ЗАКОНЫ ДИСПЕРСИИ ПОЛЯРИТОННОГО ТИПА ДЛЯ ТРЕХУРОВНЕВЫХ АТОМОВ, ВЗАИМОДЕЙСТВУЮЩИХ С ДВУМЯ ИМПУЛЬСАМИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

П. И. Хаджи, О. В. Коровай^{*}, Л. Ю. Надькин

Институт прикладной физики Академии наук Молдовы MD-2028, Кишинев, Молдова

Приднестровский государственный университет им. Т. Г. Шевченко MD-3300, Тирасполь, Молдова

> Поступила в редакцию 12 октября 2018 г., после переработки 12 октября 2018 г. Принята к публикации 13 ноября 2018 г.

Изучены особенности поведения поляритонных законов дисперсии трехуровневых атомов, взаимодействующих с двумя импульсами когерентного лазерного излучения с частотами ω_1 и ω_2 , находящимися в резонансе с оптически-разрешенными однофотонными переходами соответственно между уровнями $1 \leftrightarrows 2$ и $2 \leftrightarrows 3$ и с учетом также прямого двухфотонного перехода между уровнями 1 и 3. Используется приближение заданных плотностей фотонов обоих импульсов по сравнению с плотностями атомов. Показано, что закон дисперсии состоит из трех ветвей, положение и форма которых определяется частотами Раби указанных трех оптических переходов и плотностями фотонов обоих импульсов. Непосредственный учет всех трех оптических переходов приводит к зависимости дисперсии атомных поляритонов от нового квантового параметра — разности фаз между тремя частотами Раби. Найдены значения параметров системы, при которых возможно пересечение ветвей закона дисперсии. Введено понятие поверхности закона дисперсии в зависимости собственных частот атомных поляритонов от волновых векторов фотонов обоих импульсов.

DOI: 10.1134/S0044451019040059

1. ВВЕДЕНИЕ

В последние годы повышенное внимание уделяется исследованию процессов взаимодействия лазерного излучения с веществом в размерно-ограниченных системах. В ряде работ [1–5] представлены результаты исследований явлений бозеэйнштейновской конденсации и сверхтекучести в системе экситон-поляритонов в микрорезонаторах, а также явлений, обусловленных сильной связью фотонов с атомными системами. При этом большой интерес представляет установление общности либо различий между такими понятиями, как частота нутации либо частота осцилляций Раби в системе экситонов Ванье – Мотта и вакуумного расщепления Раби ансамблем изолированных двухуровневых атомов либо системой экситонов Френкеля в условиях сильной связи фотонов с материальными возбуждениями. В работах [6, 7] исследованы поляритонные состояния в микрорезонаторе, где энергии экситонов Френкеля в органических квантовых ямах и экситонов Ванье – Мотта в неорганических квантовых ямах смешиваются с оптической модой микрорезонатора, что приводит к взаимодействию этих экситонов между собой и к образованию связанных гибридных поляритонов. В работах [8,9] показано, что взаимодействие прямых и непрямых экситонов в двойной квантовой яме в микрорезонаторе с собственной модой микрорезонатора приводит к образованию новых поляритонных состояний, так называемых диполяритонов с тремя ветвями закона дисперсии.

Нелинейно-оптические явления в трех- и многоуровневых атомных системах исследовались в различных работах (см., например, [10, 11]). При этом учитывались однофотонные индуцированные переходы между последовательными парами соседних

E-mail: olesya-korovai@mail.ru

уровней под действием света, как это представлено в теории каскадных лазеров [12–14]. Вместе с тем в атомных трехуровневых системах возможны, например, двухфотонные переходы между первым и третьим уровнями.

В работе [15] отмечается, что биэкситонное состояние вместе с экситонным и основным состояниями в квантовой точке образуют трехуровневую систему лестничного типа. Показано, что двухфотонное возбуждение трехуровневой системы может привести к новым собственным состояниям, продемонстрированы двухфотонные осцилляции Раби, частота которых пропорциональна интенсивности возбуждения. В работе [16] изучены процессы двухфотонного возбуждения квантовых точек из основного состояния кристалла в биэкситонное в условиях, когда переходы в экситонное состояние сильно подавлены из-за большой энергии связи биэкситона. В работе [17] изучались оптические свойства связанных тримеров и тетрамеров. В ряде работ [18–22] изучен так называемый поляритонный резонанс Фешбаха, при котором энергия двух экситонов равна энергии биэкситона. Методом накачкизондирования (pump-probe) [17, 18] изучены свойства экситон-поляритонов при изменении уровня возбуждения кристалла. При низком уровне возбуждения наблюдались обычные верхняя и нижняя поляритонные ветви закона дисперсии. Однако при увеличении накачки наблюдались сначала одна, а затем и две дополнительные поляритонные ветви, обусловленные образованием биэкситонных и триэкситонных состояний в кристалле. В работе [23] обсуждается существование новой квазичастицы — экситона, дважды одетого двумя фотонами различных длин волн — оптического фотона микрорезонатора и терагерцевого фотона. Эта квазичастица состоит из трех различных бозонов, и ее закон дисперсии содержит три поляритонные ветви. Авторы работы [23] описали свои наблюдения с помощью квантово-механической модели, учитывающей связь между четырьмя бозонными полями, включая 1s- и 2p-экситоны, а также оптические и терагерцевые фотоны. Теоретически продемонстрировано возникновение трех поляритонных ветвей при учете экситон-фотонного взаимодействия и терагерцевой конверсии 1s- и 2p-экситонов. Отметим, что ранее уже рассматривались дважды одетые состояния двухуровневого атома двумя фотонами [24], а также взаимодействие экситон-поляритонов с терагерцевыми фотонами [25].

В ряде работ [26–29] изучалось явление двухфотонного расщепления Раби в системе нанорезонатора, экситонов и биэкситонов при учете экситон-фотонного взаимодействия и оптической экситон-биэкситонной конверсии, однако без учета прямого двухфотонного возбуждения биэкситонов из основного состояния кристалла. В работе [28] наблюдалась спонтанная двухфотонная эмиссия из квантовой точки. В работе [29] визуализирован процесс двухфотонных осцилляций Раби в системе трех связанных волноводов, являющийся оптическим аналогом двухфотонных осцилляций Раби в трехуровневой атомной либо молекулярной системе, когерентно возбуждаемой двумя лазерными полями. Таким образом, можно прийти к выводу, что ни в одной из вышеупомянутых работ не рассматриваются одновременно два различных однофотонных и один двухфотонный переходы в трехуровневых атомах, хотя в ряде работ [26–29] и утверждается, что наблюдается двухфотонный процесс. Однако, по нашему мнению, это всего лишь каскадный двухфотонный процесс в системе трехуровневых атомов, а не прямой двухфотонный процесс. В экситонной области спектра имеют место индуцированные светом однофотонные переходы из основного состояния кристалла в экситонное и из экситонного в биэкситонное, а также прямой двухфотонный переход из основного состояния кристалла на биэкситонный уровень [30]. При этом хорошо известно [30], что однофотонный оптический переход из экситонного в биэкситонное состояние и двухфотонный переход из основного состояния кристалла в биэкситонное характеризуются гигантскими силами осциллятора по сравнению с экситонным переходом. Отметим, что в работе [31] представлены предварительные результаты исследования двухимпульсного взаимодействия с экситонами и биэкситонами. Показано, что в условиях мощной накачки в области М-полосы люминесценции закон дисперсии несущей волны имеет три ветви. Были найдены значения параметров, при которых может наблюдаться пересечение ветвей закона дисперсии.

