ЛОКАЛЬНЫЕ МАГНИТНЫЕ ПОЛЯ В ДИАМАГНИТНЫХ $BiSbO_4$ И $Bi_4Si_3O_{12}$: ЯКР ^{209}Bi

Э. А. Кравченко^{а*}, А. А. Гиппиус^{b,c}, А. В. Ткачев^c, Д. О. Чаркин^b, В. А. Долгих^b

^а Институт общей и неорганической химии им. Н. С. Курнакова Российской академии наук 119991, Москва, Россия

> ^b Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

^с Физический институт им. П. Н. Лебедева Российской академии наук 19991, Москва, Россия

> Поступила в редакцию 25 июля 2018 г., после переработки 25 июля 2018 г. Принята к публикации 29 августа 2018 г.

Методами, основанными на измерении параметров ядерных квадрупольных взаимодействий, в соединениях висмута с валентными *s*- и *p*-электронами, которые принято считать диамагнитными, обнаружено существование локальных магнитных полей H_{loc} , существенно превышающих магнитные поля, создаваемые ядерными магнитными моментами (единицы гаусс). Аномалии в магнитных свойствах $BiSbO_4$ и $Bi_4Si_3O_{12}$ отчетливо проявлялись при анализе формы линий их спектров $ЯKP^{209}Bi$. Квартет линий для нижнего перехода ν_1 ($\Delta m = 1/2$ -3/2) в спектре $Bi_4Si_3O_{12}$ в нулевом внешнем магнитном поле и дублеты для линий всех переходов в спектре $BiSbO_4$ при единственной кристаллографической позиции атомов висмута в кристаллических решетках соединений свидетельствуют о магнитной природе расщеплений. Наиболее вероятными величинами H_{loc} в этих соединениях являются значения в пределах от 40 до 100 Гс.

DOI: 10.1134/S0044451019020135

1. ВВЕДЕНИЕ

Спектроскопия ядерного квадрупольного резонанса (ЯКР) представляет собой прямой, наиболее эффективный и точный метод обнаружения и исследования явлений, сопровождающихся изменениями электрических полей в месте нахождения резонансного ядра. В данной работе метод ЯКР был выбран в качестве основного для исследования особенностей спектров во внутренних (локальных) магнитных полях. Анализ спектров ЯКР ²⁰⁹Ві соединений висмута с валентными s- и p-электронами, которые принято считать диамагнитными (BiSbO₄ и $Bi_4Si_3O_{12}$), указал на существование в этих соединениях локальных магнитных полей *H*_{loc}, существенно превышающих магнитные поля, создаваемые ядерными магнитными моментами и составляющие единицы гаусс.

Гамильтониан квадрупольного взаимодействия определяется взаимодействием электрического квадрупольного момента Q ядра (таким моментом обладают все ядра со спином I > 1/2) с градиентом электрического поля ГЭП кристалла,

$$q_{ij} = \frac{\partial E_i}{\partial j} = -\frac{\partial^2 U}{\partial ij},$$

где E_i — напряженность, U — потенциал этого поля в месте нахождения ядра, а i, j = x, y, z. Измеряемыми параметрами являются константа ядерной квадрупольной связи e^2Qq_{zz}/h , где eQ — квадрупольный момент ядра и q_{zz} — максимальная компонента тензора ГЭП в системе главных осей, h — постоянная Планка, и параметр асимметрии ГЭП на квадрупольном ядре, $\eta = (q_{xx} - q_{yy})/q_{zz}$. Их значения непосредственно зависят от распределения электронной плотности вокруг исследуемого ядра, поэтому даже незначительные ее возмущения приводят к отчетливо регистрируемым изменениям в спектрах ЯКР. Физические основы явления ЯКР, возможности ме-

^{*} E-mail: ekravchenko2@yandex.ru

Рис. 1. Схема квадрупольных уровней и переходов между ними для ядра $^{209}{
m Bi}$ в нулевом (*a*) и зеемановском (*б*) магнитных полях

тода и его ограничения при решении различных задач неорганической химии изложены в обзоре [1].

