О ПРОБЛЕМЕ ТЕРМОЯДЕРНОГО «ЗАЖИГАНИЯ» И «ГОРЕНИЯ» НА ЛАЗЕРЕ NIF: ДЛЯ «ЗАЖИГАНИЯ» ПРЕДЛАГАЮТСЯ КАПСУЛЫ, УЧИТЫВАЮЩИЕ ВЛИЯНИЕ ИЗЛУЧЕНИЯ ХОЛЬРАУМА НА ИМПЛОЗИЮ

В. Б. Розанов, Г. А. Вергунова*

Федеральное государственное бюджетное учреждение науки Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

Поступила в редакцию 23 мая 2018 г.

Одной из главных задач современной физики является создание и использование новых источников энергии. Серьезным шагом в решении этой проблемы является реализация положительного выхода термоядерной энергии в лабораторных условиях с помощью лазерных установок, создающих и удерживающих плазму. В 2010—2017 гг. в США, в Ливерморской лаборатории, была проведена большая серия экспериментов на лазерной установке NIF с целью достижения положительного выхода энергии. До сих пор, однако, «зажигание» так и не было достигнуто. В работе впервые обсуждается влияние излучения хольраума на слои капсулы, включая дейтерий-тритий. Показано, что негативное влияние прозрачности аблятора может компенсироваться выбором конструкции капсулы с большей оптической толщиной части аблятора. Эта часть аблятора не испаряется при нагреве рентгеновским импульсом. Предложена конструкция такой капсулы.

DOI: 10.1134/S0044451018100206

1. ВВЕДЕНИЕ

В 2009-2017 гг. в Ливерморской лаборатории США (LLNL) на лазере NIF (National Ignition Facility) проведены общирные серии экспериментов, включая программу NIC (National Ignition Campain), с целью достижения термоядерного зажигания мишеней непрямого облучения. Как известно, достичь зажигания до настоящего времени не удается. Анализ экспериментальных результатов и сопоставление с данными расчетов представлены во многих статьях, опубликованных в 2011-2017 гг. [1–16]. Основное направление в объяснении неудачи в достижении зажигания связано с предположением о несоответствии гидродинамического описания имплозии реальной физике процессов: гидродинамические возмущения развиваются в большем количестве и быстрее, чем предсказывают расчеты. При этом неявно предполагается, что базы данных в расчетах (по уравнению состояния материалов, спектральным коэффициентам поглощения излучения и др.) достаточно полно и точно соответствуют физическим величинам и условиям в экспериментах. Подробное описание физических процессов в излучении хольраума дано в работе [17].

В настоящей работе мы исходим из предположения, что используемые в расчетах спектральные коэффициенты поглощения могут отличаться от реальных в отдельных диапазонах спектра в несколько раз. Если в экспериментах оболочки капсулы более «прозрачны» для излучения, чем в расчетах, то при расчете из-за меньшего нагрева DT-областей может предсказываться «зажигание», а в эксперименте «зажигания» не произойдет. Именно такое поведение мы наблюдаем. Влияние спектральных коэффициентов поглощения излучения и «прозрачности» оболочек капсулы на имплозию рассмотрено в работах [18, 19] в предположении, что коэффициенты базы данных THERMOS соответствуют реальности. Укажем, что в работе [18] предложена и развита 1D-модель сжатия мишеней непрямого сжатия, реальная геометрия которых в начале процессов близка к цилиндрической геометрии. В работе [19] представлена возможная версия деградации сжатия на

^{*} E-mail: verg@sci.lebedev.ru

лазере NIF, связанная с большей «прозрачностью» оболочек капсулы в эксперименте, чем рекомендуется в базе данных THERMOS.

Наконец, в данной работе для режимов "low foot" (режимы низкоэнтропийного сжатия) предложены схемы капсул для мишеней непрямого сжатия, в которых для базы данных THERMOS и 1*D*-программы RADIAN подобраны геометрия и состав оболочек капсулы, обеспечивающие термоядерное «зажигание» мишеней.

Какие факторы следует принимать во внимание при анализе роли «прозрачности» капсул для проблемы «зажигания»?

— Имеющиеся экспериментальные данные по оптическим константам измерялись в ограниченном диапазоне плотности и температуры, в основном прохождением внешнего излучения через материал слоя. Таким образом, прозрачность слоев капсулы, ответственных за поглощение внешнего излучения, неизвестна с достаточной точностью.