2. ПОСТАНОВКА ЗАДАЧИ. ДИСПЕРСИОННОЕ УРАВНЕНИЕ

Ниже представлены результаты исследования закона дисперсии трехуровневого атома, взаимодействующего с двумя импульсами резонансного лазерного излучения. При этом учитываются однофотонные переходы между уровнями $1 \Leftrightarrow 2$ и $2 \Leftrightarrow 3$, а также двухфотонный переход между уровнями 1 и

Рис. 1. Схема энергетического спектра трехуровневого атома, взаимодействующего с фотонами с частотами ω_1 и ω_2

3 (рис. 1). Гамильтониан взаимодействия атома и фотонов обоих импульсов можно записать в виде

$$\frac{1}{\hbar}\hat{H}_{int} = -g_{12}\hat{a}_1\hat{c}_1\hat{a}_2^+ - g_{12}^*\hat{a}_1^+\hat{c}_1^+\hat{a}_2 - g_{23}\hat{a}_2\hat{c}_2\hat{a}_3^+ - g_{23}^*\hat{a}_2^+\hat{c}_2^+\hat{a}_3 - g_{13}\hat{a}_1\hat{c}_1\hat{c}_2\hat{a}_3^+ - g_{13}^*\hat{a}_1^+\hat{c}_1^+\hat{c}_2^+\hat{a}_3, \quad (1)$$

где \hat{a}_j (j = 1, 2, 3) — оператор уничтожения для атома, находящегося на уровне $j; \hat{c}_1$ и \hat{c}_2 — операторы для фотонов, действующих между уровнями 1 \leftrightarrows 2 (\hat{c}_1) и 2 \leftrightarrows 3 (\hat{c}_2) ; g_{ij} — константы оптической конверсии атома с уровня *i* на уровень *j*. Собственные энергии атомов на уровнях 2 и 3 равны соответственно $\hbar\omega_0$ и $\hbar\Omega_0$ (рис. 1). Отсчет энергии атома на возбужденных уровнях начинается с первого уровня (основного состояния атома). Фотоны падающих импульсов, описываемые операторами \hat{c}_1 и \hat{c}_2 , имеют соответственно частоты ω_1 и ω_2 . Фотоны первого (второго) импульса с энергией $\hbar\omega_1$ ($\hbar\omega_2$) возбуждают атом с уровня 1 (2) на уровень 2 (3). Эти переходы являются разрешенными однофотонными переходами. Вместе с тем возможен также разрешенный двухфотонный переход с уровня 1 на уровень 3 (и обратно) под действием тех же самых фотонов, что отражено последними двумя слагаемыми в (1). Предполагаем, что оба импульса электромагнитного излучения действуют в течение времени, меньшего времени релаксации атомов. В этом случае процессами релаксации можно пренебречь.

Используя (1), легко получить гейзенберговские уравнения движения для операторов \hat{a}_j и \hat{c}_i , после усреднения которых в приближении среднего поля (mean field approximation) приходим к системе нелинейных эволюционных уравнений для амплитуд $a_j = \langle \hat{a}_j \rangle$ (j = 1, 2, 3) и $c_i = \langle \hat{c}_i \rangle$ (i = 1, 2):

$$i\dot{a}_{1} = -g_{12}^{*}c_{1}^{*}a_{2} - g_{13}^{*}c_{1}^{*}c_{2}^{*}a_{3},$$

$$i\dot{a}_{2} = \omega_{0}a_{2} - g_{12}a_{1}c_{1} - g_{23}^{*}c_{2}^{*}a_{3},$$

$$i\dot{a}_{3} = \Omega_{0}a_{3} - g_{23}a_{2}c_{2} - g_{13}a_{1}c_{1}c_{2},$$

$$i\dot{c}_{1} = \omega_{1}c_{1} - g_{12}^{*}a_{1}^{*}a_{2} - g_{13}^{*}a_{1}^{*}c_{2}^{*}a_{3},$$

$$i\dot{c}_{2} = \omega_{2}c_{2} - g_{23}^{*}a_{2}^{*}a_{3} - g_{13}^{*}a_{1}^{*}c_{2}^{*}a_{3}.$$
(2)

При этом среднее значение от произведения нескольких операторов факторизуется в виде произведения средних значений каждого из операторов.

Найдем дисперсионное уравнение системы в окрестности частоты ω_0 . Беря за основу уравнение для \dot{a}_2 , видим, что скорость изменения амплитуды a_2 определяется выражениями a_1c_1 и $c_2^*a_3$. Слагаемое с (a_1c_1) описывает вклад в скорость изменения амплитуды a_2 за счет гибели атома на первом уровне и поглощением фотона с частотой ω_1 , в результате чего атом переходит на уровень 2. Слагаемое ($c_2^*a_3$) описывает процесс гибели атома на уровне 3 с испусканием фотона на частоте ω_2 , в результате чего атом переходит на уровень 2. Соответствующие им операторы $\hat{c}_1 \hat{a}_1$ и $\hat{c}_2^* \hat{a}_3$ описывают состояния с энергиями $\hbar\omega_1$ и $\hbar(\Omega_0 - \omega_2)$, равными энергии $\hbar\omega_0$ второго атомного уровня. Следовательно, состояние атома на уровне 2, атома в основном состоянии плюс фотон первого импульса и реплика возбужденного состояния 3, сдвинутая вниз на энергию $\hbar\omega_2$ фотона второго импульса, вырождены по энергии. Используя (2), получаем для амплитуд a_1c_1 и $c_2^*a_3$ следующие уравнения:

$$i(a_{1}c_{1})^{\cdot} = \omega_{1}a_{1}c_{1} - g_{12}^{*}c_{1}^{*}c_{1}a_{2} - g_{13}^{*}c_{1}^{*}c_{1}c_{2}^{*}a_{3} - g_{12}^{*}a_{1}^{*}a_{1}a_{2} - g_{13}^{*}a_{1}^{*}a_{1}c_{2}^{*}a_{3},$$

$$i(c_{2}^{*}a_{3})^{\cdot} = (\Omega_{0} - \omega_{2})c_{2}^{*}a_{3} - g_{23}c_{2}^{*}c_{2}a_{2} - g_{13}c_{2}^{*}c_{2}c_{1}a_{1} + g_{23}a_{3}^{*}a_{3}a_{2} + g_{13}a_{3}^{*}a_{3}a_{1}c_{1}.$$
(3)

Далее будем считать, что амплитуды c_1 и c_2 намного превышают амплитуды для атомов на соответствующих уровнях ($c_1, c_2 \gg a_1, a_2, a_3$). Назовем этот предел приближением заданной плотности фотонов обоих импульсов. В этом приближении второе и третье слагаемые в последних двух уравнениях в (2) исчезающе малы и ими можно пренебречь. Тогда решения этих уравнений имеют простой вид:

$$c_1 = c_{10}e^{-i\omega_1 t}, \quad c_2 = c_{20}e^{-i\omega_2 t}$$

где c_{10} и c_{20} — начальные значения амплитуд для фотонов. Таким образом, видно, что огибающие функций $c_1(t)$ и $c_2(t)$ в приближении заданной плотности фотонов обоих импульсов не изменяются со временем:

$$|c_1|^2 = c_{10}^2 \equiv f_{10} = \text{const}, \quad |c_2|^2 = c_{20}^2 \equiv f_{20} = \text{const}.$$

Также видно, что последние два слагаемых в обоих уравнениях (3) также исчезающе малы по сравнению с остальными слагаемыми. Тогда уравнение для a_2 из (2) и оба уравнения (3) в приближении заданной плотности фотонов обоих импульсов образуют замкнутую систему из трех уравнений для амплитуд для квазичастиц с одной и той же квазиэнергией $\hbar\omega_0 \approx \hbar\omega_1 \approx \hbar(\Omega_0 - \omega_2)$:

$$i\dot{a}_{2} = \omega_{0}a_{2} - g_{12}(a_{1}c_{1}) - g_{23}^{*}(c_{2}^{*}a_{3}),$$

$$i(a_{1}c_{1})^{\cdot} = \omega_{1}(a_{1}c_{1}) - g_{12}^{*}f_{10}a_{2} - g_{13}^{*}f_{10}(c_{2}^{*}a_{3}),$$

$$i(c_{2}^{*}a_{3})^{\cdot} = (\Omega_{0} - \omega_{2})(c_{2}^{*}a_{3}) - g_{23}f_{20}a_{2} - g_{13}f_{20}(a_{1}c_{1}),$$

$$(4)$$

где f_{10} и f_{20} — (заданные) плотности фотонов обоих импульсов. Таким образом, в приближении заданной плотности фотонов обоих импульсов полученная система уравнений (4) для функций a_2 , a_1c_1 , $c_2^*a_3$ является линейной. Решение ее будем искать в виде

$$a_2, a_1c_1, c_2^*a_3 \sim e^{-i\omega t}$$

где ω — искомая собственная частота атомных поляритонов. Тогда для стационарных амплитуд получаем алгебраическую систему линейных уравнений:

$$(\omega - \omega_0)a_2 + g_{12}(a_1c_1) + g_{23}^*(c_2^*a_3) = 0,$$

$$(\omega - \omega_1)(a_1c_1) + g_{12}^*f_{10}a_2 + g_{13}^*f_{10}(c_2^*a_3) = 0,$$
 (5)

$$(\omega - \Omega_0 + \omega_2)(c_2^*a_3) + g_{23}f_{20}a_2 + g_{13}f_{20}(a_1c_1) = 0,$$

