ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС ИОНОВ Cr^{3+} В ДИАМАГНИТНЫХ КРИСТАЛЛАХ ABO_3 (A = Sc, In, Ga)

А. М. Воротынов^{а*}, В. В. Руденко^а, С. Г. Овчинников^а, М. С. Молокеев^{а,b}

^а Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^b Сибирский федеральный университет 660041, Красноярск, Россия

Поступила в редакцию 2 июля 2018 г.

Методом магнитного резонанса исследован ряд изоструктурных диамагнитных соединений ABO_3 (A = Sc, In, Ga) с малыми добавками иона Cr^{3+} (S = 3/2) для наблюдения одноионных и парных спектров. Показано, что резонансные спектры для изолированных ионов Cr^{3+} могут быть хорошо описаны обычным аксиальным спиновым гамильтонианом для 3d-ионов в октаэдрическом кислородном окружении. Параметры спинового гамильтониана определены для одиночных ионов Cr^{3+} и пар $Cr^{3+}-Cr^{3+}$. Обсуждается искажение решетки кристаллов ABO₃, вызванное примесями ионов Cr^{3+} .

DOI: 10.1134/S0044451018120118

1. ВВЕДЕНИЕ

Бораты переходных металлов с химической формулой ABO₃ (A = Fe, V, Cr, Ti) привлекательны из-за многообразия их физических свойств, которые проявляются в этой изоструктурной серии соединений [1]. Однако ряд боратов 3*d*-металлов ABO₃, за исключением FeBO3, остается слабо изученным. Например, из всего ряда трехмерных боратов магнитная анизотропия была экспериментально исследована до настоящего времени только в FeBO₃ [2]. В настоящей работе был применен метод электронного парамагнитного резонанса для исследования анизотропных свойств ионов Cr^{3+} в диамагнитных матрицах изоструктурных соединений ABO₃ (A = Sc, In, Ga). В этом случае ион Cr³⁺ был выбран изза необычных магнитных свойств изоструктурного кристалла CrBO₃ [3]. Например, авторы [4] показали, что магнитные свойства кристалла CrBO₃ могут быть описаны на основе простой модели коллинеарного двухподрешеточного антиферромагнетика с магнитными моментами, направленными вдоль оси [111]. Авторы [3] предположили на основе статических магнитных измерений, что вектор антиферромагнетизма в CrBO₃, напротив, лежит в плоскости, близкой к базисной плоскости кристалла.

Настоящая работа является продолжением исследований, представленных нами в работе [5]. В ней обсуждались только спектры одиночных ионов для A = In, Sc, Lu и указывалось на наличие спектров пар ионов $Cr^{3+}-Cr^{3+}$. В настоящей работе представлены новые данные по спектрам электронного парамагнитного резонанса (ЭПР) одиночных ионов Cr^{3+} в диамагнитной матрице GaBO₃ и парным спектрам ионов $Cr^{3+}-Cr^{3+}$ в соединениях с A = Sc, In, Ga.

2. МАТЕРИАЛЫ И МЕТОДЫ

Монокристаллы ABO₃ (A = Sc, In, Ga) с небольшими (около 5 ат. % А) добавками ионов Cr³⁺ выращивались из раствора-расплава сис- $Cr_2O_3-M_2O_3-B_2O_3-(70Pb0-30PbF_2 \text{ Bec. }\%).$ тем Подробное описание технологического синтеза приведено в [6]. При этом ионы Cr³⁺ замещают ионы А. Мы получили монокристаллы в виде тонких пластин размером 2×2 мм² и толщиной около 0.1 мм с гладкой блестящей поверхностью светло-серого цвета. Изоструктурные кристаллы ABO_3 (A = Sc, In, Ga) имеют ромбоэдрическую симметрию с пространственной группой $R\bar{3}c$, точечная группа симметрии иона A (-3m). Параметры элементарной ячейки определялись с использованием рентгеновской спектроскопии на установке