Как известно, спектр ЯКР ²⁰⁹Ві (спин ядра ²⁰⁹Ві равен I = 9/2) состоит из четырех линий переходов между пятью дважды вырожденными уровнями энергии $|\pm m\rangle$ (рис. 1*a*) с частотами, которые для простейшего случая $\eta = 0$ и симметрии, предполагающей магнитную эквивалентность атомов Ві, даются выражением

$$\nu_k = \frac{3ke^2 Qq_{zz}}{2I(2I-1)h}, \quad k = 1, \dots, 4$$

Постоянное магнитное поле H снимает двукратное вырождение энергии квадрупольных уровней по магнитному квантовому числу m, так что каждый переход $\pm m \rightarrow \pm (m+1)$ при m > 1/2 расщепляется полем H на дублет $\pm m\gamma H \cos \theta$ с разностью частот [2]

$$\Delta \nu = 2\gamma H_e \cos \theta, \tag{1}$$

где γ — гиромагнитное отношение для квадрупольного ядра и θ — угол между направлением поля **H** и осью \mathbf{q}_{zz} градиента электрического поля на ядре Bi. Нижние уровни $m = \pm 1/2$ при наложении внешнего поля смешиваются с образованием новых состояний ψ_+ и ψ_- и появлением на месте исходного невозмущенного перехода $\nu_{\pm 1/2} \rightarrow \nu_{\pm 3/2}$ квадруплета с частотами

 $A = e^2 Q q_{zz} / [4I(2I - 1)]$

$$\nu_{\alpha} = 6A/h - \frac{1}{2}(3-f)\gamma H\cos\theta,$$

$$\nu_{\beta} = 6A/h - \frac{1}{2}(3+f)\gamma H\cos\theta,$$

$$\nu_{\alpha}' = 6A/h + \frac{1}{2}(3-f)\gamma H\cos\theta,$$

$$\nu_{\beta}' = 6A/h + \frac{1}{2}(3+f)\gamma H\cos\theta,$$

(2)

где

И

$$f = \left[1 + (I + 1/2)^2 \operatorname{tg}^2 \theta\right]^{1/2}.$$

Спектр ЯКР ²⁰⁹Ві в отличном от нуля внешнем магнитном поле произвольной ориентации относительно осей ГЭП схематически представлен на рис. 1*б*. Таким образом, характерным признаком магнитных расщеплений в спектре ЯКР, исключающим кристаллографическую неэквивалентность атомных позиций как причину расщеплений, служит наблюдение квартета линий для нижнего перехода ν_1 ($\Delta m =$ = 1/2-3/2) и дублетов для остальных переходов (ν_2, \ldots, ν_k).

2. ЭКСПЕРИМЕНТ

Образец BiSbO₄ синтезировали из шихты стехиометрического состава (Sb₂O₃ и Bi₂O₃) с последующим перетиранием и отжигом, проводимым в несколько этапов на воздухе в кварцевом тигле. Данные рентгенофазового анализа (PФА): моноклинная ячейка (I2/c) с параметрами a = 5.4690(2) Å, b = 4.8847(2) Å, c = 11.8252(6) Å, $\beta = 101.131(3)^{\circ}$.

Исходными для образца BiPO₄ были Bi₂O₃ и (NH₄)₂HPO₄ в мольном соотношении 1:2. Препараты перетирали и нагревали в несколько этапов на воздухе в открытом алундовом тигле с последующим охлаждением в режиме остывающей печи. Данные PФA: высокотемпературная моноклинная (P2₁/m) модификация BiPO₄ с параметрами ячейки a = 4.871(3) Å, b = 7.073(3) Å, c = 4.709(3) Å, $\beta = 96.24(8)^{\circ}$.

Кристаллы $Bi_4Si_3O_{12}$ выращены методом Чохральского аналогично процедуре по выращиванию кристалла $Bi_4Ge_3O_{12}$ (BGO), описанной в работе [3].

