбурга – Ландау $\varkappa_{crit}(t)$

где $\mathbf{b} = [\nabla \times \mathbf{a}]$ и граничные условия при $|\mathbf{r}| \to \infty$

$$\begin{aligned} \psi &= 0, \\ b &= h_0. \end{aligned} \tag{22}$$

В численном счете мы пользуемся калибровочной инвариантностью теории Гинзбурга–Ландау, выбирая калибровку векторного потенциала так, чтобы параметр порядка был вещественным, $f = |\psi|$, а векторный потенциал **a** заменяем на «обобщенную скорость»

$$\mathbf{q} = \mathbf{a} - \nabla\phi,\tag{23}$$

где ϕ обозначает фазу параметра порядка.

В линейных задачах, наоборот, удобно задавать векторный потенциал невозмущенного поля азимутально-симметричным и вычислять комплексный параметр порядка.

Нас в первую очередь интересует зависимость критического поля абсолютной неустойчивости нормальной фазы от температуры (верхняя кривая на рис. 2). При понижении температуры, $t \rightarrow -\infty$, эта зависимость стремится к полю h_{c2} однородного сверхпроводника. С другой стороны, при $t \rightarrow t_{crit}$ это поле стремится к нулю корневым образом, что типично для локализованной сверхпроводимости [6].

Теперь нужно выяснить, какой тип сверхпроводящего фазового перехода (первого или второго рода) происходит в поле h_{sc} . В теории Гинзбурга – Ландау показано, что тип перехода определяется значением параметра \varkappa . Вопрос о типе сверхпроводящего перехода в неоднородном сверхпроводнике был впервые изучен в рамках теории поверхностной сверхпроводимости [7]. Для произвольных сверхпроводящих состояний, зависящих от одной координаты, процедура вычисления критического значения параметра Гинзбурга – Ландау была представлена в работе [8]. Здесь мы обобщим эту процедуру на двумерный случай.

В поле $h_0 = h_{sc}$ равновесным является состояние $f = 0, b = h_0$ и «обобщенная скорость» \mathbf{q}_0 . Свободная энергия для этого состояния $\widetilde{F} = 0$. Запишем вариацию свободной энергии при произвольном возмущении $\delta f = \delta(x, y)$ и $\delta \mathbf{q}$:

$$\delta \widetilde{F} = |\nabla \delta|^2 + \delta^2 \left[|\mathbf{q}_0|^2 + t - \frac{\cos \theta}{r} \right] + 2\delta^2(\mathbf{q}_0, \delta \mathbf{q}) + \varkappa^2 [\nabla \times \delta \mathbf{q}]^2 + \frac{1}{2} |\delta|^4 + \delta^2 |\delta \mathbf{q}|^2.$$
(24)

Два первых слагаемых представляют собой вторую вариацию энергии по отношению к возмущению только параметра порядка. Эти слагаемые соответствуют линеаризованному уравнению Гинзбурга–Ландау (21), из которого определено критическое поле h_{sc} . Из этого уравнения определяется также и форма сверхпроводящего зародыша $\delta =$ $= \delta_2(x, y)$. Напомним, что в поле $h_0 = h_{sc}$ вторая вариация энергии равна нулю. Поэтому для найденного выше δ_2 можно записать полную вариацию энергии как функцию от $\delta \mathbf{q}$:

$$\delta \widetilde{F} = 2\delta_2^2(\mathbf{q_0}, \delta \mathbf{q}) + \varkappa^2 [\nabla \times \delta \mathbf{q}]^2 + \frac{1}{2} |\delta_2|^4 + \delta_2^2 |\delta \mathbf{q}|^2. \quad (25)$$

Минимизация первых двух слагаемых а этом выражении дает уравнение для $\delta \mathbf{q}$:

$$-[\nabla \times [\nabla \times \delta \mathbf{q}]] = \frac{\delta_2^2}{\varkappa^2} \mathbf{q}_0.$$
 (26)

Решая это уравнение, находим, что $\delta \mathbf{q} = \delta \mathbf{q}_2(x, y) \propto \propto \delta_2^2$ и $\delta \mathbf{q}_2 \propto \varkappa^{-2}$. Отсюда также следует, что последнее слагаемое в (25) порядка δ_2^6 и им можно пренебречь.