детерминант которой

$$\begin{vmatrix} \omega - \omega_0 & g_{12} & g_{23}^* \\ g_{12}^* f_{10} & \omega - \omega_1 & g_{13}^* f_{10} \\ g_{23} f_{20} & g_{13} f_{20} & \omega - \Omega_0 + \omega_2 \end{vmatrix} = 0$$
(6)

определяет закон дисперсии взаимодействующих трехуровневых атомов и фотонов в окрестности частоты $\omega = \omega_0$ низшего возбужденного уровня атома. Раскрывая детерминант, получаем кубическое уравнение для определения частоты ω атомных поляритонов:

$$(\omega - \omega_0)(\omega - \omega_1)(\omega - \Omega_0 + \omega_2) - |g_{12}|^2 f_{10}(\omega - \Omega_0 + \omega_2) - |g_{23}|^2 f_{20}(\omega - \omega_1) - |g_{13}|^2 f_{10} f_{20}(\omega - \omega_0) + (g_{12}g_{23}g_{13}^* + g_{12}^*g_{23}^*g_{13}) f_{10} f_{20} = 0.$$
(7)

Полагая константы g_{12} , g_{23} , g_{13} комплексными, представляя их в виде произведений действительных амплитуд и фазовых множителей $g_{12} \exp(i\varphi_{12})$, $g_{23} \exp(i\varphi_{23})$, $g_{13} \exp(i\varphi_{13})$ и вводя разность фаз $\vartheta =$ $= \varphi_{12} + \varphi_{23} - \varphi_{13}$, получаем окончательное выражение для закона дисперсии атомных поляритонов вида

$$(\omega - \omega_0)(\omega - \omega_1)(\omega - \Omega_0 + \omega_2) - - \Omega_{12}^2(\omega - \Omega_0 + \omega_2) - \Omega_{23}^2(\omega - \omega_1) - - \Omega_{13}^2(\omega - \omega_0) + 2\Omega_{12}\Omega_{23}\Omega_{13}\cos\vartheta = 0, \quad (8)$$

где

$$\Omega_{12}^2 = g_{12}^2 f_{10}, \quad \Omega_{23}^2 = g_{23}^2 f_{20}, \quad \Omega_{13}^2 = g_{13}^2 f_{10} f_{20} \quad (9)$$

— соответствующие частоты Раби. Отсюда видно, что квадрат частоты Раби Ω^2_{12} разрешенного однофотонного перехода между первым и вторым уровнями пропорционален квадрату матричного элемента g_{12}^2 перехода и плотности фотонов f_{10} импульса, действующего на этом переходе. Для двухуровневых атомов, взаимодействующих с полем электромагнитной волны, известно [32], что частота Раби определяется выражением $\Omega_R = \mu \mathcal{E}_0 / \hbar$, где μ — дипольный момент перехода, \hbar — постоянная Планка, \mathcal{E}_0 — амплитуда поля. Таким образом, используемое выражение Ω_{12}^2 для частоты Раби совпадает с ранее введенным [32]. Квадрат частоты Раби Ω^2_{23} однофотонного разрешенного перехода между уровнями 2 и 3 пропорционален квадрату матричного элемента дипольного момента перехода g_{23}^2 и плотности фотонов f_{20} второго импульса, действующего на этом переходе. Наконец, квадрат частоты Раби Ω^2_{13} пропорционален квадрату матричного элемента g_{13}^2 двухфотонного оптически-разрешенного перехода между уровнями 1 и 3 и произведению плотностей фотонов обоих импульсов $f_{10}f_{20}$. При условии $f_{10} = f_{20}$ получаем, что частота Раби двухфотонного перехода Ω_{13} пропорциональна плотности фотонов, что и наблюдалось в ряде экспериментов [15].

Из (8) следует, что закон дисперсии атомных поляритонов имеет три действительных корня, которые формируют три дисперсионные ветви в зависимости частоты поляритонной волны ω от частоты $\omega_1 = ck_1$ фотонов первого импульса, где k_1 — волновой вектор. Форма и расположение ветвей закона дисперсии существенно определяются плотностями фотонов f_{10} и f_{20} обоих импульсов. В (8) имеются три слагаемых, каждое из которых пропорционально квадрату соответствующей частоты Раби либо квадрату модуля соответствующего матричного элемента перехода. Эти три слагаемых описывают независимые вклады каждого из процессов в закон дисперсии. При этом знак либо фаза соответствующей константы взаимодействия по отношению к двум другим в гамильтониане (1) не играет роли. Последнее слагаемое в (8) пропорционально произведению трех различных частот Раби (либо трех констант взаимодействия g_{12}, g_{23} и g_{13}). Его появление обусловлено одновременным действием (квантовой интерференцией) всех трех процессов. Если хотя бы одна из констант взаимодействия равна нулю, то это слагаемое отсутствует и зависимость собственных частот атомных поляритонов от разности фаз исчезает. При этом учет знаков констант или, точнее, фазовых соотношений между ними играет чрезвычайно важную роль, так как закон дисперсии зависит еще и от разности фаз ϑ этих констант. Наличие последнего слагаемого в (8) является следствием когерентности процесса взаимодействия фотонов с атомами. По этой причине экспериментальное установление особенностей поведения закона дисперсии при одновременном учете всех трех оптических переходов может способствовать установлению фазовых соотношений между константами взаимодействия.

3. ЗАКОН ДИСПЕРСИИ ДЛЯ ТРЕХУРОВНЕВОГО АТОМА С НЕЭКВИДИСТАНТНЫМ ЭНЕРГЕТИЧЕСКИМ СПЕКТРОМ

Обсудим особенности поведения ветвей закона дисперсии атомных поляритонов. Будем считать сначала, что частота $\omega_1 = ck_1$ фотонов первого импульса, действующего между уровнями 1 и 2, непрерывно изменяется, тогда как частота ω_2 фотонов второго импульса является фиксированным параметром. Используя (8), можно получить явные решения кубического уравнения в виде зависимости $\omega(\omega_1)$. Однако более удобным оказывается построение и исследование обратной функции $\omega_1(\omega)$ при $\omega_2 = \text{const. Из}$ (8) легко получить

$$\omega_1 = \omega - \frac{A_1}{\omega - \omega_+} - \frac{B_1}{\omega - \omega_-},\tag{10}$$

где

$$\omega_{\pm} = \frac{1}{2} \times \\ \times \left(\omega_0 + \Omega_0 - \omega_2 \pm \sqrt{(\omega_0 - \Omega_0 + \omega_2)^2 + 4\Omega_{23}^2} \right), \quad (11)$$

$$A_{1} = \left[(\omega_{+} - \Omega_{0} + \omega_{2})\Omega_{12}^{2} + (\omega_{+} - \omega_{0})\Omega_{13}^{2} - 2\Omega_{12}\Omega_{23}\Omega_{13}\cos\vartheta \right] / (\omega_{+} - \omega_{-}),$$

$$B_{1} = \left[(\Omega_{0} - \omega_{2} - \omega_{-})\Omega_{12}^{2} + (\omega_{0} - \omega_{-})\Omega_{13}^{2} + 2\Omega_{12}\Omega_{23}\Omega_{13}\cos\vartheta \right] / (\omega_{+} - \omega_{-}).$$
(12)

Здесь частоты ω_+ и ω_- являются аналогами поперечных частот в теории экситон-поляритонов. Видно, что существуют две такие частоты. В предельном случае, когда $\omega_2 = \Omega_0 - \omega_0 = \omega_0$, выражения (11), (12) принимают простой вид:

$$\omega_{\pm} = \omega_0 \pm \Omega_{23},\tag{13}$$

$$A_{1} = \frac{1}{2} \left(\Omega_{12}^{2} + \Omega_{13}^{2} - 2\Omega_{12}\Omega_{13}\cos\vartheta \right),$$

$$B_{1} = \frac{1}{2} \left(\Omega_{12}^{2} + \Omega_{13}^{2} + 2\Omega_{12}\Omega_{13}\cos\vartheta \right).$$
(14)

В этом пределе расщепление первого возбужденного уровня атома определяется только частотой Раби Ω_{23} , тогда как коэффициенты A_1 и B_1 в (10) зависят от двух других частот Раби, Ω_{12} и Ω_{13} , а также от разности фаз ϑ . Из (14) следует, что при $\vartheta = \pi/2$ оба коэффициента одинаковы и равны $A_1 = B_1 = (\Omega_{12}^2 + \Omega_{13}^2)/2$. Если же $\vartheta = 0$, то $A_1 = (\Omega_{12} - \Omega_{13})^2/2$, $B_1 = (\Omega_{12} + \Omega_{13})^2/2$. Наконец, при $\vartheta = \pi$ получаем $A_1 = (\Omega_{12} + \Omega_{13})^2/2$, $B_1 =$ $= (\Omega_{12} - \Omega_{13})^2/2$. Таким образом, при $\vartheta = 0$ либо $\vartheta = \pi$ один из коэффициентов может оказаться равным нулю при условии, что $\Omega_{12} = \Omega_{13}$.