Спектры ЯКР ²⁰⁹Ві снимали на импульсном некогерентном спектрометре производства СКБ ИРЭ АН СССР с непрерывной разверткой частоты в широком интервале. Эксперимент по наблюдению огибающей квадрупольного спинового эха (ОСЭ) состоял в регистрации сигнала ЯКР при увеличении расстояния между зондирующими импульсами с последующей обработкой сигнала. Слабые постоянные внешние магнитные поля прикладывались перпендикулярно оси радиочастотной катушки. Спектрометр снабжен устройством для записи ОСЭ.

Измерения спектров $\rm SKP^{209}Bi~BiSbO_4$ и $\rm BiPO_4$ проводились на самодельном импульсном фазокогерентном спектрометре в транспортном азотном дыюаре при 77 K с использованием техники спинового

Рис. 2. Линия перехода ν_1 ($\Delta m = 1/2$ –3/2) в спектре ЯКР $^{209}{
m Bi}$ соединения ${
m Bi}_4{
m Si}_3{
m O}_{12}$ в нулевом магнитном поле

эха со ступенчатой (point-by-point) разверткой частоты. Спектры измерялись путем интегрирования ОСЭ во временном домене с последующим усреднением по числу накоплений, которое зависело от частоты и номера квадрупольного перехода.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Форма линии перехода ν_1 ($\Delta m = 1/2-3/2$) в спектре ЯКР ²⁰⁹Ві ортосиликата висмута Ві₄Si₃O₁₂ представляла собой квадруплет (рис. 2), хотя наблюдение велось в нулевом внешнем магнитном поле. При этом расщепление линии ν_1 на квадруплет наблюдалось как для монокристалла, так и для порошкового образца, что указывает на существование в соединении внутреннего источника магнитных расщеплений — локального магнитного поля H_{loc} , направление которого связано с направлением спина ядра. В порошке каждый кристаллит для локального магнитного поля является монокристаллом, и наблюдение в нем зеемановского спектра снимает возможный вопрос о примеси как источнике расщеплений.

Согласно структурным данным [4], в решетке ортосиликата висмута (кубическая решетка $I4\bar{3}d$) атомы Ві занимают единственную кристаллографическую позицию (рис. 3). Оценка локального магнитного поля в Bi₄Si₃O₁₂, ответственного за наблюдавшееся расщепление его спектра ЯКР ²⁰⁹Ві, дала величину $H_{loc} \cos \theta \approx 41$ Гс. Учитывая наблюдавшийся ранее диапазон изменения величин угла θ (примерно от 5° до 65° [5]), следует предположить вероятное значение H_{loc} в пределах от 41 до 100 Гс.

Рис. 3. (В цвете онлайн) Схема строения ортосиликата висмута ${\rm Bi}_4{
m Si}_3{
m O}_{12}$

Как следует из уравнений (2), количество компонент (мультиплетность) расщепленной линии и их положение на шкале частот зависят от величины и ориентации магнитного поля **H** по отношению к осям ГЭП на ядре Bi. Очевидно, что при угле $\theta =$ = $1/\text{tg} \left[2\sqrt{2}/(I+1/2)\right]$ линии ν_{α} и ν'_{α} совпадают, давая сигнал удвоенной интенсивности на частоте нерасщепленной линии, так что вместо квадруплета следует ожидать появления дублета. Именно такую картину расщеплений мы наблюдали в спектре ЯКР ²⁰⁹Bi соединения BiSbO₄ (рис. 4). Следовательно, в BiSbO₄ также существует локальное магнитное поле, которое, согласно оценке на основе спектральных данных, характеризуется параметрами

$$H_{loc} \sim 40 \ \Gamma c, \quad \theta = 29.5^{\circ}.$$

Следует заметить, что величины расцеплений в дублетах верхних переходов (326, 251, 175 кГц, рис. 4) находятся в хорошем соответствии с отношениями 9/2:7/2 и 7/2:5/2, следующими из уравнения (1), что также подтверждает их магнитную природу.

