В. В. Воронин <sup>а,b,c\*</sup>, В. В. Федоров <sup>а,b,c</sup>, С. Ю. Семенихин <sup>а,b</sup>,

И. А. Кузнецов<sup>а</sup>, Я. А. Бердников<sup>b</sup>

<sup>а</sup> Научно-исследовательский центр «Курчатовский институт» — Петербургский институт ядерной физики им. Б. П. Константинова 188300, Гатчина, Ленинградская обл., Россия

<sup>b</sup> Санкт-Петербургский политехнический университет Петра Великого 195220, Санкт-Петербург, Россия

> <sup>с</sup> Санкт-Петербургский государственный университет 199034, Санкт-Петербург, Россия

> > Поступила в редакцию 2 июля 2018 г., после переработки 28 сентября 2018 г. Принята к публикации 28 сентября 2018 г.

Теоретически описан и экспериментально исследован эффект поворота спина нейтрона при дифракции по Лауэ в нецентросимметричном слабодеформированном и прозрачном для нейтронов кристалле. Эффект возникает из-за искривления траектории Като нейтрона в кристалле при наличии деформации, что, при определенном виде деформации, приводит к уходу за пределы кристалла одной из двух нейтронных волн, возбуждаемых при дифракции по Лауэ, которые, в случае кристалла без центра симметрии распространяются в электрических внутрикристаллических полях с противоположными знаками. В результате спин оставшейся нейтронной волны будет повернут на определенный угол по отношению к первоначальному направлению за счет взаимодействия магнитного момента движущегося нейтрона с внутрикристаллическим электрическим полем кристалла. В совершенном недеформированном кристалле такой эффект отсутствует, имеет место только деполяризация пучка, поскольку обе волны, находящиеся в электрических полях с противоположными знаками, присутствуют с одинаковой амплитудой. Развита методика контролируемого деформирования совершенного монокристалла с помощью создания в нем градиента температуры. Тем самым реализованы новая возможность измерять электрические поля, действующие на нейтрон в нецентросимметричных кристаллах, а также способ управлять этими полями в экспериментах по изучению фундаментальных свойств нейтрона.

**DOI:** 10.1134/S0044451019030039

### 1. ВВЕДЕНИЕ

Из динамической теории дифракции [1] следует, что распространение нейтрона в кристалле в направлениях, близких к брэгговским для некоторой системы кристаллографических плоскостей, можно описать двумя типами блоховских волн,  $\psi^{(1)}$  и  $\psi^{(2)}$ . Эти волны формируются в кристалле в результате взаимодействия нейтрона с периодическим ядерным потенциалом данной системы плоскостей, которая характеризуется вектором обратной решетки **g**, направленным перпендикулярно плоскостям и равным по модулю  $|\mathbf{g}| \equiv g = 2\pi/d$ , где d — межплоскостное расстояние. Соответствующая гармоника периодического ядерного потенциала имеет вид

$$V_g^N(\mathbf{r}) = 2V_g^N \cos(\mathbf{g} \cdot \mathbf{r}). \tag{1}$$

Амплитуда  $V_g^N$  гармоники определяется структурной амплитудой  $F_g^N$  ядерного рассеяния нейтрона ячейкой кристалла:

<sup>\*</sup> E-mail: voronin\_vv@pnpi.nrcki.ru

$$V_g^N = \frac{2\pi\hbar^2}{m} N_c F_g^N,$$
  

$$F_g^N = \sum_i \exp(-W_{ig}) f_i^N(\mathbf{g}) \exp(i\mathbf{g} \cdot \mathbf{r}_i).$$
(2)

Здесь m — масса нейтрона,  $N_c$  — число элементарных ячеек в единичном объеме кристалла, индекс i нумерует атомы в элементарной ячейке,  $\mathbf{r}_i$  — положение ядра атома в ячейке,  $f_i^N(\mathbf{g})$  — амплитуда рассеяния i-м ядром ячейки с передачей импульса  $\hbar \mathbf{g}$ ,  $W_{ig}$  — фактор Дебая – Валлера. Заметим, что структурная амплитуда рассеяния вперед ( $\mathbf{g} = 0$ ) определяет средний ядерный потенциал кристалла  $V_0^N$  (и, тем самым, его средний коэффициент преломления).

Волны  $\psi^{(1)}$  и  $\psi^{(2)}$  представляют собой две ортогональные суперпозиции прямой волны с волновым вектором **k** и отраженной кристаллографическими плоскостями с волновым вектором **k** + **g**:

$$\psi^{(1)}(\mathbf{r}) = \cos\gamma \exp\left(i\mathbf{k}^{(1)} \cdot \mathbf{r}\right) + \\ + \sin\gamma \exp\left[i(\mathbf{k}^{(1)} + \mathbf{g}) \cdot \mathbf{r}\right], \quad (3)$$

$$\psi^{(2)}(\mathbf{r}) = -\sin\gamma\exp\left(i\mathbf{k}^{(2)}\cdot\mathbf{r}\right) + \\ +\cos\gamma\exp\left[i(\mathbf{k}^{(2)}+\mathbf{g})\cdot\mathbf{r}\right].$$
 (4)