Удобно определить не зависящее от \varkappa возмущение магнитного поля

$$\tilde{b} = \varkappa^2 \left[\nabla \times \delta \mathbf{q}_2 \right],\tag{27}$$

которое удовлетворяет уравнению

$$-[\nabla \times \tilde{\mathbf{b}}] = \delta_2^2 \,\mathbf{q}_0. \tag{28}$$

Если проинтегрировать по частям первое слагаемое в правой части (25), то можно записать выражение для четвертой вариации энергии

$$\delta^4 E = \int d\mathbf{r} \left[\frac{\delta_2^4}{2} - \frac{\tilde{b}^2}{\varkappa^2} \right]. \tag{29}$$

Наконец, из условия $\delta^4 E = 0$ находим критическое значение параметра Гинзбурга – Ландау

$$\varkappa_{crit}^2 = 2 \frac{\int d\mathbf{r} \,\tilde{b}^2}{\int d\mathbf{r} \,\delta_2^4}.$$
(30)

Таким образом, для любой температуры t существует критическое значение $\varkappa_{crit}(t)$, такое что при $\varkappa < \varkappa_{crit}$ в поле h_{sc} происходит переход первого рода, и, соответственно, при $\varkappa > \varkappa_{crit}$ происходит переход второго рода.

Полученная зависимость $\varkappa_{crit}(t)$ показана нижней кривой на рис. 2. Эта зависимость также демонстрирует типичное для локализованных состояний поведение. При $t \to t_{crit}$ критическое значение параметра Гинзбурга – Ландау стремится к нулю пропорционально $(t_{crit} - t)^{1/2}$, а при понижении температуры $\varkappa_{crit}(t)$ стремится к значению $\varkappa_{GL} = 1/\sqrt{2}$ теории Гинзбурга – Ландау для однородного сверхпроводника.

Приведенные выше результаты описывают возникновение локализованного состояния при уменьшении внешнего поля. Теперь нужно выяснить, в каком поле локализованное состояние распространится на весь объем сверхпроводника. Эта задача требует исследовать устойчивость локализованного состояния при уменьшении внешнего поля. В настоящее время мы можем ответить лишь на вопрос: происходит ли переход смачивания [9] в поле $H_0 = H_c$, или локализованное состояние существует в поле $H_0 < H_c$. Мы рассмотрели частный случай олова ($\varkappa \approx 0.12$) при нескольких температурах (t < 0). Локализованное состояние может существовать в поле примерно на 8% меньшем, чем H_c однородного сверхпроводника.

3. ЛОКАЛИЗОВАННЫЕ ВИХРИ

Хорошо известно, что в сверхпроводниках второго рода разрушение объемной сверхпроводимости происходит в поле $H_0 \ge H_{c1}$ за счет проникновения вихрей. При этом сам вихрь имеет положительную энергию, поскольку в нем параметр порядка отличается от равновесного. Точнее говоря, в вихре параметр порядка меньше равновесного значения и обращается в нуль в центре вихря. Но этот проигрыш энергии компенсируется уменьшением диамагнитной энергии образца во внешнем поле. В рассматриваемой здесь задаче в окрестности дислокации есть область с отрицательным сдвигом локальной критической температуры, где равновесный параметр порядка мал даже в отсутствие поля (см. рис. 1). Поэтому вихрь, находящийся в этой области, оказывается выгоднее вихря, расположенного вдали от дислокации в объеме сверхпроводника. При низких температурах это явление известно как пиннинг вихрей на дислокациях. В окрестности T_c роль дислокации значительно возрастает, что может приводить к таким явлениям, как притяжение между вихрями, и к существованию многоквантовых вихрей, локализованных на дислокации.