Соединение BiSbO₄ кристаллизуется в моноклинной сингонии (пространственная группа I2/c) с параметрами ячейки a = 5.4518(8), b = 4.8783(4),c = 11.825(1) Å, $\beta = 101.11(1)^{\circ}$ [7], хорошо согласующимися с параметрами исследованного нами соединения. Структуру составляют слои [SbO₄]_n, образованные октаэдрами SbO₆ с общими углами (рис. 5). Слои параллельны плоскости (001) и соединены между собой связями Bi–O. Координационным

Рис. 4. Линии переходов ЯКР ²⁰⁹Ві соединения $BiSbO_4$ при 77 К в нулевом магнитном поле: $\Delta m = 1/2-3/2$ (*a*), 3/2-5/2 (*b*), 5/2-7/2 (*b*), 7/2-9/2 (*c*): 1 — экспериментальная запись; 2 — сглаженная огибающая; 3 и 4 — компоненты фитинга

полиэдром висмута является тригональная бипирамида $\operatorname{BiO}_4 \operatorname{E} c$ неподеленной парой электронов, занимающей позицию в экваториальной плоскости. Бесконечные ленты $[\operatorname{BiO}_2]_n$ направлены вдоль [100]. Отмечено, что уточненная структура BiSbO_4 [7] во всех деталях подтверждает данные Ауривиллиуса [4] о структуре этого соединения, полученные в значительной мере на основе кристаллохимических принципов, установленных при исследовании большого числа соединений (фаз), построенных из слоев $[\operatorname{Bi}_2 \operatorname{O}_2]_n^{2n+}$, чередующихся с перовскитоподобными слоями [4].

При анализе спектров ЯКР соединений ²⁰⁹Ві с аномальными магнитными свойствами выявлена уникально высокая чувствительность их электронных характеристик (ГЭП) к воздействию слабых

внешних магнитных полей (H < 500 Э), указывающая на сильную взаимосвязь между магнитной и электронной подсистемами таких соединений. Например, во внешнем магнитном поле сильно возрастала интенсивность линий в спектре ЯКР ²⁰⁹Ві кристалла Bi₄Si₃O₁₂ (рис. 6), что не следует из теории зеемановских спектров ЯКР [2,8]. Как показали результаты моделирования расщеплений спектра ЯКР ²⁰⁹Ві во внешних магнитных полях для изоструктурного монокристалла $Bi_4Ge_3O_{12}$ (BGO), в котором ранее обнаружено $H_{loc} \approx 30 \ \Gamma c$ [3], характер расщеплений зависит от свойств симметрии ГЭП на ядре ²⁰⁹Ві и взаимной ориентации полей, возмущающих спиновую систему [3,5]. При этом увеличение интенсивности линий в спектрах соединений с указанными аномалиями в значительной степени опре-

Рис. 5. Схема строения $BiSbO_4$

Рис. 6. Линия перехода ν_1 ($\Delta m = 1/2$ –3/2) в спектре ЯКР $^{209}{\rm Bi}$ монокристалла ${\rm Bi}_4{\rm Si}_3{\rm O}_{12}$ в слабых внешних магнитных полях

деляется влиянием внешнего магнитного поля H на скорость ядерной спин-спиновой релаксации $(T_2)^{-1}$ [9]. Последняя фактически определяется характером спада ОСЭ, поскольку в импульсном экспери-

менте вклад в амплитуду спинового эха дает только однородное уширение линии ЯКР. Рисунок 7а демонстрирует рост интенсивности линии ЯКР ²⁰⁹Ві во внешних магнитных полях в спектре соединения Bi₃O₄Br, в котором ранее было обнаружено особенно сильное локальное поле [10] (таблица), а также влияние этих полей на ОСЭ линии того же перехода (рис. 76). Подобное влияние магнитных полей на спектры ЯКР не наблюдалось в соединениях, не обладающих аномалиями в магнитных свойствах. Более того, при допировании монокристалла BGO чрезвычайно малыми количествами (десятыми долями мол. %) парамагнитных атомов Cr, Nd и Gd характер спиновой динамики приобретал неожиданные особенности: эффективное время спин-спиновой релаксации резко (до 8 раз) росло, что предполагало уменьшение флуктуаций в электронной системе соединений под воздействием постоянных внешних магнитных полей [9].