λT

Здесь

$$\operatorname{tg} 2\gamma = \frac{U_g^N}{\Delta_g} \equiv \frac{1}{w_g}$$

где

$$U_g^N = \frac{2mV_g^N}{\hbar^2},$$
$$\Delta_g = \frac{(\mathbf{k} + \mathbf{g})^2 - k^2}{2} \equiv \frac{k_g^2 - k^2}{2} = \frac{2\mathbf{k} \cdot \mathbf{g} - g^2}{2}$$

— размерный, а  $w_g$  — безразмерный параметры отклонения от условия Брэгга. В дальнейшем будет использоваться также безразмерный параметр

$$\alpha_g = \frac{(\mathbf{k} + \mathbf{g})^2 - k^2}{2k^2} = \frac{\Delta_g}{k^2} = w_g \frac{U_g^N}{k^2}.$$
 (5)

Волновые векторы  $\mathbf{k}^{(1)}$  и  $\mathbf{k}^{(2)}$  принадлежат различным ветвям дисперсионной поверхности, уравнение которой имеет вид

$$(\mathbf{k}^{(1,2)})^2 = K^2 - \Delta_g \pm \sqrt{\Delta_g^2 + (U_g^N)^2}.$$
 (6)

Здесь K — величина волнового вектора падающего на кристалл нейтрона с учетом среднего коэффициента преломления кристалла:  $K^2 = k_e^2(1-V_0^N), k_e$  — волновой вектор нейтрона в вакууме.

Для величины  $\cos^2 \gamma$  имеем

$$\cos^{2} \gamma = \frac{1}{2} \left[ 1 + \frac{\Delta_{g}}{\sqrt{\Delta_{g}^{2} + (U_{g}^{N})^{2}}} \right] = \frac{1}{2} \left[ 1 + \frac{w_{g}}{\sqrt{1 + w_{g}^{2}}} \right].$$
 (7)

Плотности токов нейтронов в ветвях, усредненные по быстрым осцилляциям с периодом *d*, равны

$$\mathbf{j}_{\psi^{(1)}} = \frac{\hbar}{m} \left[ \mathbf{k}^{(1)} \cos^2 \gamma + (\mathbf{k}^{(1)} + \mathbf{g}) \sin^2 \gamma \right] =$$
$$= \frac{\hbar}{m} \left[ \left( \mathbf{k}^{(1)} + \frac{\mathbf{g}}{2} \right) - \frac{\mathbf{g}}{2} \frac{w_g}{\sqrt{1 + w_g^2}} \right], \quad (8)$$

$$\mathbf{j}_{\psi^{(2)}} = \frac{\hbar}{m} \left[ \mathbf{k}^{(2)} \sin^2 \gamma + (\mathbf{k}^{(2)} + \mathbf{g}) \cos^2 \gamma \right] =$$
$$= \frac{\hbar}{m} \left[ \left( \mathbf{k}^{(2)} + \frac{\mathbf{g}}{2} \right) + \frac{\mathbf{g}}{2} \frac{w_g}{\sqrt{1 + w_g^2}} \right]. \quad (9)$$

При точном выполнении условия Брэгга ( $w_q = 0$ ) величины  $\psi^{(1)}$  и  $\psi^{(2)}$  представляют собой симметричную и антисимметричную комбинации прямой и отраженной волн, так что их распространение происходит вдоль кристаллографических плоскостей (в направлении  $\mathbf{k}_{||} = \mathbf{k} + \mathbf{g}/2$ , рис. 1), причем нейтроны в состоянии  $\psi^{(1)}$  сконцентрированы преимущественно на ядерных плоскостях (под «ядерными» плоскостями мы понимаем положения максимумов ядерного потенциала), а в состоянии  $\psi^{(2)}$  — между ними. По этой причине нейтроны в состояниях  $\psi^{(1)}$  и  $\psi^{(2)}$ движутся в разных потенциалах и имеют слегка различающиеся кинетические энергии (т.е. разные величины волновых векторов). Отклонение от условия Брэгга приводит к изменениям направлений плотностей токов  $\mathbf{j}_{\psi^{(1)}}$  и  $\mathbf{j}_{\psi^{(2)}}$  в противоположные стороны.