Введем в рассмотрение расстройки резонансов Δ , δ_1 , δ_2 , нормированные на частоту Раби Ω_{12} :

$$\omega - \omega_0 = \Omega_{12}\Delta, \quad \omega_1 - \omega_0 = \Omega_{12}\delta_1, \qquad (15)$$
$$\omega_2 - \Omega_0 + \omega_0 = \Omega_{12}\delta_2.$$

Тогда дисперсионное уравнение (8) для определения Δ приводится к виду

$$\Delta(\Delta - \delta_1)(\Delta + \delta_2) - \Delta - \delta_2 - \omega_{23}^2(\Delta - \delta_1) - \omega_{13}^2 \Delta + 2\omega_{23}\omega_{13}\cos\vartheta = 0, \quad (16)$$

где $\omega_{23} = \Omega_{23}/\Omega_{12}$, $\omega_{13} = \Omega_{13}/\Omega_{12}$ — нормированные на Ω_{12} частоты Раби Ω_{23} и Ω_{13} . Соответственно, уравнение для расстройки резонанса δ_1 при $\delta_2 = 0$ получается в виде

$$\delta_1 = \Delta - \frac{1}{2} (1 + \omega_{13}^2) \left(\frac{1}{\Delta - \omega_{23}} + \frac{1}{\Delta + \omega_{23}} \right) \quad (17a)$$

при $\vartheta=\pi/2$ и

$$\delta_1 = \Delta - \frac{1}{2} \left(\frac{(1 \mp \omega_{13})^2}{\Delta - \omega_{23}} + \frac{(1 \pm \omega_{13})^2}{\Delta + \omega_{23}} \right)$$
(17b)

при ϑ , равном 0 и π (соответственно верхний и нижний знаки в формуле (11)).

На рис. 2 представлено поведение функции $\delta_1(\Delta)$ при нескольких значениях параметров. Видно, что функция $\delta_1(\Delta)$ состоит из трех ветвей. Каждая ветвь растет с ростом Δ . В полюсах при $\Delta = \pm \omega_{23}$ ветви стремятся к $\pm \infty$. Графики функции $\delta_1(\Delta)$ при $\vartheta = \pi/2$ (рис. 2*a*) не изменяются при замене Δ на

Рис. 2. Зависимость между расстройками резонанса δ_1 и Δ при $\delta_2 = 0$, различных значениях разности фаз ϑ , равных $\pi/2$ (*a*), 0 (δ), π (*b*), нормированных частотах Раби $\omega_{23} = 3$ и ω_{13} , равных 3 (пунктир), 0.5 (штрихпунктир), 0 (сплошные линии), -0.5 (штриховые линии)

 $-\Delta$ и δ_1 на $-\delta_1$, т.е. являются симметричными относительно $\delta_1 = 0$ и $\Delta = 0$. Расстояния в сужениях между первой и второй, а также между второй и третьей ветвями растут с ростом параметра ω_{13} .

В случае, если $\vartheta = 0$ и $\omega_{13} = 1$, возникает пересечение между второй и третьей ветвями рис. 2δ в точке с координатами $(\delta_1, \Delta) = (\omega_{23} - 1/\omega_{13}, \omega_{23})$. Как следует из (17b) и рис. 2δ , если $\omega_{13} \neq 1$, то пересечение ветвей отсутствует и минимальное расстояние между ветвями растет при изменении ω_{13} . Аналогично, если $\vartheta = \pi$ и $\omega_{13} = 1$, то возникает пересечение между первой и второй ветвями (рис. 2ϵ). Таким образом, отсюда следует, что при учете процесса прямого двухфотонного возбуждения атома с уровня 1 на уровень 3, возникает эффект пресечение имеет место только при $\vartheta = 0$ и $\vartheta = \pi$. Эти особенности поведения функции $\delta_1(\Delta)$ должны проявиться и в поведении ветвей закона дисперсии $\Delta(\delta_1)$.

Используя кубическое уравнение (16), представим его решение как функцию $\Delta(\delta_1)$ при постоянных значениях параметров ω_{13} , ω_{23} , δ_2 , ϑ [33]:

$$\Delta_{1} = -\frac{a}{3} + 2\sqrt{-\frac{p}{3}} \cos\frac{\alpha}{3},$$

$$\Delta_{2,3} = -\frac{a}{3} + 2\sqrt{-\frac{p}{3}} \cos\frac{\alpha \pm \pi}{3},$$
(18)

где

0

$$\cos \alpha = -\frac{q}{2\sqrt{-(p/3)^3}},$$

$$p = -\frac{1}{3}a^2 + b, \quad q = \frac{2}{27}a^3 - \frac{1}{3}ab + c,$$

$$a = \delta_2 - \delta_1, \quad b = -(1 + \delta_1\delta_2 + \omega_{13}^2 + \omega_{23}^2),$$

$$c = \delta_2 + \omega_{23}^2\delta_1 + 2\omega_{13}\omega_{23}\cos\vartheta.$$

Поскольку в окрестности актуальной точки k-пространства p < 0 и $Q = (p/3)^3 + (q/2)^2$, все три корня Δ_i (i = 1, 2, 3) являются действительными. Используя (18) и рис. 2, представим кривые закона дисперсии атомных поляритонов на рис. 3. Видно, что закон дисперсии $\Delta(\delta_1)$ при δ_2 = const представляет собой структуру, состоящую из трех восходящих с ростом δ_1 ветвей, положение и форма которых существенно определяются параметрами системы. В случае, если $\vartheta = \pi/2$, то средняя ветвь закона дисперсии проходит через точку $\Delta = \delta_1 = 0$. Как при отрицательных, так и при положительных значениях Δ и δ_1 ветви закона дисперсии при изменении δ_1 изменяются таким образом, что возникают области сужений между нижней и средней ветвями (рис. 3).

4 ЖЭТФ, вып. 4

С ростом параметра ω_{13} области сужений увеличиваются. При $\vartheta = \pi$ область сужения между верхней и средней поляритонными ветвями уменьшается при уменьшении приведенной частоты Раби ω_{13} и схлопывается при $\omega_{13} = 1$, приводя к возникновению эффекта самопересечения обоих ветвей. Отметим, что область сужения слабо зависит от ω_{13} и пересечение нижней и средней ветвей закона дисперсии не возникает. Однако при $\vartheta = \pi$ и $\omega_{13} = 1$ ситуация обратная: сужение схлопывается в длинноволновой области при $\Delta < 0$ и, таким образом, возникает пересечение нижней и средней ветвей закона дисперсии.

Таким образом, на рис. 3 видно, что при учете процесса двухфотонного возбуждения атома возникает эффект пересечения либо верхней и средней ветвей при $\vartheta = 0$, либо нижней и средней ветвей закона дисперсии при $\vartheta = \pi$ и $\omega_{13} = 1$. Отметим, что попарное самопересечение ветвей закона дисперсии возникает только при $\vartheta = 0$ либо $\vartheta = \pi$ при условии, что $\omega_{13} = 1$, т.е. при равенстве частот Раби Ω_{13} и Ω_{12} . Следовательно, если изменять плотность фотонов f_{20} второго импульса, то частоты Раби Ω_{12} и Ω_{13} оказываются одинаковыми при определенном значении f_{20} . В этом случае при $A_1 = 0$ происходит пересечение верхней и средней поляритонных ветвей. Дальнейший рост f₂₀ снимает пересечение этих ветвей и снова восстанавливается структура из трех непересекающихся ветвей. Если разность фаз ϑ мало отличается от нуля, то имеет место сильное сближение верхней и средней ветвей, однако пересечение ветвей отсутствует. Сближение и удаление поляритонных ветвей при изменении плотности фотонов f₂₀ соответствуют изменению поляритонных частот Раби и возникновению эффекта индуцированной мощным полем первого импульса оптической связи (каплинга) атома с излучением.