^{*} E-mail: sasa@iph.krasn.ru

ABO ₃	Эффективный ионный	Параметры элемен- тарной ячейки, Å		c/a	Межионное	θ
	радиус r , Å [7]	a	с		расстояние, А	
Sc	0.745	4.7532(5)	15.2669(2)	3.212	3.7424	47.163°
In	0.800	4.806	15.348	3.194	3.7739	47.33°
Ga	0.620	4.578(1)	14.183(5)	3.098	3.5459	48.2°

Таблица 1. Параметры элементарной ячейки кристаллов ABO₃

Примечание. Эффективный радиус ионов Cr^{3+} равен r = 0.615 Å, θ — угол между осью пары и осью C_3 кристалла

Рис. 1. Кристаллическая структура АВО₃

Smart APEX II (Bruker) (K_{α} -излучение Мо) при комнатной температуре и представлены в табл. 1 для Sc, In, Ga.

Ось C_3 кристалла перпендикулярна плоскости пластины кристалла (ось c на рис. 1). Ионы А расположены в октаэдрах, образованных ионами кислорода, связанными с ионами бора сильной ковалентной связью.

Кроме того, существует возможность образования магнитных пар ближайших ионов Cr³⁺. Проекция осей пары на базисную плоскость кристалла

Рис. 2. Проекция осей пары ${\rm Cr}^{3+}$ на базисную плоскость кристалла

представлена на рис. 2. Все пары магнитно эквивалентны. Расстояния $Cr^{3+}-Cr^{3+}$ и углы между осью C_3 кристалла и осью пары показаны в табл. 1.

Измерения электронного парамагнитного резонанса проводились на спектрометре Bruker Elexsys E-580, работающем в X-диапазоне при температурах 300 К и 77 К.

3. РЕЗУЛЬТАТЫ

3.1. Одноионные спектры

В этой главе представлены экспериментальные результаты для одноионных ЭПР-спектров ионов Cr³⁺, полученных в соединениях ABO₃ (Sc, In, Ga). Поскольку эта работа является продолжением исследований, представленных нами в работе [5], рассмотрим более подробно только экспериментальные

Рис. 3. Угловая зависимость резонансных полей сигналов ЭПР, наблюдаемых в плоскости *ac* кристалла GaBO₃. Точки представляют собой эксперимент, сплошные кривые расчет (см. табл. 2)

данные для кристалла GaBO₃, которые не обсуждались ранее.

Угловая зависимость резонансных полей одиночных переходов ионов Cr^{3+} , наблюдаемых в плоскости ac, показана на рис. 3. Спектры резонанса для изолированных ионов Cr^{3+} могут быть описаны аксиальным спиновым гамильтонианом для 3d-ионов:

$$H = -g_{\parallel}\beta H_z S_z - g_{\perp}\beta (H_x S_x + H_y S_y) + DS_z^2, \quad (1)$$

где D — аксиальная постоянная спинового гамильтониана, g_{\parallel} и g_{\perp} — значения g-тензора для параллельных и перпендикулярных ориентаций внешнего магнитного поля относительно оси C_3 кристалла, β — магнетон Бора, S_i и H_i — проекции спина иона Cr^{3+} на внешнее магнитное поле, S = 3/2 — спин иона Cr^{3+} . Экспериментальные и теоретические спектры были подогнаны с помощью программного обеспечения XSophe [8]. Результаты представлены в табл. 2.