В симметричной схеме дифракции по Лауэ (входная грань кристалла перпендикулярна отражающим плоскостям) из граничных условий для волновой функции внутри кристалла следует, что

$$\psi(\mathbf{r}) = \psi^{(1)}(\mathbf{r})\cos\gamma + \psi^{(2)}(\mathbf{r})\sin\gamma.$$
(10)

Таким образом, при малых отклонениях от условия Брэгга ( $w_g \ll 1$ ) оба состояния возбуждаются практически с одинаковой вероятностью. Однако направления токов при углах Брэгга  $\theta_B$ , близких к 90°, т.е. когда  $\mathbf{k}_{||} \ll \mathbf{g}/2$  (tg  $\theta_B = g/2k_{||}$ ), могут измениться весьма существенно (см. рис. 1):

$$\mathbf{j}_{\psi^{(1,2)}} \approx \frac{\hbar}{m} \left[ \mathbf{k}_{||}^{(1,2)} \pm \frac{\mathbf{g}}{2} w_g \right].$$
(11)



Рис. 1. Симметричный случай дифракции по Лауэ в ограниченном недеформированном кристалле. Нейтроны п падают на кристалл под некоторым углом, отличным в пределах брэгговской (дарвиновской) ширины от угла Брэгга  $heta_B; \mathbf{j}_{\psi^{(1)}}$  и  $\mathbf{j}_{\psi^{(2)}}$  — векторы плотностей токов нейтронов для двух блоховских волн;  $\mathbf{g}$  — вектор обратной решетки; L — толщина кристалла

## 2. ДИФРАКЦИЯ В НЕЦЕНТРОСИММЕТРИЧНЫХ КРИСТАЛЛАХ

В нецентросимметричных кристаллах для некоторых систем кристаллографических плоскостей положения максимумов электрического потенциала могут быть смещены относительно максимумов ядерного потенциала:

$$V_q^E(\mathbf{r}) = 2V_q^E \cos(\mathbf{g} \cdot \mathbf{r} + \phi_g). \tag{12}$$

Поэтому нейтроны в состояниях  $\psi^{(1)}$  и  $\psi^{(2)}$  оказываются в сильных, порядка  $10^8-10^9$  B/см, межплоскостных электрических полях противоположного знака,  $\pm \mathbf{E}_g$ , направленных вдоль вектора **g** [2–4],

$$\langle \psi^{(1)} | \mathbf{E}_g(\mathbf{r}) | \psi^{(1)} \rangle = - \langle \psi^{(2)} | \mathbf{E}_g(\mathbf{r}) | \psi^{(2)} \rangle \equiv$$
  
$$\equiv \mathbf{E}_g = V_g^E \mathbf{g} \sin \phi_g, \quad (13)$$

где

$$\mathbf{E}_{g}(\mathbf{r}) = -\nabla V_{g}^{E}(\mathbf{r}) = 2V_{g}^{E}\mathbf{g}\sin(\mathbf{g}\cdot\mathbf{r} + \phi_{g}).$$
(14)

В движущейся системе отсчета, связанной с нейтроном, на последний в разных состояниях будут



Рис. 2. Поведение спина нейтрона в совершенном кристалле без центра симметрии при дифракции по Лауэ. За счет взаимодействия магнитного момента нейтрона со швингеровским магнитным полем спин нейтрона для двух блоховских состояний вращается в противоположные стороны. На рисунке:  $\mathbf{v}_{||}$  — направление скорости нейтронов вдоль кристаллографических плоскостей,  $\mathbf{n}_{in}$  и  $\mathbf{n}_{out}$  — направления соответственно падающих и продифрагировавших нейтронов

действовать «швингеровские» магнитные поля противоположных знаков

$$\mathbf{H}_{g}^{S} = \pm [\mathbf{E}_{g} \times \mathbf{v}]/c,$$

где **v** — скорость нейтрона, c — скорость света, так что спин (магнитный момент) нейтрона в состояниях  $\psi^{(1)}$  и  $\psi^{(2)}$  будет прецессировать вокруг направления  $\mathbf{H}_g^S$  в противоположные стороны. В результате при дифракции по Лауэ, когда спин первоначально ориентирован перпендикулярно швингеровскому магнитному полю (т. е. в плоскости дифракции), после прохождения кристалла у одной половины нейтронов спин повернется на угол  $\phi_S$ , а у другой на угол  $-\phi_S$ :

$$\phi_S = \frac{4\mu H_g^S L}{\hbar v_{||}} = 2\mu_n \frac{eE_g L}{m_p c^2},\tag{15}$$

где  $v_{||}$  — скорость нейтрона в кристалле вдоль кристаллографических плоскостей,  $\mu_n = -1.9$  магнитный момент нейтрона в ядерных магнетонах, L — толщина кристалла,  $m_p$  — масса протона, что приведет к деполяризации продифрагировавших пучков [5,6] (как прямого, так и отраженного, рис. 2).

При некоторой толщине кристалла  $L_0$ , при которой спин нейтрона поворачивается на прямой угол в противоположные стороны, произойдет полная деполяризация прошедших через кристалл нейтронов, первоначально поляризованных перпендикулярно вектору  $\mathbf{H}_q^S$ . Для системы плоскостей (110) кристалла  $\alpha$ -кварца  $L_0 \approx 3.5$  см [7]. Отклонение от условия Брэгга приводит к уменьшению электрического поля, действующего на нейтрон, и, следовательно, к увеличению этой толщины кристалла. Если нейтроны поляризованы вдоль вектора  $\mathbf{H}_g^S$ , их поляризация не изменится после прохождения кристалла.