Представленные на рис. 2 и 3 результаты свидетельствуют о том, что важными параметрами, определяющими особенности поведения ветвей закона дисперсии атомных поляритонов, являются нормированные частоты Раби ω_{13} и ω_{23} . Из (16) следует, что расстройка резонанса δ_2 в области перехода между уровнями 2 и 3 является столь же значимым параметром. На рис. 4 представлен закон дисперсии $\Delta(\delta_1)$ атомных поляритонов при нескольких значениях параметров δ_2 и ϑ , но при одном и том же значении частот Раби. Видно, что и в этом случае закон дисперсии состоит из трех восходящих ветвей, причем по-прежнему имеет место эффект самопересечения ветвей при $\omega_{13} = \omega_{23} = 1$ и разности фаз $\vartheta = 0$ (рис. 4δ) и $\vartheta = \pi$ (рис. 4ϵ).

Рис. 3. Закон дисперсии $\Delta(\delta_1)$ атомных поляритонов при $\delta_2 = 0$, значениях разности фаз ϑ , равных $\pi/2$ (*a*), 0 (*б*), π (*в*), нормированных частотах Раби $\omega_{23} = 3$ и ω_{13} , равных 3 (пунктир), 0.5 (штрихпунктир), 0 (сплошные линии), -0.5(штриховые линии)

Рис. 4. Закон дисперсии $\Delta(\delta_1)$ атомных поляритонов при значениях нормированных частот Раби $\omega_{13} = 1$, $\omega_{23} = 3$, разностях фаз ϑ , равных $\pi/2$ (*a*), 0 (*б*), π (*в*), и расстройках резонанса δ_2 , равных -3 (штрихпунктир), 0 (сплошные линии), 3 (штриховые линии)

Рассмотрим теперь поведение ветвей закона дисперсии для случая, когда переменной является частота второго импульса $\omega_2 = ck_2$, действующего между уровнями 2 и 3, а частоту $\omega_1 = \text{const}$ будем считать постоянным параметром. Используя (8), легко получить зависимость обратной функции, а именно $\omega_2(\omega)$:

$$\omega_2 = \Omega_0 - \omega + \frac{A_2}{\omega - \overline{\omega}_+} + \frac{B_2}{\omega - \overline{\omega}_-}, \qquad (19)$$

где

$$\overline{\omega}_{\pm} = \frac{1}{2} \left(\omega_0 + \omega_1 \pm \sqrt{(\omega_0 - \omega_1)^2 + 4\Omega_{12}^2} \right), \quad (20)$$

$$A_{2} = \left[\Omega_{23}^{2}\left(\overline{\omega}_{+}-\omega_{1}\right)+\Omega_{13}^{2}\left(\overline{\omega}_{+}-\omega_{0}\right)-2\Omega_{12}\Omega_{23}\Omega_{13}\cos\vartheta\right]/\left(\overline{\omega}_{+}-\overline{\omega}_{-}\right),$$

$$B_{2} = \left[\Omega_{23}^{2}\left(\omega_{1}-\overline{\omega}_{-}\right)+\Omega_{13}^{2}\left(\omega_{0}-\overline{\omega}_{+}\right)+2\Omega_{12}\Omega_{23}\Omega_{13}\cos\vartheta\right]/\left(\overline{\omega}_{+}-\overline{\omega}_{-}\right).$$
(21)

Здесь частоты $\overline{\omega}_{\pm}$ также играют роль поперечных частот поляритонов, которые теперь определяются параметрами ω_1 и Ω_{12} , а не ω_2 и Ω_{23} . В условиях точного резонанса $\omega_1 = \omega_0 = \Omega_0 - \omega_0$ получаем

$$\overline{\omega}_{\pm} = \omega_0 \pm \Omega_{12},\tag{22}$$

$$A_{2} = \frac{1}{2} \left(\Omega_{23}^{2} + \Omega_{13}^{2} - 2\Omega_{23}\Omega_{13}\cos\vartheta \right),$$

$$B_{2} = \frac{1}{2} \left(\Omega_{23}^{2} + \Omega_{13}^{2} + 2\Omega_{23}\Omega_{13}\cos\vartheta \right).$$
(23)

Легко видеть, что $A_2 = B_2 = (\Omega_{13}^2 + \Omega_{23}^2)/2$ при $\vartheta = \pi/2$, $A_2 = (\Omega_{13} - \Omega_{23})^2/2$, $B_2 = (\Omega_{13} + \Omega_{23})^2/2$ при $\vartheta = 0$, $A_2 = (\Omega_{13} + \Omega_{23})^2/2$, $B_2 = (\Omega_{13} - \Omega_{23})^2/2$ при $\vartheta = \pi$. Здесь, как и ранее, один из коэффициентов, A_2 либо B_2 , равен нулю при условии, что $\Omega_{13} = \Omega_{23}$.

Для построения графика закона дисперсии $\Delta(\delta_2)$ при δ_1 = const воспользуемся снова решением (18). Закон дисперсии атомных поляритонов в окрестности фиксированной расстройки резонанса δ_1 для фотонов первого импульса, действующего между уровнями 1 и 2, в зависимости от непрерывно меняющейся расстройки δ_2 для фотонов второго импульса, действующего между уровнями 2 и 3, представлен на рис. 5. Видно, что закон дисперсии в этом случае состоит из трех ниспадающих ветвей в зависимости от расстройки резонанса δ_2 и также имеет место эффект пересечения двух соседних ветвей при $\omega_{13} = \omega_{23} = 1$ и разности фаз $\vartheta = 0$ (рис. 56) либо $\vartheta = \pi$ (рис. 56).

Если рассматривать частоты фотонов ω_1 и ω_2 обоих импульсов (и соответствующие им волновые векторы k_1 и k_2) как две независимые переменные,

Рис. 5. Закон дисперсии $\Delta(\delta_2)$ атомных поляритонов при значениях нормированных частот Раби $\omega_{13} = \omega_{23} = 1$, разностях фаз ϑ , равных $\pi/2$ (*a*), 0 (*б*), π (*в*), и расстрой-ках резонанса δ_1 , равных -3 (штрихпунктир), 0 (сплошные линии), 3 (штриховые линии). Кружками отмечены точки пересечения ветвей закона дисперсии

Рис. 6. Закон дисперсии $\Delta(\delta_1, \delta_2)$ при нормированных частотах Раби $\omega_{13} = \omega_{23} = 1$, разностях фаз ϑ , равных $\pi/2$ (*a*), 0 (*б*), π (*b*). Кружками отмечены точки пересечения ветвей закона дисперсии

то можно построить зависимость $\omega(k_1, k_2)$ и ввести представление о поверхностях закона дисперсии (вместо ветвей закона дисперсии). На рис. 6 представлены графики зависимости $\Delta(\delta_1, \delta_2)$. Видно, что поверхности закона дисперсии состоят из трех частей — верхней, средней и нижней, расположенных в различных спектральных областях. Каждая из частей имеет как восходящие, так и нисходящие области, в зависимости от изменения расстроек резонанса фотонов первого и второго импульсов δ_1 и δ_2 . При значениях разности фаз $\vartheta=0$ либо $\vartheta=\pi$ и значениях частот Раби $\omega_{13} = \omega_{23} = 1$ имеются точки пересечения соответственно верхней и средней частей поверхности закона дисперсии (рис. 66) либо средней и нижней частей (рис. 66). Наличие точек пересечения означает, что при данных значениях частот ω_{13} , ω_{23} существует только одна частота нутации атомных поляритонов. Сечения этих поверхностей вдоль оси δ_1 при $\delta_2 = \text{const}$ или вдоль оси δ_2 при $\delta_1 = \text{const}$ соответствуют законам дисперсии, представленных соответственно на рис. 4 и 5.