— Не рассматривалось поведение этих слоев при имплозии и коллапсе с учетом развития гидродинамических неустойчивостей. Маловероятно, что слой с начальной толщиной 50–60 мкм при радиусе капсулы 900 мкм сохранит свою однородность в этих условиях.

— В работе [19] отмечен важный факт: результаты 1D-расчетов по выходу нейтронов, полученные на основе THERMOS+RADIAN (ФИАН), оказываются ниже (дальше от «зажигания», но ближе к экспериментальным данным), чем аналогичные результаты, полученные с помощью LASNEX (LLNL). Соответственно, для объяснения наблюдаемых результатов можно использовать начальные условия с меньшими отклонениями от симметрии. Сравнение можно найти в работе [18] (см. табл. 2 в [18]).

В результате анализа этих вопросов найдены примеры конструкции мишени, в которых достигается «зажигание» за счет увеличения поглощения излучения хольраума в абляторе. Подчеркнем, что рассмотренный пример относится к 1*D*-модели. Для реального 3*D*-эксперимента оболочки следует подбирать с учетом развития гидродинамических неустойчивостей.

2. КАПСУЛА, УЛУЧШАЮЩАЯ УСЛОВИЯ «ЗАЖИГАНИЯ»

В этом разделе представлена конструкция капсулы мишени (т. е. расположение и состав слоев капсулы), которая для одномерного движения мишени и характеристик процессов и параметров материалов, заложенных в программе RADIAN [20] и базе данных THERMOS [21], при имплозии мишени соответствует условиям «зажигания» и приводит к развитию процесса термоядерного горения и заметному термоядерному выходу. Далее мы обсудим применимость одномерных результатов к реальному *3D*-процессу. Начальные условия в расчетах (энергия и форма лазерного импульса, размер капсулы, DT-слои, аблятор капсулы, цилиндр хольраума и др.) были одинаковыми и соответствовали одному из вариантов «low foot» эксперимента на установке NIF (эксперимент № 120321) [2, 13].

Сравнивая результаты расчетов при одинаковых начальных условиях (LLNL–LASNEX и др., ФИАН–RADIAN+THERMOS, см., например, табл. 2 в [18]), полученные по различным кодам с использованием различных баз данных, и экспериментальные результаты, приходим к следующим выводам. Самый лучший результат («зажигание») получен в 1*D*-расчетах LLNL. Включение 2*D*- и 3D-эффектов снижает термоядерный выход, но он остается больше экспериментальных результатов, и достичь соответствия расчетных и экспериментальных данных удается, только предполагая, что начальные отклонения от симметрии в характеристиках мишени превышают реальные значения в 3-4 раза.

Результаты 1*D*-расчетов ФИАН существенно ближе к экспериментальным результатам, чем аналогичные данные LLNL. Однако нейтронный выход также превышает экспериментальный результат (в 5 раз). Учет отклонений от симметрии при сжатии капсулы приводит к согласованию с данными эксперимента при меньших значениях начальных возмущений. В табл. 1 собраны данные, иллюстрирующие сопоставление различных результатов (на примере эксперимента № 120321 [2,13]). В табл. 1 *T_{rad}* — радиационная температура в полости хольраума, V_{max} — максимальная скорость сжатия капсулы, T_{ion} — максимальная ионная температура DT-газа, N_n — количество генерируемых нейтронов без учета влияния энергии α -частиц, $N_n(+\alpha)$ количество нейтронов с учетом вклада а-частиц. Десятикратное отличие в давлении в расчетах LASNEX (LLNL) и RADIAN (ФИАН) соответствует десятикратному изменению (уменьшению) плотности, которое может быть достигнуто увеличением радиуса горячего пятна сжатого газа ("hot spot") в два раза. Именно эта тенденция наблюдается в эксперименте.