В таблице приведены спектры ЯКР ²⁰⁹Ві вновь исследованных и ранее изученных соединений, в которых локальные магнитные поля были обнаружены по расщеплению спектральных линий в нулевых внешних магнитных полях. Эти локальные магнитные поля по напряженности существенно больше магнитных полей, создаваемых ядерными магнитными моментами (единицы Гс), следовательно, их источником в данных соединениях является электронная система. Ранее нам удавалось обнаружить и существенно более слабые ($H_{loc} < 10$ Гс) локальные магнитные поля в экспериментах по регистрации ОСЭ [12]. С помощью этого подхода слабые (в пределах неоднородного уширения) расщепления линий выявлялись как низкочастотные модуляции кривых ОСЭ. Результаты ЯКР получили подтверждение в данных СКВИД-магнитометрии, обнаруживших анизотропную парамагнитную восприимчивость при низких температурах и магнетоэлектрический эффект в монокристалле *α*-Bi₂O₃ [13], а также резкое увеличение намагниченности после охлаждения кристалла в магнитном поле (эффект «field cooling») [14].

С целью выявить существование локальных магнитных полей еще в одном кислородном соединении висмута мы исследовали соединение BiPO₄. Была изучена его высокотемпературная модификация с моноклинной решеткой (пространственная группа $P2_1/m$) и параметрами ячейки, хорошо согласующимися с литературными данными [15]. Согласно этим данным, структуру образуют слои, состоящие из цепочек тетраэдров PO₄ и атомов висмута вдоль направления [101]. Окружение атома Bi внутри слоя

Соединение	$\Delta m = 1/2 3/2$	$\Delta m = 3/2 5/2$	$\Delta m = 5/27/2$	$\Delta m = 7/2 - 9/2$	$e^2 Q q$, МГц	$\eta, \%$	$H_{loc}, \Gamma c$	Ссылка
$\mathrm{Bi}_4\mathrm{Si}_3\mathrm{O}_{12}^*$	19.60	39.20	59.0	78.40	470.4	0	41-100	Настоящая
								работа
BiSbO_4	24.88	46.28	69.99	93.39	560.7	8.6	~ 40	Настоящая
	24.79	46.12	69.73	93.06	558.7	8.6		работа
BiPO ₄	16.21	26.72	40.93	54.70	328.8	15.0	_	Настоящая
								работа
α -Bi ₂ O ₃ (A)	25.2	45.8	69.4	92.8	556.7	13.0	~ 170	~ 170
(B)	39.3	37.2	58.3	79.4	482.6	40.0	~ 140	[10]
Bi_3O_4Br (A)	21.62	25.13	39.59	53.34	322.6	31.1	_	[10]
(B)	58.04	43.30	67.92	86.63	536.9	61.7	~ 250	[10]

Таблица. Спектры ЯКР 209 Ві кислородных соединений висмута при 77 К

*Частоты ЯКР ²⁰⁹Ві измерены авторами работы [11].

Рис. 7. *а*) Рост интенсивности линии $\nu_1(B)$ спектра ЯКР 209 Ві соединения Bi_3O_4Br (см. таблицу) в слабых внешних магнитных полях H. *б*) ОСЭ для той же линии во внешних магнитных полях H

Рис. 8. Схема строения высокотемпературной модификации BiPO₄

образовано шестью связями Ві–О, и еще две связи Ві–О соединяют слои между собой (рис. 8). Спектр ЯКР ²⁰⁹Ві соединения ВіРО₄ приведен в таблице. Эксперименты в нулевых внешних магнитных полях, однако, не выявили в его спектре особенностей, которые могли бы указывать на существование в нем локальных магнитных полей. Все линии были сравнительно узкими и симметричными (рис. 9).