Равновесному состоянию вихря в объеме сверхпроводника соответствует минимум энергии Гинзбурга–Ландау, т.е. свободной энергии при фиксированном магнитном потоке

$$E_{GL} = \int d\mathbf{r} \left\{ \left| \nabla \psi - i\mathbf{a}\psi \right|^2 + \left[t - \frac{\cos\theta}{r} \right] |\psi|^2 + \frac{1}{2} |\psi|^4 + \varkappa^2 b^2 \right\}.$$
 (31)

При этом положение кора вихря x_c ($\psi(x_c, 0) = 0$) является дополнительной степенью свободы, которая явно не содержится в выражении (31). Мы задаем x_c в качестве дополнительного условия. Равновесное положение вихря определяется из (дополнительной) минимизации энергии при изменении x_c . Кроме того, мы задаем количество квантов потока, содержащихся в вихре, т. е. набег фазы параметра порядка при обходе кора вихря. Градиент фазы параметра порядка имеет расходимость в коре вихря. Поэтому для численного счета обобщенную скорость q мы заменяем на гладкую функцию

$$\widehat{\mathbf{q}} = \mathbf{q} + \nabla(n\Theta_v). \tag{32}$$

Здесь n обозначает количество квантов потока в вихре, а Θ_v — азимутальный угол.

В этих обозначениях энергия Гинзбурга – Ландау

$$E_{GL} = \int d\mathbf{r} \left\{ |\nabla f|^2 + |\mathbf{q}|^2 f^2 + \left[t - \frac{\cos\theta}{r} \right] f^2 + \frac{1}{2} f^4 + \varkappa^2 b^2 \right\}, \quad (33)$$

где $\mathbf{b} = [\nabla \times \widehat{\mathbf{q}}]$. Вариационные уравнения

Рис. 3. Зависимость энергии одноквантового вихря ($\varkappa = 1$, t = -1) от координаты кора вихря. Штриховая линия — энергия вихря в однородном сверхпроводнике. Пунктирные кривые — асимптотики энергии вдали от дислокации

$$\Delta f = f\left(|\mathbf{q}^2 + t - \frac{\cos\theta}{r} + f^2\right),$$

$$-[\nabla \times \mathbf{b}] = \frac{f^2}{\varkappa^2} \mathbf{q}$$
(34)

дополняются естественными граничными условиями на бесконечности.

Зависимость энергии одноквантового вихря от координаты x_c при $\varkappa = 1$ и t = -1 приведена на рис. 3. При $|x_c| \rightarrow \infty$ дислокация никак не влияет на состояние вихря. Энергия вихря в объеме сверхпроводника $E_{v0} = \varepsilon(\varkappa)(-t)$ в этом случае равна $E_{v0} = 7.268$. Минимум энергии достигается при $x_c \approx -1.99$, что приблизительно соответствует положению минимума равновесного параметра порядка в отсутствие поля. Энергия локализованного вихря составляет $E_v \approx 4.956$, т.е. при этой температуре энергия вихря на дислокации уменьшается примерно в 1.5 раза. Отметим, что вихрь, расположенный в области с повышенной T_c (т.е. при $x_c > 0$), имеет большую энергию, чем Evo. Можно говорить, что при $x_c > 0$ вихрь отталкивается от дислокации, а при $x_c < 0$ — притягивается.

Вдали от дислокации, при $|\mathbf{r}_c| \gg 1$, можно пренебречь изменением дислокационного потенциала $(\propto r_c^{-2})$ на размере вихря и считать, что вихрь находится в однородном сверхпроводнике при температуре $(t - (\cos \theta)/r_c)$. Отсюда можно получить асимптотическое выражение для энергии вихря $E_v \approx$ $\approx 7.268(-t + (\cos \theta)/r_c)$ (пунктирная кривая на рис. 3). Далее, можно вычислить силу, действующую на вихрь, $\mathbf{F} = -\nabla E_v$, откуда следует, что вихрь

Рис. 4. Отношение энергии равновесного локализованного вихря к энергии вихря вдали от дислокации как функция температуры. Нижняя кривая — $\varkappa = 1$. Верхняя кривая — $\varkappa = 2$

притягивается к дислокации во всем пространстве, кроме положительной полуоси x.