	LLNL				ФИАН–RADIAN	
	Расчеты			Эксперимент		
	Прогнозируемый			Максимальное		
	диапазон	2 <i>D</i> -расчеты	3D-расчеты	значение в	$\aleph^{\underline{0}}120321$	1 <i>D</i> -расчеты
	по расчетам			экспериментах		
T_{rad} , эВ	305			320	303	316
$V_{max},$ км/с	370			352	310	290
$T_{ion-gas},$ кэВ	3.5	2.9	2.6	4.3	3.1	4.1
$N_n(+\alpha)$	$3.4 \cdot 10^{17}$	$1.1\cdot 10^{15}$	$6.0\cdot 10^{14}$	$8.5\cdot10^{14}$	$5\cdot 10^{14}$	$5.9\cdot10^{15}$
N_n	$3.5 \cdot 10^{15}$				$4.2 \cdot 10^{14}$	$4 \cdot 10^{15}$
Р, Гбар	375			197	156	37

Таблица 1. Экспериментальные и расчетные характеристики сжатия мишени № 120321

Таблица 2.	Параметры	слоя	аблятора,	ответствен-
	ного за пр	озрач	ность	

В слое, прилежащем к DT-областям:	19 нс	20 нс	21 нс
Диапазон плотностей, г/см ³	9-25	7–17	7–19
Диапазон температур, эВ	3-10	3-29	5-26

В работе [19] показана возможность достижения условий зажигания за счет увеличения спектральных коэффициентов в той части СН аблятора, которая граничит с термоядерным горючим в виде слоя DT-льда и не испаряется при образовании короны и имплозии капсулы под действием излучения «хольраума». Результат получен в модельной задаче в предположении, что имеется возможность увеличить коэффициенты поглощения излучения, не изменяя плотность и массу (толщину) слоя, степень ионизации, уравнение состояния, транспортные коэффициенты, так что существенные газодинамические параметры сохраняют свои значения.

Реальная задача о подборе геометрии и составе вещества добавок для увеличения поглощения значительно сложнее. Мы покажем результаты подбора на примере добавок меди (Cu). Можно использовать в качестве добавок Ti, Fe, Ge и другие атомы и их сочетания. Выбор материалов обусловлен спектром излучения хольраума. При $T_{rad} \approx 300$ эВ максимум излучения приходится на кванты $h\nu \approx$ учитывать условия в этом слое при имплозии. Данные о параметрах плазмы в этой части аблятора при сжатии содержатся в табл. 2. Длительное время (в том числе в период $T_{rad} \approx 300$ эВ) слой имеет плотность приблизительно 10 г/см³ и температуру около 10 эВ (см. табл. 2). При таких относительно низких температурах и высоких плотностях внутренние оболочки ионов могут оставаться заселенными и решающую роль в коэффициент поглощения вносят свободно связанные переходы. В этом случае пробег жестких квантов имеет вид $l = l_0/\rho$ (а не $l \sim 1/\rho^2$). Оптическая толщина этого слоя остается примерно постоянной при изменении толщины слоя в процессе сжатия или расширения. Рассмотрим результаты расчетов, в которых

 $\approx 1.0-1.5$ кэВ, а спектр излучения содержит кванты до $h\nu \approx 10T_{rad}$. Необходимо также снижать потоки квантов $h\nu < 1$ кэВ. Выбор конструкции должен

Рассмотрим результаты расчетов, в которых «прозрачность» аблятора может быть выбрана в необходимом диапазоне. В табл. 3 собраны данные, которые иллюстрируют влияние прозрачности на выход термоядерной энергии. Во всех расчетах мишень имеет одни и те же размеры, те же массы DT-горючего и абляционного слоя.

На рис. 1 представлены используемые для расчетов варианты капсул.

В этих расчетах различаются только свойства прилежащего к DT-областям поглощающего слоя. В расчетах № 189 и № 193 он состоит из CH с добавкой по числу атомов 1 % Ge. В расчете № 189 коэффициент поглощения получен из расчетов по программе THERMOS [20] и имеет номинальное значение, в

Nº	Материал поглощающего слоя	Коэффициент поглощения	$T_{emax},$ кэВ	$ ho_{max}, \ { m r/cm}^3$	$N_n, \times 10^{17}$
189	СН	$k_{THERMOS}$	4.7	7	0.0146
193	СН	$4k_{THERMOS}$	13	24	1.87
332	$60\%\mathrm{CH}{+}40\%\mathrm{Cu}$	$k_{THERMOS}$	34	35	33.1
359	2 слоя Си	$k_{THERMOS}$	68	340	67.5
367	1 слой Си	$k_{THERMOS}$	70	408	66.5

Таблица 3. Зависимость нейтронного выхода от коэффициентов поглощения в абляторе. T_{emax} и ρ_{max} — максимальная температура и плотность DT-газа, N_n — количество генерируемых нейтронов

Рис. 1. Используемые для расчетов капсулы. Параметры капсулы № 189 взяты из работы [2]. В расчетах № 193, № 332 и № 359 параметры областей, прилежащих к DT, (918-975 мкм) меняются

расчете № 193 этот коэффициент поглощения увеличен в 4 раза, тем самым длина свободного пробега квантов уменьшена в 4 раза.