При точном равенстве амплитуд двух блоховских волн (что имеет место только при точном выполнении условия Брэгга) среднее поле, действующее на нейтрон в кристалле, равно нулю, поэтому эффект вращения спина отсутствует. Однако отклонение от условия Брэгга приводит к дисбалансу этих амплитуд. В этом случае наряду с деполяризацией может происходить также и поворот спина нейтрона. В результате небольшие деформации кристалла, из-за возникающего изменения межплоскостного расстояния, могут нарушать равенство амплитуд волн  $\psi^{(1)}$  и  $\psi^{(2)}$  и, соответственно, приводить к появлению эффекта поворота спина в лауэвской дифракции нейтрона в прозрачном кристалле. Возможность поворота спина в поглощающем кристалле за счет разного поглощения в кристалле волн  $\psi^{(1)}$ и  $\psi^{(2)}$  (эффекта Бормана) обсуждалась в работе [8].

Эффект поворота спина нейтрона за счет швингеровского взаимодействия при дифракции по Лауэ в прозрачном нецентросимметричном кристалле был впервые обнаружен в тестовом эксперименте [9] по поиску электрического дипольного момента нейтрона дифракционным методом. В этой работе измерялась компонента поляризации спина нейтрона, параллельная  $\mathbf{H}_{q}^{S}$ , которая появляется в результате дополнительного поворота спина нейтрона за счет взаимодействия его дипольного момента с электрическим полем нецентросимметричного кристалла. Поворот спина нейтрона, связанный со швингеровским взаимодействием, мог привести к ложному эффекту, и его изучение является необходимым для исключения систематических ошибок в экспериментах такого рода.

В настоящей работе проведено детальное исследование эффекта поворота спина нейтрона за счет швингеровского взаимодействия в зависимости от параметра деформации кристалла, который можно плавно изменять, например, нагревая и охлаждая различные области кристалла. Предварительные результаты опубликованы в работе [10].

Эффект возникает, если в процессе дифракции изменяется параметр отклонения от условия Брэгга, что может быть обусловлено как изменением межплоскостного расстояния, так и энергии (длины волны) самого нейтрона (например, в поле тя-

жести или другой внешней силы). При отклонении от точного брэгговского условия кроме изменения амплитуд блоховских волн разного типа нарушается также баланс прямой и отраженной волн в каждом из состояний  $\psi^{(1)}$  и  $\psi^{(2)}$ . В результате распространение нейтронов в этих состояниях будет происходить не вдоль кристаллографических плоскостей, а между направлениями прямой и отраженной волн. При углах дифракции, близких к 90°, и малых отклонениях от точного угла Брэгга амплитуды состояний  $\psi^{(1)}$  и  $\psi^{(2)}$  меняются незначительно, а направление вектора плотности тока нейтронов в этих состояниях может меняться весьма существенно. В общем случае оно меняется от направления начального волнового вектора нейтрона, k, до направления отраженного плоскостями пучка,  $\mathbf{k} + \mathbf{g}$ , при малом отклонении в пределах дарвиновской ширины  $\Delta \lambda_B \ (\Delta \lambda_B / \lambda \sim 10^{-5})$  длины волны нейтрона или его направления от брэгговских условий. Напомним, что в этой терминологии условие Брэгга COOTBETCTBYET PABENCTBY  $|\mathbf{k}| = |\mathbf{k} + \mathbf{g}|$ .

## 3. ДИФРАКЦИЯ В ДЕФОРМИРОВАННОМ КРИСТАЛЛЕ

Распространение нейтрона (двухволнового пакета) от некоторой области на входной грани кристалла в деформированном кристалле можно описать при помощи «траекторий Като» [11], представляющих собой кривые, касательные к которым направлены вдоль вектора плотности тока в каждой точке траектории (см. рис. 1).

В недеформированном кристалле траектории Като — прямые линии, наклоны которых определяются параметром  $w_g$ , см. (8), (9), (11). При изменении направления падающего пучка в пределах угловой брэгговской ширины угол наклона  $\theta$ траектории Като изменяется от  $-\theta_B$  до  $+\theta_B$ . При углах Брэгга, близких к прямому, размеры кристалла (Н — высота, L — толщина) могут ограничить возможные углы наклона траекторий, если, как в нашем случае,  $\operatorname{tg} \theta = H/2L < \operatorname{tg} \theta_B$ . Физический смысл траектории Като — это траектория движения «двухволнового» пакета с размерами, превышающими по входной грани кристалла величину  $\xi_g \operatorname{tg} \theta_B = \pi/m_0 \sim 10^{-3}$  см, чтобы смогли сформироваться блоховские волны  $\psi^{(1)}$  и  $\psi^{(2)}$  $(\xi_q = 2\pi |\mathbf{k}^{(2)} - \mathbf{k}^{(1)}|$  — экстинкционная длина). Кривизна же траектории (изменение ее наклона) в кристалле определится степенью деформации кристалла (изменением параметра отклонения от условия