4. ЗАКЛЮЧЕНИЕ

Полученные в настоящей работе данные ЯКР ²⁰⁹Ві дают новые свидетельства в пользу существования локальных магнитных полей в соединениях, в которых отсутствуют атомы *d*- или *f*-элементов и которые традиционно считаются диамагнитными. Спектры ЯКР ²⁰⁹Ві двух исследованных соединений дополняют собой пока единичные примеры, в кото-

Рис. 9. Линии переходов в спектрах ЯКР ²⁰⁹Ві (см. таблицу) соединений ВіРО₄ (слева) и ВіSbO₄ (справа)

рых локальные магнитные поля проявляются в виде отчетливо регистрируемых магнитных расщеплений линий ЯКР. В большинстве других соединений существование локальных магнитных полей выявлялось при анализе расщеплений спектров монокристаллов в слабых (не более 10 Э) внешних магнитных полях (зеемановский эксперимент) либо в виде модуляции ОСЭ в нулевом магнитном поле [5]. Накопление экспериментального материала в области исследования особенностей кристаллохимии, а также электронной и магнитной подсистем «немагнитных» соединений важно для расширения наших знаний о природе магнетизма.

Как и в интенсивно исследуемых оксидах переходных и редкоземельных элементов, электронные и магнитные свойства оксидных висмутовых соединений являются результатом взаимного влияния большого числа факторов: особенностей кристаллической структуры, обменных и суперобменных взаимодействий, орбитальных степеней свободы [5]. На настоящем этапе исследований выделить основополагающий фактор, необходимый для возникновения локальных магнитных полей в диамагнитных кислородных соединениях висмута, не представляется возможным. Бесспорно необходимым, по-видимому, является факт наличия у центрального элемента неподеленной пары электронов [5] и, возможно, принадлежность соединения к кристаллохимическому классу фаз Ауривиллиуса, состоящих из слоев $[\text{Bi}_2\text{O}_2]_{2n+}^{2n+}$, чередующихся с перовскитоподобными слоями.

ЛИТЕРАТУРА

- Yu. A. Buslaev, E. A. Kravchenko, and L. Kolditz, Coord. Chem. Rev. 82, 1 (1987).
- P. T. Das and E. L. Hahn, Nuclear Quadrupole-Resonance Spectroscopy, Acad. Press, NewYork–London (1958).
- E. A. Kravchenko, Yu. F. Kargin, V. G. Orlov et al., J. Magn. Magn. Mater. 224, 249 (2001).
- 4. B. Aurivillius, Arkiv Kemi 1, 463 (1949).
- Э. А. Кравченко, В. Г. Орлов, М. П. Шлыков, Успехи химии 75(1), 86 (2006).
- Y. Sheng, K. Qui, W. Zhang et al., Ceramics Int. 43(12), 9158 (2017).
- R. Enjalbert, S. Sorokina, A. Castro et al., Acta Chem. Scand. 49, 813 (1995).
- 8. E. Shempp and P. J. Bray, Phys. Chem. 4, 522 (1970).
- Е. А. Kravchenko, V. G. Morgunov, V. G. Orlov et al., Письма в ЖЭТФ 86, 337 (2008).
- E. A. Kravchenko and V. G. Orlov, Z. Naturforsch. A: Phys. Sci. 49, 418 (1994).
- K. V. Gopalakrishnan, L. G. Gupta, and R. Vijayaragharan, Pramana 6, 343 (1976).
- E. A. Kravchenko, V. G. Morgunov, Yu. F. Kargin et al., Appl. Magn. Res. 27, 65 (2004).
- A. I. Kharkovskii, V. I. Nizhankovskii, E. A. Kravchenko et al., Z. Naturforsch. A: Phys. Sci. 51, 665 (1996).
- V. I. Nizhankovskii, A. I. Kharkovskii, and V. G. Orlov, Ferroelectrics 279, 175 (2002).
- B. Romero, S. Bruque, M. A. G. Aranda et al., Inorg. Chem. 33, 1869 (1994).