В расчете № 332 поглощающий слой плотностью 1.1 г/см³ состоит по весу из 60% СН и 40% Си. В расчете № 359 поглощающий слой состоит из двух слоев меди (Си), погруженных в слои пластика (СН). Для удобства расчета (выбор сетки) плотность Си выбрана равной 3 г/см³, толщина слоев меди около 9 мкм. Толщина медных слоев соответствует условиям расчета № 332:

$$\begin{split} \rho_{\rm Cu} \Delta_{\rm Cu} &= \rho_{\rm CH} \Delta_{\rm CH} \frac{0.4}{0.6} = 38 \ \text{mkm} \cdot 1.1 \ \text{f/cm}^3 \frac{0.4}{0.6} = \\ &= 25 \ \text{mkm} \cdot \text{f/cm}^3. \end{split}$$

Условие можно выполнить с одним слоем Cu (в этом случае $\Delta_{Cu} = 3$ мкм при $\rho_{Cu} = 9$ г/см³). При большом числе слоев условия совпадают с условиями расчета № 332. Расчеты проведены для идеальных уравнений состояния для возможности сравнения различных кодов и баз данных.

Рис. 2. Плотность (сплошные линии 1; 1') и электронная температура (штриховые линии 2; 2') в моменты максимального сжатия: расчет № 359 обозначен жирными линиями, время максимального сжатия 23.1 нс; расчет № 189 обозначен тонкими линиями и цифрами со штрихами, время максимального сжатия 22.7 нс

Отметим, более поздний что период в (2014-2017 гг.) на NIF были проведены эксперименты с различными временными формами импульса (AS — Adiabat Shaping) и вариантами аблятора (HDC — High Density Carbon, Ве — бериллий) [22,23]. Рассмотрение влияния «прозрачности» аблятора для различных вариантов капсул остается в силе, хотя конкретные данные могут отличаться. На рис. 2 для моментов времени, близких к коллапсу, представлены зависимости $\rho(r)$ и $T_e(r)$ для расчетов № 189 и № 359.

В момент коллапса плотность сжатого DT-газа в расчете № 359 (340 г/см³) больше плотности DT-газа

Рис. 3. Спектральные потоки излучения в момент времени 20 нс на границе DT-горючего и CH: расчеты № 359 (1), N^{0} 189 (2)

в расчете № 189 (7 г/см³) примерно в 49 раз, соответственно радиус центральной сжатой области в расчете № 359 меньше радиуса центральной сжатой области в расчете № 189 в 3.6 раза. Для этих расчетов на рис. 3 для t = 20 нс представлены потоки энергии излучения, входящие в DT. Спектральный поток, проникающий в DT-горючее, в расчете № 189 значительно превышает поток в расчете № 359. Вследствие этого на стадии сжатия температура в DTгорючем в расчете № 189 превышает температуру в расчете № 359 (плотность, напротив, меньше), что приводит в итоге к сжатию и зажиганию мишени № 359 и незажиганию мишени № 189.

Отмеченный ранее характер поведения спектральных коэффициентов во внутренней неиспаренной части аблятора ($l = l_0/\rho$) дает основания для оценки влияния гидродинамических неустойчивостей на «прозрачность» аблятора. Распределения плотности материалов с учетом неустойчивостей сохраняют зависимость $l = l_0 / \rho$, которая в определенной степени сохраняет оптическую толщину примесей и степень нагрева при имплозии центрального DT-горючего и сжатии или расширении вещества аблятора из-за развития неустойчивостей. Приведенные данные расчета № 189 (предполагается, что он соответствует номинальному эксперименту № 120321) показывают диапазон параметров капсулы при отсутствии «зажигания» в рамках базы данных RADIAN+THERMOS. Данные позволяют оценить влияние изменения «прозрачности» на баланс дополнительного поглощения энергии в DT-областях. К моменту коллапса кинетическая и внутренняя энергии капсулы в расчете № 189 составляют 7.8 кДж, а в расчете № 359 — 6.5 кДж. Разница составляет всего ~ 1 кДж, однако эта энергия является значительной по отношению к энергии, заключенной в DT-горючем. Таким образом, получается, что дополнительная энергия порядка 1 кДж оказывается существенной для термоядерного горения мишени.