Полученные значения g-тензора почти изотропны и соответствуют значениям для ионов d^3 в октаэдрическом окружении [9]. Константа спин-гамильтониана D коррелирует с константой D в ранее исследованных соединениях Al₂O₃ [10] и ZnGa₂O₄ [11, 12], в которых ион Cr³⁺ также находится в октаэдрической координации. Знак константы D для иона Cr³⁺ в GaBO₃ определялся путем сравнения интенсивностей резонансных линий $M_S = 1/2 \leftrightarrow 3/2$ и

Таблица 2. Параметры спинового гамильтониана (1) для изолированного иона Cr^{3+} в матрице ABO_3 при комнатной температуре

А	g_{\parallel}	g_{\perp}	D, cm^{-1}
In [5]	1.980(1)	1.982(1)	-0.314(1)
Sc [5]	1.980(1)	1.982(1)	-0.402(2)
Ga (новые данные)	1.980(1)	1.982(1)	-0.467(1)

 $M_S = -1/2 \leftrightarrow -3/2$ переходов соответственно при T = 300 К и T = 77 К, как в работе [?].

В качестве примера на рис. 4 показаны расчетные схемы уровней энергии иона Cr^{3+} в кристалле GaBO₃.

3.2. Парные спектры

В соединениях с A = Sc, In, Ga наблюдались спектры пар ионов $Cr^{3+}-Cr^{3+}$. Пример парных спектров для кристалла $ScBO_3$ при комнатной температуре представлен на рис. 5. Интенсивная линия в правой и левой частях спектра соответствует одно-ионным переходам.

Пара Cr³⁺-Cr³⁺ образуется ближайшими соседями с расстояниями r = 3.7424 Å, 3.774 Å, 3.5459 Å соответственно для соединений A = Sc, In, Ga (см. табл. 1). Угол между осью пары и осью С₃ кристаллов $\theta \approx 47^{\circ}$ для всех соединений. Когда два иона Cr³⁺ взаимодействуют с образованием магнитной пары, спины *s* каждого иона формируют четыре спиновых состояния, каждое из которых характеризуется полным спиновым квантовым числом S, значение которого изменяется от $(s_1+s_2), (s_1+s_2-1), \ldots$ до 0. В предположении, что энергетические интервалы между этими спиновыми состояниями велики по сравнению с другими магнитными взаимодействиями, для каждого спинового состояния может быть записан отдельный спиновый гамильтониан. В нашем случае удалось идентифицировать резонансные спектры для парных мультиплетов с полным спином S = 2 и S = 3. Угловые зависимости полей резонансных сигналов в базисной плоскости кристаллов показаны на рис. 6–8.

Подгонка экспериментальных спектров проводилась с помощью программы XSophe [8] и спинового гамильтониана (2):

$$H = -g_{\parallel}\beta H_z S_z - g_{\perp}\beta (H_x S_x + H_y S_y) + D_S S_z^2 + E_S (S_x^2 - S_y^2) + 1/60 \left[B_4^0 O_4^0 + B_4^2 O_4^2 + B_4^4 O_4^4 \right], \quad (2)$$

Рис. 4. Расчетные схемы уровней энергии иона Cr^{3+} в $GaBO_3$: a — внешнее магнитное поле параллельно базисной плоскости кристалла, δ — внешнее магнитное поле параллельно оси C_3

Рис. 5. Пример спектров пары ионов ${\rm Cr}^{3+}{\rm -Cr}^{3+}$ в кристалле ${\rm ScBO}_3$ при комнатной температуре в базисной плоскости кристалла

где g_{\parallel} и g_{\perp} — значения g-тензора для параллельных и перпендикулярных ориентаций внешнего магнитного поля относительно оси C_3 кристалла, β — магнетон Бора. Спиновые операторы O_4^0 , O_4^2 и O_4^4 приведены в работе [13]. Третий и четвертый члены в (2) соответствуют значению «тонкой» структуры для полного спина S мультиплета пары и имеют вид [13]

$$D_S = (3\alpha_S D_e + \beta_S D_c), \quad E_S = (\alpha_S E_e + \beta_S E_c), \quad (3)$$