Брэгга), которую можно описать «силой Като» [11]. В результате траектория Като нейтрона в кристалле при малых деформациях будет описываться уравнением [2]

$$\frac{\partial^2 z}{\partial y^2} = \pm \frac{c_0}{m_0} f_k(y, z), \qquad (16)$$

где  $c_0 = \operatorname{tg} \theta_B, \ m_0 \equiv 2dF_g/V_c -$  «масса» Като, *F<sub>q</sub>* — структурная амплитуда рассеяния нейтрона кристаллической ячейкой,  $V_c$  — объем кристаллической ячейки, d — межплоскостное расстояние, а  $f_k(y,z)$  — сила Като:

$$f_k(y,z) = \frac{k_0}{4\cos\theta_B} \left(\frac{\partial}{\partial z} + \frac{1}{c_0}\frac{\partial}{\partial y}\right) \alpha(y,z), \qquad (17)$$

где  $k_0$  — величина волнового вектора нейтрона в кристалле,  $\theta_B$  — угол Брэгга. Параметр  $\alpha(y,z)$  отклонение от точного условия Брэгга:

$$\alpha(y,z) = \frac{|\mathbf{k}_0 + \mathbf{g}|^2 - \mathbf{k}_0^2}{2k_0^2} = \frac{\mathbf{g}^2 + 2(\mathbf{k}_0 \cdot \mathbf{g})}{2k_0^2}.$$
 (18)

Изменение этого параметра в кристалле может быть связано как с деформацией кристалла (т.е. с изменением вектора  $\mathbf{g}$ ), так и с изменением направления движения нейтрона или его длины волны, например, под воздействием внешней силы. Так, в случае постоянного (линейного) изменения межплоскостного расстояния траектории Като нейтронов в кристалле будут описываться уравнением

$$\frac{\partial^2 z}{\partial y^2} = \pm \frac{c_0^2}{m_0} \pi g \zeta, \tag{19}$$

где  $g = 2\pi/d$  — величина вектора обратной решетки,  $\zeta$  — параметр, характеризующий деформацию кристалла ( $d = d_0(1 + \zeta z)$ , где  $d_0$  — межплоскостное расстояние без деформации). Знаки «±» в (19) отвечают двум разным блоховским волнам, возбуждаемым в кристалле.

Для случая квадратичной деформации, т.е. *d* =  $= d_0(1 + \xi z^2)$ , траектория нейтрона будет определяться силой

$$f_k = c_0 \frac{2\pi\xi z}{d},\tag{20}$$

где  $\xi$  — параметр квадратичной деформации.

В результате оказывается, что для нейтронов в одном из состояний силы Като направлены к центру кристалла (z = 0), а для другого состояния от центра (см. уравнение (19)). Таким образом, волны одного типа будут фокусироваться, а второго, наоборот, дефокусироваться, что приведет к различию в их интенсивностях на задней грани кристалла. Если мы изменим знак параметра деформации,



ЖЭТФ, том **155**, вып. 3, 2019



Рис. 3. Пример рассчитанных траекторий Като нейтрона в кристалле от его центральной области при дифракции на плоскости (110) кристалла кварца (угол Брэгга  $heta_B = 86^\circ$ ), деформированного градиентом температуры  $\Delta T^0\,=\,10^{-3}$  K/см вдоль оси  $z{:}~a$  — линейный градиент вдоль оси z,  $d = d_0(1 + \zeta z)$ ;  $\delta$  — градиент направлен вдоль оси z от центра кристалла к его верхнему и нижнему краям,  $d = d_0(1 + \xi z^2)$ 

то волны поменяются местами. В нецентросимметричном кристалле эти две волны будут находиться в противоположных электрических и, соответственно, швингеровских магнитных полях. Спин нейтрона для них будет вращаться в противоположные стороны и после прохождения кристалла кварца толщиной  $L_0 = 3.5$  см для плоскости (110) будет направлен противоположно. Таким образом, изменение знака параметра деформации кристалла должно привести к изменению спинового состояния прошедшей через кристалл продифрагировавшей волны.

Нетрудно заметить, что правая часть уравнения (19) пропорциональна  $tg^2 \theta_B$ . Эта величина может достигать значений порядка  $10^2$ – $10^3$  при  $\theta_B \approx$  $\approx 84^\circ \! - \! 88^\circ,$ и, таким образом, влияние малых деформаций на траекторию нейтрона может быть усилено на 2-3 порядка величины в сравнении с обычными углами дифракции ( $\theta_B \approx 45^\circ$ ).

Рассчитанные траектории Като нейтрона в кристалле, деформированном градиентом температуры  $\Delta T^0 = 10^{-3} \text{ K/см}$ , для разных, слегка отличающихся от брэгговского (в пределах угловой ширины) на-



Рис. 4. Схема установки: 1 — неполяризованный пучок нейтронов; 2, 11 — поляризующие зеркальные многощелевые нейтроноводы (поляризатор и анализатор); 3 — нейтронный фильтр BeO (120 мм); 4, 10 — катушки с ведущим магнитным полем примерно 4 Гс; 5, 9 — спиновращательные трехкоординатные катушки (ориентирующая и анализирующая); 6 — поворотный стол; 7 — узел кристалла; 8 —

магнитный экран; 12 — детектор нейтронов в защите

правлений падения нейтронов на центральную область кристалла, показаны на рис. 3.