Следует отметить, что если в (8) положить $\Omega_{13} = 0$, т. е. если пренебречь процессом двухфотонного возбуждения атома с первого уровня на третий, то закон дисперсии представляется укороченным кубическим уравнением для определения собственных частот ω атомных поляритонов:

$$(\omega - \omega_0)(\omega - \omega_1)(\omega - \Omega_0 + \omega_2) - - \Omega_{12}^2(\omega - \Omega_0 + \omega_2) - \Omega_{23}^2(\omega - \omega_1) = 0, \quad (24)$$

однако в нем отсутствует слагаемое с разностью фаз ϑ . Это означает, что при $\Omega_{13} = 0$ (либо $\Omega_{23} = 0$) процесс трехчастичной когерентной интерференции исчезает. Из (24) и рис. 7 следует, что закон дисперсии по-прежнему состоит из трех ветвей, форма которых качественно совпадает с формой ветвей атомных поляритонов в случае, когда параметр $\Omega_{13} \neq 0$ (рис. 3).

Отметим здесь, что наряду с перестройкой энергетического спектра на частоте ω_0 второго уровня атома возникает перестройка также и в окрестности собственной частоты Ω_0 третьего уровня, обусловленная теми же взаимодействиями, что и в (1). В самом деле, если взять из (2) за основу уравнение для амплитуды a_3 для третьего уровня и построить соответствующие уравнения для амплитуд a_2c_2 и $a_1c_1c_2$, содержащихся в этом уравнении, то в приближении заданных плотностей f_{10} и f_{20} фотонов обоих импульсов для собственной частоты Ω атомных поляритонов получаем следующее уравнение:

Рис. 7. Закон дисперсии $\Delta(\delta_1)$ атомных поляритонов при $\omega_{13} = 0, \ \omega_{23} = 3$ и значениях расстройки резонанса δ_2 , равных 3 (пунктир), 0.5 (штрихпунктир), 0 (сплошные линии), -0.5 (штриховые линии)

$$(\Omega - \Omega_0)(\Omega - \omega_0 - \omega_2)(\Omega - \omega_1 - \omega_2) - \Omega_{12}^2(\Omega - \Omega_0) - \Omega_{23}^2(\Omega - \omega_1 - \omega_2) - \Omega_{13}^2(\Omega - \omega_0 - \omega_2) + 2\Omega_{12}\Omega_{23}\Omega_{13}\cos\vartheta = 0.$$
(25)

Это уравнение имеет три корня для переменной Ω , которые соответствуют трем корням дисперсионного уравнения (8) для атомных поляритонов на частоте $\omega = \omega_0$. На рис. 8 представлены поверхности закона дисперсии $\Delta(\delta_1, \delta_2)$, которые состоят из трех частей, расположенных в трех неперекрывающихся областях в зависимости от расстроек резонансов фотонов обоих импульсов. Видно, что верхняя, средняя и нижняя части поверхности закона дисперсии имеют восходящий характер поведения. Наличие трех неперекрывающихся областей свидетельствует о возникновении трех частот нутации атомных поляритонов, при различных значениях частот Раби. При значениях разности фаз $\vartheta = 0$ либо $\vartheta = \pi$ и значениях частот Раби $\omega_{13} = \omega_{23} = 1$ имеются точки пересечения соответственно верхней и средней частей поверхности закона дисперсии (рис. 86), либо средней и нижней частей (рис. 8в). Зависимости $\Delta(\delta_2)$ верхней и средней ветвей закона дисперсии существенно определяются значением расстройки резонанса фотонов второго импульса (рис. 8a''-e''). На рис. 8 представлены сечения этих поверхностей $\Delta(\delta_1)$ (рис. 8a'-e') и $\Delta(\delta_2)$ (рис. 8a''-e''). На рис. 8а"-е" видно, что верхняя и нижняя ветви законов дисперсии $\Delta(\delta_2)$ имеют вид монотонно возрастающих прямых. Видно также, что наличие расщеплений на частоте $\omega = \omega_0$ приводит к соответствую-

Рис. 8. Закон дисперсии $\Delta(\delta_1, \delta_2)$ при нормированных частотах Раби $\omega_{13} = \omega_{23} = 1$, разности фаз ϑ , равных $\pi/2$ (a), 0 (δ), π (e) и соответствующие сечения поверхностей закона дисперсии $\Delta(\delta_1)$ при значениях расстройки резонанса δ_2 , равных 3 (пунктир), 0.5 (штрихпунктир), 0 (сплошные линии), -0.5 (штриховые) (a', d', e') и $\Delta(\delta_2)$ при значениях расстройки резонанса δ_1 , равных 3 (пунктир), 0.5 (штрихпунктир), 0.5 (штрихпунктир), 0 (сплошные линии), -0.5 (штриховые линии), -0.5 (штриховые линии) (a'', d', e''). Кружками отмечены точки пересечения ветвей закона дисперсии

щим расщеплениям и перенормировкам энергии на частоте Ω_0 третьего уровня. Отсюда можно сделать вывод, что при одновременном учете однофотонных и двухфотонных оптических переходов возникает существенная перестройка энергетического спектра трехуровневого атома.

4. ЗАКОН ДИСПЕРСИИ ТРЕХУРОВНЕВОГО АТОМА С ЭКВИДИСТАНТНЫМ ЭНЕРГЕТИЧЕСКИМ СПЕКТРОМ

Рассмотрим подробнее особенности поведения закона дисперсии для трехуровневого атома с эквидистантным энергетическим спектром. Собственные частоты, соответствующие второму и третьему (возбужденным) уровням, соответственно равны ω_0 и $2\omega_0$. На атом падают фотоны одного и того же импульса с частотой ω_c . Из (8) следует, что при $\Omega_{13} = 0$ и $\Omega_{23} = 0$ (предел двухуровневого атома) уравнение распадается на два выражения: $(\omega - \omega_0)(\omega - \omega_c) - \Omega_{12}^2 = 0$ и $\omega - 2\omega_0 + \omega_c = 0$, первое из которых представляет собой хорошо известное уравнение поляритонного типа, а второе — дисперсию «голых» фотонов, не взаимодействующих со средой. Обе поляритоноподобные ветви закона дисперсии пересекаются с прямой $\omega - 2\omega_0 + \omega_c = 0$ в двух точках $C(\omega - \Omega_{12}/\sqrt{2}, \omega + \Omega_{12}/\sqrt{2})$ и $D\left(\omega + \Omega_{12}/\sqrt{2}, \omega - \Omega_{12}/\sqrt{2}\right)$ (рис. 9*a*). Если теперь положить, например, $\Omega_{23} \neq 0$, но $\Omega_{13} = 0$, т.е. включить взаимодействие фотона с атомом на переходе $2 \leftrightarrow 3$, то в этом случае уравнение (8) не распадается на два независимых выражения. Вырожденные по энергии точки пересечения ветвей С и D расщепляются благодаря взаимодействию и формируются три отдельные ветви закона дисперсии: верхняя, средняя и нижняя. Верхняя и средняя ветви имеют экстремумы в окрестности точки С, а средняя и нижняя — в окрестности точки D. С ростом Ω_{23} величины расщеплений растут и положения экстремумов изменяются.