где D_e , E_e — константы диполь-дипольного взаимодействия (в предположении изотропного обменного взаимодействия) в точечном приближении, D_c , E_c — «одноионные» члены для каждого мультиплета [13] и

$$\alpha_S = \frac{1}{2} \frac{S(S+1) + 4s_i(s_i+1)}{(2S-1)(2S+3)},$$

$$\beta_S = \frac{3S(S+1) - 3 - 4s_i(s_i+1)}{(2S-1)(2S+3)}.$$
(4)

Символы $N \leftrightarrow J$ на рис. 6–8 обозначают переходы между соответствующими номерами M_S в па-

 7^*

Рис. 6. Угловые зависимости резонансных полей в базисной плоскости кристалла ScBO₃ при комнатной температуре. Точки — эксперимент, сплошные линии — подгоночные кривые с использованием спинового гамильтониана (2) с параметрами из табл. 3

Рис. 7. Угловые зависимости резонансных полей в базисной плоскости кристалла InBO₃ при комнатной температуре. Точки — эксперимент, сплошные линии — подгоночные кривые с использованием спинового гамильтониана (2) с параметрами из табл. 3

рах мультиплета. Заметим, что реальный экспериментальный спектр для каждого кристалла состоит из трех идентичных спектров рис. 6–8, соответствующих парам $Cr^{3+}-Cr^{3+}$, повернутым на 60° в базисной плоскости (см. рис. 2).

Наилучшие подгоночные значения спин-гамильтониана (2) представлены в табл. 3.

4. ОБСУЖДЕНИЕ

Рассмотрим сначала экспериментальные результаты для пар $Cr^{3+}-Cr^{3+}$ в кристаллах ABO₃. Член D_e может быть получен непосредственно из зна-

чения $D_{S=2}$ (уравнение (3)), так как для S = 2(4) нет решеточного вклада ($\beta = 0$). Для пары, которая имеет почти изотропный *g*-тензор, анизотропный член D_e почти полностью обусловлен диполь-дипольным взаимодействием. Если парамагнитные ионы, которые образуют пару, рассматриваются как точечные диполи, то значение D_e может быть вычислено из следующего выражения: $D_e =$ $= -g^2\beta^2/R^3$ (где R — межионное расстояние). Из значений D_e (для S = 2), наблюдаемых для пар Cr^{3+} – Cr^{3+} в ABO₃, могут быть рассчитаны расстояния между двумя ионами Cr^{3+} . Результаты пред-

Рис. 8. Угловые зависимости резонансных полей в базисной плоскости кристалла GaBO₃ при комнатной температуре. Точки — эксперимент, сплошные линии — подгоночные кривые с использованием спинового гамильтониана (2) с параметрами из табл. 3

Таблица 3. Значения параметров спин-гамильтониана (2) (см⁻¹) для пар Cr^{3+} – Cr^{3+} в кристаллах ABO_3

		S = 2				S = 3			
А	D_S	E_S/D_S	B_4^0	B_{4}^{2}	B_4^4	D_S	E_S/D_S	B_4^0	B_{4}^{2}
Ga	-0.022(3)	-0.03(3)	-0.18(3)	0.10(3)	0	-0.22(1)	0.028	0.0073	0
Sc	-0.061(1)	-0.097	0.047(1)	-0.05(1)	0.02	-0.197(1)	0.06(1)	0.01	-0.018
In	-0.078(1)	-0.0656	-0.0341	-0.009	-0.01	-0.173(6)	-0.1	-0.005	0.03

Примечание. Числа в круглых скобках — ошибки подгонки в последнем десятичном знаке указанных параметров, $g_{\parallel}=1.980$ и $g_{\perp}=1.982$ для всех кристаллов

ставлены в табл. 4. Заметим, что расстояние Cr^{3+} – Cr^{3+} в чистом (без примеси Cr^{3+}) кристалле $CrBO_3$ равно 3.5535 Å [14].