Расчет соответствует реальным размерам кристалла H = 140 мм, L = 35 мм. Заметим, что в данном случае при  $H/2L \ll \operatorname{tg} \theta_B \approx 14$ , параметр отклонения от условия Брэгга  $w \approx \operatorname{tg} \theta$ , см. (11), где  $\theta$  — угол начального наклона траектории Като к оси y.

Из рис. 3 следует, что уже при таких малых деформациях потоки нейтронов для двух блоховских волн расходятся в середине кристалла на несколько сантиметров. Данные расчеты хорошо согласуются с экспериментальными данными.

#### 4. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Экспериментальная установка для изучения дифракции по Лауэ в слабодеформированном кристалле при больших углах Брэгга была смонтирована на пучке №2 реактора ВВР-М в Гатчине. Измерения проводились на прямом продифрагировавшем пучке нейтронов. Принципиальная схема установки (вид сверху) показана на рис. 4.

Неполяризованный пучок нейтронов 1 проходит через зеркальный многощелевой нейтроновод-поляризатор 2, где задается начальная поляризация пучка в направлении x, перпендикулярном плоскости рисунка. Степень исходной поляризации пучка составляла  $P_0 = 85 \%$ . Ширина пучка после поляризатора такова, что он «засвечивает» около 5 см входной грани кристалла вблизи ее середины, так что вклад в интенсивность продифрагировавшего пучка (рис. 5) будут давать нейтроны, траектории Като которых исходят из всей этой области. Для уменьшения фона от нейтронов, которые могут попасть в детектор после отражений от других плоскостей



**Рис. 5.** Схема узла кристалла: 1-3 — точки измерения температуры кристалла; 4 — элементы Пельтье; 5 — поглотители нейтронов;  $\mathbf{n}_{in}$  и  $\mathbf{n}_{out}$  — направления соответственно падающих и продифрагировавших нейтронов. Внутри кристалла сплошными линиями обозначены траектории Като фокусированной волны  $\psi^{(1)}$ , штриховыми — дефокусированной волны  $\psi^{(2)}$ 

кристалла и от рабочей плоскости в более высоких порядках дифракции, за поляризатором установлен поликристаллический фильтр нейтронов 3 из BeO толщиной 120 мм, пропускающий нейтроны с длиной волны  $\lambda > 4.7$  Å.

Далее пучок, проходя через катушку с ведущим магнитным полем 4 и ориентирующую спиновращательную трехкоординатную катушку 5, попадает на узел кристалла 7, который находится на поворотном столе 6 внутри двухслойного магнитного экрана 8. Поворотный стол позволяет поворачивать узел кристалла в горизонтальной плоскости на 360° и тем самым менять угол Брэгга  $\theta_B$ . Поле внутри магнитного экрана  $H_0 < 0.01$  Гс. Продифрагировавший пучок нейтронов, выходя из кристалла, проходит через анализирующую спиновращательную трехкоординатную катушку 9, затем катушку ведущего поля 10 и, проходя через зеркальный многощелевой нейтроновод-анализатор 11, регистрируется <sup>3</sup>Не-детектором 12, расположенным на подвижной платформе. Для уменьшения фонового излучения детектор окружен комбинированной нейтронной защитой из борированного полиэтилена и кадмия.

Спиновращательные трехкоординатные катушки 5 и 9 представляют собой немагнитные каркасы размерами  $200 \times 200 \times 200 \text{ мм}^3$  на которые проводом из алюминия диаметром 1 мм ортогонально намотаны по три однослойные катушки. При пропускании тока ( $I_{max} = \pm 0.1$  A) в катушках в районе пучка создается однородное магнитное поле в диапазоне 0–1 Гс. Катушки находятся в цилиндрических маг-



Рис. 6. Механизм возникновения компоненты поляризации  $P_x$  ( $\mathbf{N}_i$  и  $\mathbf{N}_f$  — нормированные на интенсивность начальная и конечная поляризации;  $\mathbf{N}_{\psi(1)}$  и  $\mathbf{N}_{\psi(2)}$  — нормированные на интенсивность поляризации волн  $\psi^{(1)}$  и  $\psi^{(2)}$ ). a — интенсивности I волн  $\psi^{(1)}$  и  $\psi^{(2)}$  равны  $I_{\psi^{(1)}} = I_{\psi^{(2)}}$ ;  $b - I_{\psi^{(2)}} > I_{\psi^{(1)}}$ ;  $e - I_{\psi^{(2)}} < I_{\psi^{(1)}}$ 

нитных экранах из пермаллоя толщиной 10 мм. Направление вектора поляризации **P**, изначально заданного поляризатором 2 и катушкой ведущего поля 4 вдоль оси x можно поворачивать катушкой 5 в любом направлении. Комбинированием токов в катушках 5 и 10 совместно с нейтроноводом-анализатором можно измерять все три компоненты поляризации,  $P_x$ ,  $P_y$  и  $P_z$ , на выходе из магнитного экрана.