Введем далее нормированные частоты

$$\Delta = \frac{\omega - \omega_0}{\Omega_{12}}, \quad \delta = \frac{\omega_c - \omega_0}{\Omega_{12}},$$

$$\omega_{23} = \frac{\Omega_{23}}{\Omega_{12}}, \quad \omega_{13} = \frac{\Omega_{13}}{\Omega_{12}}.$$
 (26)

Тогда дисперсионное уравнение (8) представляется в виде

$$\Delta^{3} - \Delta(1 + \delta^{2} + \omega_{23}^{2} + \omega_{13}^{2}) + \delta(\omega_{23}^{2} - 1) + 2\omega_{23}\omega_{13}\cos\vartheta = 0. \quad (27)$$

Из (27) следует, что закон дисперсии $\Delta(\delta)$ состоит из трех ветвей, имеющих как восходящие, так и нисходящие участки зависимости $\Delta(\delta)$. В общем случае решения уравнения (27) выражаются формулами

$$\Delta_{1} = \frac{2}{\sqrt{3}} \sqrt{1 + \delta^{2} + \omega_{23}^{2} + \omega_{13}^{2}} \cos \frac{\alpha}{3},$$

$$\Delta_{2,3} = -\frac{2}{\sqrt{3}} \sqrt{1 + \delta^{2} + \omega_{23}^{2} + \omega_{13}^{2}} \cos \frac{\alpha \pm \pi}{3},$$
 (28)

где

$$\cos \alpha = \frac{(\omega_{23}^2 - 1)\delta + 2\omega_{23}\omega_{13}\cos\vartheta}{\left(2/3\sqrt{3}\right)\left(1 + \delta^2 + \omega_{23}^2 + \omega_{13}^2\right)^{3/2}}.$$
 (29)

Рассмотрим случай $\vartheta = \pi/2$ (рис. 9). На рис. 9*a* видно, что при $\omega_{13} \neq 0$ и $\omega_{23} \neq 0$ точки *C* и *D* расщепляются, возникают три отдельные ветви закона дисперсии, которые характеризуются наличием восходящих и нисходящих участков зависимости $\Delta(\delta)$. С ростом ω_{13} ветви закона дисперсии удаляются друг от друга (рис. 9*a*, *б*). Минимумы верхней ветви постепенно смещаются в коротковолновую сторону, максимумы нижней ветви — в длинноволновую сторону, а средняя ветвь медленно изменяет свой профиль с ростом δ , оставаясь в окрестности прямой $\Delta = 0$. При $\omega_{23} = \omega_{13}$ верхняя и нижняя ветви становятся зеркально симметричными как относительно $\Delta = 0$, так и относительно $\delta = 0$, а средняя ветвь располагается на прямой $\Delta = 0$ при любых значениях ω_{13} . Соответственно, координаты верхней и нижней поляритонных ветвей определяются формулами

$$\Delta = \pm \sqrt{1 + \delta^2 + \omega_{23}^2 + \omega_{13}^2}.$$

Таким образом, с ростом $|\delta|$ собственные частоты нижней и верхней поляритонных ветвей растут, а их экстремумы продолжают свое смещение при больших ω_{23} . Кроме того, возникает более яркое поведение средней ветви: ее изменение вдоль оси Δ существенно усиливается. Следует отметить, что средняя ветвь закона дисперсии располагается на прямой $\Delta = 0$ (т. е. она не изменяется при изменении δ) при значениях параметров $\omega_{23} = 1$ и любых значениях ω_{13} . Таким образом, из рис. $9a, \delta$ следует, что форма и положение ветвей закона дисперсии атомных поляритонов существенно определяются частотами Раби Ω_{12} , Ω_{23} , Ω_{13} .

Обсудим теперь поведение ветвей закона дисперсии для случая $\vartheta = 0$ (рис. 10). Графики зависимости $\Delta(\delta)$ при $\vartheta = \pi/2$ и $\vartheta = 0$ на рис. 10*a* совпадают с рис. 9*a* при $\omega_{23} = 0$. Это обусловлено тем, что при $\omega_{23} = 0$ слагаемое с соз ϑ обращается в нуль.

Рис. 9. Законы дисперсии $\Delta = (\omega - \omega_0)/\Omega_{12}$ от $\delta = (\omega_c - \omega_0)/\Omega_{12}$ при значениях Ω_{23} , равных 0 (*a*), 0.5 (*б*), значениях Ω_{13} , равных 0 (сплошные линии), 0.5 (штриховые линии), 1 (пунктир), 1.5 (штрихпунктир) и разности фаз $\vartheta = \pi/2$

Рис. 10. Законы дисперсии $\Delta = (\omega - \omega_0)/\Omega_{12}$ от $\delta = (\omega_c - \omega_0)/\Omega_{12}$ при $\Omega_{23} = 0.5$ и различных значениях Ω_{13} , равных 0 (сплошные линии), 0.5 (штриховые линии), 1 (пунктир), 1.5 (штрихпунктир) и разности фаз $\vartheta = 0$

Отличия в поведении ветвей закона дисперсии возникают, только когда все частоты Раби отличны от нуля, т. е. когда слагаемое с соз ϑ отлично от нуля. Из (27) следует, что средняя ветвь закона дисперсии совпадает с прямой $\Delta = 0$ при $\omega_{23} = 1$ и $\omega_{13} = 0$. Существенные различия видны на рис. 96 и 10. Если на рис. 96 имеет место все возрастающее расталкивание средней и верхней ветвей закона дисперсии с ростом ω_{13} при фиксированном значении $\omega_{23} = 0.5$, то на рис. 10 этот процесс замедлен и ветви закона дисперсии с ростом ω_{13} располагаются в определенной области, ограниченной средней и нижней ветвями (сплошные кривые). С ростом ω_{13} сначала имеет место эффект притяжения между средней и верхней ветвями, а затем возникает расталкивание, тогда как между нижней и средней ветвями существуют только расталкивание ветвей. Верхняя и нижняя поляритонные ветви при $\omega_{13} = 0$ располагаются симметрично относительно средней ветви. Асимметрия возникает при увеличении ω_{13} , где средняя и верхняя ветви сначала сближаются с ростом ω_{13} , затем начинают удаляться друг от друга. Кроме того, при $\omega_{23} = \omega_{13} = 1$ верхняя и средняя ветви закона дисперсии пересекаются, затем снова расходятся. Таким образом, имеет место эффект спектрального сближения верхней и средней ветвей с ростом ω_{13} и их пересечение при $\omega_{23} = \omega_{13} = 1$ (пунктирные линии) и затем последующее удаление.

На рис. 10 также видно, что имеет место сильное расталкивание между нижней и средней ветвями закона дисперсии. Эту особенность поведения ветвей закона дисперсии можно интерпретировать также как изменение силы связи фотона с атомом. Таким образом, перенормировка энергетического спектра поляритонов ярко проявляется в возникновении эффекта сильной связи в длинноволновой области от частоты ω_0 и в ослаблении связи в коротковолновой области. Это указывает также на смещение актуальных точек k-пространства. Можно утверждать, что

Рис. 11. Законы дисперсии $\Delta = (\omega - \omega_0)/\Omega_{12}$ от $\delta = (\omega_c - \omega_0)/\Omega_{12}$ при $\Omega_{23} = 0.5$ и различных значениях Ω_{13} , равных 0 (сплошные линии), 0.5 (штриховые линии), 1 (пунктир), 1.5 (штрихпунктир) и разности фаз $\vartheta = \pi$

экспериментально увеличение интенсивности накачки приведет к изменению силы связи и к спектральному смещению актуальных точек в *k*-пространстве.

Результаты, представленные на рис. 11 для $\vartheta = \pi$, подобны результатам на рис. 10 для $\vartheta = 0$ (после замены Δ и δ соответственно на $-\Delta$ и $-\delta$). Видно, что основные особенности, а именно, эффект спектрального сближения, пересечения и последующего расталкивания, возникает теперь между нижней и средней ветвями закона дисперсии, а сильный эффект расталкивания возникает между верхней и средней ветвями.

Эффект пересечения ветвей закона дисперсии, по-видимому, можно наблюдать экспериментально, если монотонно изменять интенсивность второго импульса. Отмеченные особенности поведения ветвей закона дисперсии можно интерпретировать также как изменение силы связи фотона с атомом на переходе 1 \leftrightarrows 2. Если положить $\Omega_{12} = \Omega_{13}$, то в области расстроек резонанса $\Delta = -\Omega_{23}$ возникает сильное расталкивание между нижней и средней поляритонными ветвями по сравнению с расталкиванием ветвей при $\Delta = \Omega_{13}$, где оно практически равно нулю. Возникает значительная перенормировка энергетического спектра поляритонов, которая особенно ярко проявляется в возникновении эффекта сильной связи в длинноволновой области от частоты ω_0 и в существенном ослаблении связи в коротковолновой области. Резкое изменение силы поляритонного эффекта (силы связи) происходит вместе с увеличением частоты Раби Ω_{23} с ростом интенсивности накачки. Это указывает на смещение актуальных точек k_1 -пространства, где дисперсия поляритонных ветвей особенно значительна. Можно утверждать, что экспериментально увеличение интенсивности накачки на переходе 2 \leftrightarrows 3 приведет как к изменению силы связи между атомом и фотоном для первого импульса (к расталкиванию поляритонных ветвей), так и к значительному спектральному смещению актуальных точек в k_1 -пространстве.