В табл. 4: R_{theor} — межионные расстояния $A^{3+}-A^{3+}$ по рентгеновским данным из табл. 1, $D_e^{theor} = -g^2\beta^2/R_{theor}^3$, $D_{S=2}^{theor} = 3/2D_e^{theor}$, R_{exp} — межионные расстояния $Cr^{3+}-Cr^{3+}$, вычисленные из $D_{S=2}^{exp}$. Из табл. 4 можно видеть искажения решетки ABO₃, вызванные примесными парами $Cr^{3+}-Cr^{3+}$. На рис. 9 представлены эти искажения в зависимости от межионного расстояния $A^{3+}-A^{3+}$ в кристаллах ABO₃.

Можно заметить тенденцию: чем меньше межионные расстояния $A^{3+}-A^{3+}$, тем сильнее искажения. Кроме того, знак искажения меняется на расстоянии $A^{3+}-A^{3+}$, приблизительно равном 3.7 Å. Из уравнения (3) можно найти значения D_c (используя значение $D_{S=2}^{exp}$) (см. табл. 5).

Видно, что значения D_c достаточно близки к константам D спин-гамильтониана (1) для одиночного иона Cr^{3+} в кристаллах ABO₃, за исключением GaBO₃. Разумное объяснение этого различия для кристалла GaBO₃ можно дать, если учесть сильное искажение решетки, наблюдаемое для пары Cr^{3+} – Cr^{3+} в GaBO₃.

На рис. 10 показаны зависимости члена D_S , представленного в табл. 4 для спин-гамильтониана (2), от расстояния $Cr^{3+}-Cr^{3+}$.

Теперь рассмотрим аксиальную константу D одноионного спин-гамильтониана (1). Предполагая модель точечных диполей и учитывая только шесть ближайших ионов кислорода (образующих октаэдрическое окружение иона Cr^{3+}), можно грубо оце-

А	$R_{theor}, m \AA$ (из табл. 1)	$D_e^{theor}, \mathrm{cm}^{-1}$	$D_{S=2}^{theor}, \mathrm{cm}^{-1}$	$D_{S=2}^{theor}, \mathrm{cm}^{-1}$ (из табл. 3)	$R_{exp},$ Å
Ga	3.5459	-0.03807	-0.057105	-0.022	4.8732 ± 0.2
Sc	3.7424	-0.03238	-0.04857	-0.061	3.4688 ± 0.07
In	3.7739	-0.03158	-0.04737	-0.078	3.1959 ± 0.07

Таблица 4. Значения D_e для пар ${
m Cr}^{3+}-{
m Cr}^{3+}$ в кристаллах ${
m ABO}_3$

Рис. 9. Решеточное искажение кристалла, вызванное парой ${\rm Cr}^{3+}-{\rm Cr}^{3+}$ (см. табл. 4). Здесь $R_{\rm A-A}$ является межионным расстоянием ${\rm A}^{3+}-{\rm A}^{3+}$ из табл. 1

Рис. 10. Зависимость D_S от расчетного расстояния $\operatorname{Cr}^{3+}-\operatorname{Cr}^{3+}$ для кристаллов ABO_3 (A = In, Sc, Ga): $D_{S=2}$ — черные точки, $D_{S=3}$ — светлые точки, R_{exp} — расстояние $\operatorname{Cr}^{3+}-\operatorname{Cr}^{3+}$, определенное в табл. 4

Рис. 11. Зависимости c/a и D от градиента электрического поля в кристаллах ABO_3 (A = Ga, In, Sc, Lu): D светлые точки (аксиальная константа одноионного спинового гамильтониана (1)), c/a — черные точки (параметры решетки). Сплошная линия произвольно проведена для светлых точек (In, Sc, Lu)

нить градиент электрического поля (EFG) для позиции иона Cr^{3+} с использованием данных рентгеновского анализа (табл. 1). Очевидно, что значение EFG в основном определяет значение *D*. На рис. 11 представлены зависимости *D* и c/a от EFG для кристаллов ABO₃ (A = Ga, In, Sc, Lu).