Более детально схема узла кристалла показана на рис. 5<sup>1)</sup>.

Размеры кристалла кварца составляют  $140 \times 35 \times 140 \text{ мм}^3$ . Рабочая плоскость отражения (110) с межплоскостным расстоянием d = 2.456 Å. Коэффициент теплового расширения кварца в направлении вектора обратной решетки для этой плоскости равен  $1.3 \cdot 10^{-5} \text{ K}^{-1}$  [12].

На торцах кристалла по всей их площади размещаются нейтронные поглотители и элементы Пельтье, которые создают требуемое распределение температур на кристалле. Изменением направления тока в элементах можно нагревать или охлаждать торцы кристалла. Расчеты с использованием пакета COMSOL показали, что в условиях эксперимента и естественной конвекции воздуха при одновременном нагревании торцов распределение температур по оси *z* внутри кристалла с хорошей точностью имеет квадратичный характер. При нагревании одного из торцов и охлаждении другого распределение получается линейным.

Во время эксперимента контроль температуры осуществлялся тремя датчиками Pt100 на торцах и в центре кристалла. Электрическое поле кристалла  $\pm \mathbf{E}_g$  направлено вдоль вектора обратной решетки (см. рис. 2), соответственно швингеровское магнит-

ное поле  $\pm \mathbf{H}_g^S$  направлено вдоль оси x. На рис. 5 внутри кристалла сплошными линиями обозначены траектории Като фокусированной волны  $\psi^{(1)}$ , а штриховыми — дефокусированной волны  $\psi^{(2)}$  для случая, когда градиент направлен от центра кристалла к его граням и где установлены элементы Пельтье.

Внешнее магнитное поле в районе установки кристалла  $\mathbf{H}_0 \ll \mathbf{H}_g^S$ , поэтому им можно пренебречь. Для исследования эффекта вращения спина внутри кристалла вектор начальной поляризации с помощью ориентирующей катушки 5 (см. рис. 4) направлялся вдоль оси пучка z, т. е. перпендикулярно швингеровскому магнитному полю  $\mathbf{H}_g^S$ , а измерялись компоненты поляризации  $P_z$  и  $P_y$  вдоль осей z и y.

Механизм возникновения поляризации иллюстрируется на рис. 6. Здесь  $N_i$  и  $N_f$  — нормированные на интенсивность начальная и конечная поляризации. При равенстве регистрируемых детектором интенсивностей волн  $\psi^{(1)}$  и  $\psi^{(2)}$ , возбуждаемых в кристалле, конечная поляризация определяется только поворотом спина нейтронов на угол  $\pm \phi_S$  (рис. 6a) и, независимо от величины угла поворота спина, компонента у-поляризации на выходе из кристалла будет равна нулю. Поляризация в направлении у возникает из-за неравенства регистрируемых детектором интенсивностей, когда одна из волн дефокусируется и часть нейтронов выходит через торцевые поверхности кристалла с поглотителями. Вследствие этого часть интенсивности дефокусированной волны теряется. На рис. 66 приведен вариант, когда интенсивность волны  $\psi^{(2)}$ , регистрируемой детектором, больше чем интенсивность волны  $\psi^{(1)}$ . На рис. 66 ситуация противоположная — регистрируемая интенсивность волны  $\psi^{(1)}$  больше интенсивности волны  $\psi^{(2)}$ .

<sup>&</sup>lt;sup>1)</sup> На рис. 5 оси y и z слегка повернуты вокруг оси x по сравнению с рис. 3 в работе [10], чтобы соответствовать системе координат всей установки (см. рис. 4). Измерения поляризации проводились именно в этой системе координат.



Рис. 7. Экспериментальная зависимость интенсивности продифрагировавших нейтронов от параметра  $\xi$  квадратичной деформации при  $\theta_B = 82^\circ$ . Сплошная линия — результат подгонки экспериментальных данных

### 5. РЕЗУЛЬТАТЫ

На рис. 7 показана зависимость интенсивности продифрагировавших нейтронов от величины квадратичной деформации, когда  $d = d_0(1 + \xi z^2)$ . Рост интенсивности с увеличением параметра деформации связан с увеличением кривизны траекторий Като. При увеличении кривизны фокусироваться (т.е. давать вклад в увеличение интенсивности этого типа нейтронных волн) могут новые траектории с увеличивающимися углами наклона  $\theta$ , которые могут превысить  $\operatorname{arctg}(H/2L)$ , в принципе, вплоть до  $\theta_B$ , см. рис. 3 (т. е. могут фокусироваться нейтроны, падающие на кристалл под углами в пределах практически всей брэгговской ширины). Дефокусироваться (что приводит к уменьшению интенсивности волн соответствующего типа) могут лишь траектории из области  $\theta \leq \operatorname{arctg}(H/2L)$  (т. е. только нейтроны, падающие на кристалл под углами в пределах малой доли  $H/(2L \operatorname{tg} \theta_B)$  брэгговской ширины).