Таким образом, структура ветвей закона дисперсии существенно определяется волновым вектором $k = \omega_c/c$ падающего из вакуума излучения. Собственные частоты трех ветвей поляритонов $\tilde{\omega}_1, \tilde{\omega}_2$ и $\tilde{\omega}_3$ существенно зависят от накачки. Они определяют частоты нутации Ω_{12} , Ω_{23} и Ω_{13} (новые частоты Раби) поляритонов, которые мы представим в виде трех разностей собственных частот поляритонов: $\tilde{\Omega}_{12} = \tilde{\omega}_1 - \tilde{\omega}_2, \ \tilde{\Omega}_{23} = \tilde{\omega}_2 - \tilde{\omega}_3, \ \tilde{\Omega}_{13} = \tilde{\omega}_1 - \tilde{\omega}_3.$ Если собственные частоты двух поляритонов, например, верхнего $\tilde{\omega}_1$ и среднего $\tilde{\omega}_2$ поляритонов совпадают, то частота нутации $\hat{\Omega}_{12}$ равна нулю, а $\hat{\Omega}_{23} = \hat{\Omega}_{13}$. Таким образом, процесс нутации в этом случае не является результатом биения трех поляритонных ветвей, а представляет собой нутационные колебания на частоте $\hat{\Omega} = \hat{\Omega}_{23} = \hat{\Omega}_{13}$.

Отметим, что представленные выше результаты получены в приближении заданной плотности фотонов обоих импульсов $(c_1, c_2 \gg a_1, a_2, a_3)$. Легко показать, что аналогичные результаты можно получить для трехуровневых атомов в приближении заданной плотности фотонов на частоте $\omega_2 = \Omega_0 - \omega_0$ и заданной плотности атомов в основном состоянии $(c_2, a_1 \gg c_1, a_2, a_3)$. Число атомов на уровнях 2 и 3 лимитируется числом фотонов $|c_1|^2$ на частоте низшего перехода. При этом выражение для закона дисперсии имеет по-прежнему вид (8), где частоты Раби выражаются формулами: $\Omega_{12}^2 = g_{12}^2 n_{10}, \Omega_{23}^2 = g_{23}^2 f_{20}, \Omega_{13}^2 = g_{13}^2 n_{10} f_{20}$. В этом случае возможен контроль за эволюцией системы через плотность атомов и фотонов.

5. ЗАКЛЮЧЕНИЕ

В заключение отметим, что в статье представлены результаты исследования особенностей поведения законов дисперсии атомных поляритонов для трехуровневых атомов, взаимодействующих с двумя импульсами лазерного излучения с частотами фотонов ω_1 и ω_2 , находящимися в резонансе с разрешенными однофотонными переходами соответственно $1 \leftrightarrows 2$ и $2 \leftrightarrows 3$ с учетом также прямого двухфотонного перехода с первого уровня на третий в приближении заданных плотностей фотонов обоих импульсов. Показано, что закон дисперсии состоит из трех ветвей, положение и форма которых определяются частотами Раби трех указанных оптических переходов и плотностями фотонов обоих импульсов. Непосредственный учет прямого двухфотонного перехода атомов с первого уровня на третий наряду с двумя однофотонными переходами приводит к зависимости законов дисперсии атомных поляритонов от нового квантового параметра — разности фаз ϑ . Найдены значения параметров системы, при которых возможно пересечение ветвей закона дисперсии.

Введено понятие о дисперсионной поверхности через зависимость собственных частот атомных поляритонов от волновых векторов фотонов обоих импульсов.

ЛИТЕРАТУРА

- H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).
- I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
- Y. Kasprzak, M. Richard, S. Kindermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature 443, 409 (2006).
- R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science 316, 1007 (2007).
- A. Kogar, M. S. Rak, S.Vig, A. A. Husain, F. Flicker, Y. I. Joe, L. Venema, G. J. MacDougall, T. C. Chiang, E. Fradkin, Y. van Vezel, and P. Abbamonte, Science **358**, 1314 (2017).
- V. Agranovich, H. Benisty, and C. Weisbuch, Sol. St. Comm. 102, 631 (1997).
- О. А. Дубовский, В. М. Агранович, ФТТ 58, 1371 (2016).
- P. Cristofolini, G. Christmann, S. I. Tsintzos, G. Deligeorgis, G. Konstantinidis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, Science 336, 704 (2012).
- E. Togan, H.-T. Lim, S. Faelt, W. Wegscheider, and A. Imamoglu, arXiv:1804.04975.
- 10. Д. И. Груев, КЭ 2, 2487 (1975).

- 11. М. Л. Тер-Микаелян, УФН 167, 1249 (1997).
- 12. T. C. H. Liew and A. V. Kavokin, arXiv:1706.08635.
- 13. T. C. H. Liew, M. M. Glazov, K. V. Kavokin, I. A. Shelykh, M. A. Kaliteevski, and A. V. Kavokin, Phys. Rev. Lett. 110, 047402 (2013).
- М. И. Шмиглюк, П. И. Бардецкий, Лазерная спектроскопия экситонов в полупроводниках, Штиинца, Кишинев (1980).
- S. Bounouar, M. Strauß, A. Carmele, P. Schnauber, A. Thoma, M. Cschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Knorr, and S. Reitzenstein, Phys. Rev. Lett. 118, 233601 (2017).
- E. D. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, Phys. Rev. B 81, 035302 (2010).
- 17. S. M. Yoshida, S. Endo, J. Levinsen, and M. M. Parish, Phys. Rev. X 8, 011024 (2018).
- J. Levinsen, F. M. Marchetti, J. Keeling, and M. M. Parish, arXiv:1806.10835.
- P. Wen, G. Christmann, J. J. Baumberg, and K. A. Nelson, New J. Phys. 15, 025005 (2013).
- N. Takemura, S. Trebaol, M. Wouters, M. T. Portella-Oberli, and B. Deveaud, Nat. Phys. 10, 500 (2014).
- N. Takemura, M. D. Anderson, M. Navadeh-Toupchi, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, Phys. Rev. B 95, 205303 (2017).
- 22. I. Carusotto, T. Volz, and A. Imamoğlu, Europhys. Lett. 90, 37001 (2010).
- 23. B. Pietka, N. Bobrovska, D. Stephan, M. Teich, M. Krol, S. Winnerl, A. Pashkin, R. Mirek, K. Lekenta, F. Morier-Genoud, H. Schneider, B. Deveaud, M. Helm, M. Matuszewski, and Y. Szczytko, Phys. Rev. Lett. 119, 077403 (2017); arXiv:1704.06547.
- 24. Y. He, Y.-M. He, Y. Liu, Y.-J. Wei, H. Y. Ramirez, M. Atatüre, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and Y.-W. Pan, Phys. Rev. Lett. 114, 097402 (2015).
- 25. Y. L. Tomaino, A. D. Yameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, and S. W. Koch, Phys. Rev. Lett. 108, 267402 (2012).
- C. Qian, S. Wu, F. Song, K. Peng, X. Xie, J. Yang, S. Xiao, M. J. Steer, I. G. Thayne, C. Tang, Z. Zuo, K. Yin, C. Gu, and X. Xu, Phys. Rev. Lett. 120, 213901 (2018); arXiv:1805.09184.
- 27. L. C. Flatten, S. Christodoulou, R. K. Patel, A. Buccheri, D. M. Coles, B. P. L. Reid, R. A. Taylor, I. Moreels, and J. M. Smithl, arXiv:1608.05294.

- 28. Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, Phys. Rev. Lett. 107, 233602 (2011).
- M. Orniggoti, G. Della Valle, T. T. Fernandez, A. Coppa, V. Foglietti, P. Laporta, and S. Longhi, J. Phys. B: At. Mol. Opt. Phys. 41, 085402 (2008).
- **30**. П. И. Хаджи, Нелинейные оптические процессы в системе экситонов и биэкситонов в полупроводниках, Штиинца, Кишинев (1985).
- П. И. Хаджи, Л. Ю. Надькин, Д. А. Марков, ФТТ 60, 660 (2018).
- 32. М. О. Скалли, М. С. Зубайри, Квантовая оптика, Физматлит, Москва (2003), гл. 14, с. 327.
- 33. Г. А. Корн, Т. М. Корн, Справочник по математике для научных работников и инженеров, 4-е, Наука, Москва (1978), с. 44.