На рис. 11 прослеживается общая тенденция — увеличение EFG по мере увеличения отношения c/a. Точно так же абсолютное значение аксиальной постоянной D возрастает (по модулю) с ростом EFG, за исключением иона Cr^{3+} в GaBO₃. Этот факт можно объяснить, если предположить, что сильное искажение решетки, наблюдаемое для пары Cr^{3+} – Cr^{3+} в GaBO₃ (см. рис. 9 и табл. 4), может быть реализовано и для одиночного иона Cr^{3+} в GaBO₃. В этом случае значение EFG, рассчитанное

Таблица 5. Значения D_c для пар ${\rm Cr}^{3+}{\rm -Cr}^{3+}$ в кристаллах ${\rm ABO}_3$

А	$D_c, { m cm}^{-1}$	D, см ⁻¹ (из табл. 2)
Ga	-0.517	-0.467
Sc	-0.401	-0.402
In	-0.3155	-0.314

по данным рентгеновского анализа (табл. 1), может в значительной степени отличаться от реального.

5. ЗАКЛЮЧЕНИЕ

Методом электронного парамагнитного резонанса исследованы одноионные и парные спектры ионов Cr^{3+} в диамагнитных кристаллах ABO₃ (A = Sc, In, Ga). Определены параметры спин-гамильтонианов для одиночных ионов и пар $Cr^{3+}-Cr^{3+}$ при комнатной температуре. Обсуждались искажения решетки кристаллов ABO₃ (A = Sc, In, Ga), вызванные примесью ионов Cr^{3+} . Эта работа будет продолжена исследованием интенсивности резонансных линий пар в зависимости от температуры для определения знаков и величин интегралов обмена J в парах $Cr^{3+}-Cr^{3+}$.

ЛИТЕРАТУРА

 Н. Б. Иванова, В. В. Руденко, А. Д. Балаев, Н. В. Казак, С. Г. Овчинников, И. С. Эдельман, А. С. Федоров, П. В. Аврамов, ЖЭТФ **121**, 354 (2002).

- G. V. Bondarenko, S. G. Ovchinnikov, V. V. Rudenko, V. M. Sosnin, V. I. Tugarinov, and A. M. Vorotynov, J. Magn. Magn. Mater. 335, 90 (2013).
- A. D. Balaev, N. B. Ivanova, N. V. Kazak, S. G. Ovchinnikov, V. V. Rudenko, and V. M. Sosnin, Phys. Sol. St. 45, 287 (2003).
- T. A. Bither, C. G. Frederick, T. E. Gier, J. F. Weiher, and H. S. Young, Sol. St. Comm. 8, 109 (1970).
- А. М. Воротынов, С. Г. Овчинников, В. В. Руденко, О. В. Воротынова, ЖЭТФ 149, 848 (2016).
- 6. V. V. Rudenko, Inorg. Mater. 34, 1253 (1998).
- R. D. Shannon, Acta Crystallographica A 32, 751 (1976).
- M. Griffin, A. Muys, C. Noble, D. Wang, C. Eldershaw, K. E. Gates, K. Burrage, and G. R. Hanson, Mol. Phys. Rep. 26, 60 (1999).
- 9. С. А. Альтшулер, Б. М. Козырев, Электронный парамагнитный резонанс соединений элементов промежуточных групп, Наука, Москва (1972).
- M. J. Berggren, G. F. Imbusch, and P. L. Scott, Phys. Rev. 188, 675 (1969).
- J. C. M. Henning, J. H. den Boeff, and G. G. P. van Gorkom, Phys. Rev. B 7, 1825 (1973).
- G. L. McPherson and Wai-ming Heung, Sol. St. Comm. 19, 53 (1976).
- A. Abragam and B. Bleaney, *Electron Paramagnetic Resonance of Transition Ions*, Clarendon Press, Oxford (1970).
- 14. T. Bither and H. S. Young. J. Sol. St. Chem. 6, 502 (1973).