Значения энергии вихря и энергии пиннинга зависят и от температуры, и от \varkappa . На рис. 4 показана зависимость отношения энергии равновесного локализованного вихря к энергии вихря в объеме сверхпроводника как функция температуры для двух значений $\varkappa = 1$ и $\varkappa = 2$. Этот рисунок демонстрирует усиление пиннинга при приближении к T_c . Такое усиление пиннинга должно проявляться в значительном уменьшении магнитного поля, при котором локализованные вихри выходят из образца, $h_{ex} = h_{c1}E_v/E_{v0} \ll h_{c1}$. Этот эффект должен приводить к гистерезису на кривой намагничивания.

При изучении свойств равновесных вихрей, локализованных на дислокации, выяснилось, что вихрь может притягиваться к дислокации, даже когда на ней уже находится один вихрь. Для вычисления равновесной конфигурации нужно выполнить дополнительную минимизацию энергии по координатам уже двух центров вихрей, x_{c1} и x_{c2} . В полном объеме эту процедуру мы не проводили. Мы сравнили энергию двух одноквантовых вихрей, один из которых локализован на дислокации $x_{c1} = x_c$, а второй находится при $x_{c2} = -\infty$, с энергией равновесного локализованного двухквантового вихря (рис. 5, n = 1).

Оказалось, что при t > -7.7 двухквантовые локализованные вихри выгоднее двух одноквантовых. Поскольку полную минимизацию по координатам кора обоих вихрей мы не проводили, нельзя утверждать, что минимуму энергии соответствует имен-

Рис. 5. Разность энергии локализованного (n + 1)-квантового вихря и состояния, в котором есть локализованный n-квантовый вихрь и одноквантовый вихрь вдали от дислокации. При n = 0 — это энергия связи одноквантового вихря

но двухквантовый вихрь, а не связанное состояние двух одноквантовых вихрей на конечном расстоянии.

Повторяя вычисления для n = 2, можно сказать, что при t > -2.77 трехквантовые локализованные вихри становятся выгоднее двухквантовых.

4. ЗАКЛЮЧЕНИЕ

В работе рассмотрена однопараметрическая модель, описывающая сверхпроводимость, локализованную в окрестности краевой дислокации. Единственный параметр модели (U_0) по существу не является подгоночным, а только задает температурную шкалу на фазовой диаграмме. Показано, что в отличие от теории Буздина [6] локализованная сверхпроводимость может существовать при $H_0 < H_c$. В рамках этой же модели рассмотрен пиннинг абрикосовских вихрей на дислокации. Получены температурные зависимости энергии пиннинга и условия образования двухквантовых локализованных вихрей.

Благодарности. Автор выражает глубокую признательность В. И. Марченко за многочисленные полезные обсуждения.

ЛИТЕРАТУРА

- Superconductivity, ed. by R. D. Parks, Marcel Dekker, New York (1969).
- Л. Д. Ландау, Е. М. Лифшиц, Теория упругости, Наука, Москва (1965).
- 3. R. Landauer, Phys. Rev. 94, 1386 (1954).
- Е. М. Лифпиц, Л. П. Питаевский, Статистическая физика, ч. 2, Физматлит, Москва (2000).
- 5. http://pdesolutions.com.
- И. Н. Хлюстиков, А. И. Буздин, УФН 155, 47 (1988).
- 7. J. Feder, Sol. State Comm. 5, 299 (1967).
- **8**. Е. Р. Подоляк, ЖЭТФ **153**, 466 (2018).
- 9. J. O. Indekeu, Physica A 251, 290 (1995).