На рис. 8 приведен пример зависимости поляризации продифрагировавшего пучка от величины квадратичной деформации кристалла  $\xi$ .

Следует отметить, что весь диапазон деформаций (см. рис. 8) соответствует разнице температур между центром кристалла и его краями, равной  $\Delta T \approx \pm 2$  К. Таким образом, уже небольшая деформация кристалла, соответствующая  $\Delta T \approx 0.5$  К на всю длину кристалла, равную 14 см, приводит к изменению знака конечной поляризации пучка, т.е. к фокусировке в центре одной и полной дефокусировки второй блоховских волн, в результате чего последняя выходит из кристалла через его торцы и останавливается поглотителями.



**Рис. 8.** Поляризация продифрагировавшего пучка в зависимости от величины деформации кристалла  $\xi$  для угла  $\theta_B = 82^\circ$ : a — компоненты поляризации  $P_y$  и  $P_z$ ;  $\delta$  — модуль вектора поляризации |P|. Сплошные линии — результат подгонки



**Рис. 9.** Зависимость ширины линии  $W_{\xi}$ , изображенной на нижнем графике рис. 8, т. е. ширины зоны деполяризации пучка, от угла дифракции  $\theta_B$ 

Кроме того, видно, что существенная деполяризация пучка присутствует в очень небольшом диапазоне деформаций (имеется в виду ширина линии на рис. 86). Остаточная поляризация в отсутствие деформации возникает из-за неточности поворота спина на угол  $\pm \pi/2$ , поскольку в кристалле распространяются не только волны, соответствующие точному выполнению условия Брэгга. Зависимость диапазона деформаций (ширины  $W_{\xi}$  линии), где происходит деполяризация пучка, т. е. где интенсивности двух блоховских волн сравнимы по величине, от угла дифракции  $\theta_B$  показана на рис. 9. Как и следовало ожидать, ширина линии деполяризации уменьшается с увеличением угла Брэгга.

## 6. ЗАКЛЮЧЕНИЕ

В настоящей работе впервые экспериментально исследован эффект поворота спина нейтрона при дифракции по Лауэ в нецентросимметричном слабодеформированном прозрачном для нейтронов кристалле за счет швингеровского взаимодействия магнитного момента нейтрона с электрическим внутрикристаллическим полем в зависимости от степени и характера деформации кристалла.

Развита методика контролируемого деформирования совершенного монокристалла с помощью создания в нем градиента температуры. Показано, что малым изменением деформации (градиента температур) кристалла можно эффективно управлять поляризацией продифрагировавших пучков (прямого и отраженного) нейтронов (например, при определенной толщине кристалла можно изменять ее знак). Тем самым реализована новая возможность определять электрические внутрикристаллические поля, действующие на нейтрон в кристаллах без центра симметрии, путем измерений одной из компонент спина в направлении, перпендикулярном первоначальной поляризации пучка, а также возможность управлять этими полями в экспериментах по изучению фундаментальных свойств нейтрона.

Авторы выражают благодарность персоналу реактора ВВР-М (ПИЯФ, Гатчина). Работа поддержана Министерством образования и науки Российской Федерации (3.3838.2017/4.6).

# ЛИТЕРАТУРА

- П. Хирш, А. Хови, Р. Николсони и др., Электронная микроскопия тонких кристаллов, Мир, Москва (1968).
- В. Л. Алексеев, Е. Г. Лапин, Е. К. Леушкин и др., ЖЭТФ 94(8), 371 (1988).
- В. Л. Алексеев, В. В. Воронин, Е. Г. Лапин и др., ЖЭТФ 96, 1921 (1989).
- V. L. Alexeev, V. V. Fedorov, E. G. Lapin et al., Nucl. Instr. and Meth. A 284, 181 (1989).
- **5**. В. В. Воронин, Е. Г. Лапин, С. Ю. Семенихин и др., Письма в ЖЭТФ **72**, 445 (2000).
- V. V. Fedorov, E. G. Lapin, S. Yu. Semenikhin et al., Physica B 297(1–4), 293 (2001).
- В. В. Федоров, В. В. Воронин, Е. Г. Лапин и др., Письма в ЖТФ 21(21), 50 (1995).
- V. G. Baryshevskii and S. V. Cherepitsa, Phys. Stat. Sol. (b) 128, 379 (1985).
- V. V. Fedorov, E. G. Lapin, S. Yu. Semenikhin et al., Int. J. Mod. Phys. A 23, 1435 (2008).
- **10**. В. В. Воронин, В. В. Федоров, С. Ю. Семенихин и др., Письма ЖЭТФ **106**, 463 (2017).
- 11. N. Kato, J. Phys. Soc. Jpn. 19, 971 (1964).
- А. А. Блистанов, В. С. Бондаренко, Н. В. Переломова и др., *Акустические кристаллы*, под ред. М. П. Шаскольской, Наука, Москва (1982).