3. ЗАКЛЮЧЕНИЕ

В данной работе для режимов «low foot» предложены конструкции мишеней непрямого сжатия (конструкции капсул), в которых на основе базы спектральных данных THERMOS и 1*D*-программы RADIAN подобраны геометрия и состав оболочек капсулы, обеспечивающие «зажигание». Уменьшение радиационных потоков за счет подбора спектральных коэффициентов увеличивает сжатие DT-горючего капсулы и приближает капсулу к условиям зажигания. В 1*D*-расчетах уменьшение радиационных потоков можно увидеть, и оно приводит к зажиганию. При развитии 2*D*-и 3*D*-неустойчивостей тенденция сохраняется — уменьшение нагрева DT-горючего приближает капсулу к условиям зажигания.

Полученные результаты свидетельствуют о существенном влиянии «прозрачности» аблятора для рентгеновского излучения из хольраума на достижение критических для «зажигания» параметров имплозии. Появляется возможность не только дать объяснение экспериментам в режиме «low foot» (режим низкоэнтропийного сжатия), но и приблизиться к «зажиганию», наблюдать увеличение нейтронного выхода при увеличении поглощения в абляторе за счет добавок тяжелых элементов в определенном количестве.

Работа выполнена при поддержке РНФ (грант № 16-11-10174).

ЛИТЕРАТУРА

- J. Lindl, O. Landen, J. Edwards et al., Phys. Plasmas 21, 020501 (2014).
- M. Edwards, P. Patel, J. Lindl et al., Phys. Plasmas 20, 070501 (2013).

- J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011).
- S. Haan, J. Lindl, D. Callahan et al., Phys. Plasmas 18, 051001 (2011).
- H. Robey, V. Smalyuk, J. Milovich et al., Phys. Plasmas 23, 056303 (2016).
- O. Landen, J. Edwards, S. Haan et al., Phys. Plasmas 18, 051002 (2011).
- V. Smalyuk, H. Robey, T. Döppner et al., Phys. Plasmas 23, 102703 (2016).
- H. Park, O. Hurricane, D. Callahan et al., Phys. Rev. Lett. 112, 055001 (2014).
- O. Hurricane, D. Callahan, D. Casey et al., Nature 506, 343 (2014).
- 10. T. Ma, P. Patel, N. Izumi et al., Phys. Plasmas 24, 056311 (2017).
- B. Cheng, T. J. T. Kwan, Y. M. Wang et al., Phys. Plasmas 22, 082704 (2015).
- T. Ma, N. Izumi, R. Tommasini et al., Rev. Sci. Instr. 83, 10E115 (2012).
- D. S. Clark, C. R. Weber, J. L. Milovich et al., Phys. Plasmas 23, 056302 (2016).

- 14. C. R. Weber, D. T. Casey, D. S. Clark et al., Phys. Plasmas 24, 056302 (2017).
- O. A. Hurricane, D. A. Callahan, D. T. Casey et al., Phys. Plasmas 21, 056314 (2014).
- H. F. Robey, L. Berzak Hopkins, J. L. Milovich, and N. B. Meezan, Phys. Plasmas 21, 012711 (2018).
- J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004).
- 18. В. Б. Розанов, Г. А. Вергунова, ЖЭТФ 148, 857 (2015).
- B. Б. Розанов, Γ. А. Вергунова, ЖЭТΦ 151, 210 (2017).
- 20. G. A. Vergunova and V. B. Rozanov, Laser Part. Beams 17, 579 (1999).
- А. Ф. Никифоров, В. Г. Новиков, В. Б. Уваров, Квантово-статистические модели высокотемпературной плазмы, Физматлит, Москва (2000).
- 22. A. J. MacKinnon, N. B. Meezan, J. S. Ross et al., Phys. Plasmas 21, 056318 (2014).
- 23. J. L. Kline, S. A. Yi, A. N. Simakov, R. E. Olson et al., Phys. Plasmas 23, 056310 (2016).