# ВЛИЯНИЕ ФЕРРОМАГНИТНЫХ УГЛЕРОДНЫХ НАНОТРУБОК НА МАГНИТНЫЕ ПЕРЕХОДЫ В ЖИДКИХ КРИСТАЛЛАХ

## А. Н. Захлевных<sup>\*</sup>, Д. А. Петров, П. К. Скоков

Пермский государственный национальный исследовательский университет 614990, Пермь, Россия

Поступила в редакцию 4 мая 2018 г.

В рамках континуальной теории изучены индуцированные внешним магнитным полем ориентационные переходы в суспензиях углеродных нанотрубок в нематических жидких кристаллах. Рассмотрены ферромагнитные углеродные нанотрубки, обладающие помимо большой анизотропии диамагнитной восприимчивости дополнительным магнитным моментом, который придают им феррочастицы, расположенные на поверхности нанотрубок или инкапсулированные внутри. Показано, что в зависимости от энергии сцепления дисперсных частиц с жидкокристаллической матрицей магнитное поле индуцирует различные последовательности ориентационных переходов. Найдено критическое значение энергии сцепления, выше которого возможен переход из начальной однородной планарной фазы в неоднородное состояние (угловая фаза). При энергиях сцепления, меньших критического значения, с ростом напряженности магнитного поля происходит последовательность ориентационных переходов однородная планарная фаза – неоднородная угловая фаза – однородная гомеотропная фаза – неоднородная угловая фаза. Показано, что в зависимости от интенсивности сегрегационных эффектов эти переходы могут быть первого или второго рода. Найдены аналитические выражения для полей переходов второго рода между фазами. На примере оптической разности фаз между обыкновенным и необыкновенным лучами света, прошедшего через ячейку суспензии, показана возможность оптической бистабильности суспензии при ориентационном переходе первого рода.

**DOI:** 10.1134/S0044451018100188

## 1. ВВЕДЕНИЕ

Известно, что нематические жидкие кристаллы (НЖК) обладают малой анизотропией диамагнитной восприимчивости ( $\chi_a \sim 10^{-7}$ ) [1], поэтому для управления их ориентационной структурой в ограниченном объеме нужны достаточно большие магнитные поля ( $H \sim 10^4$  Э). Можно, однако, увеличить ориентационный отклик жидкого кристалла (ЖК) на внешнее магнитное поле, добавив в него небольшое количество ферромагнитных наночастиц. Такая композитная система была впервые предложена в работе [2] и получила название ферронематик. Благодаря ориентационной связи между феррочастицами и ЖК-матрицей удается управлять ориентационной структурой ФН магнитными полями, на несколько порядков меньшими по сравнению с чистыми ЖК, даже при малой объемной

14 ЖЭТФ, вып. 4 (10)

доле примеси (порядка 0.01 % по объему). Впоследствии были успешно синтезированы и исследованы ЖК-суспензии ферромагнитных частиц [3–6] и сегнетоэлектрических частиц [6–9].

Другой способ увеличить ориентационный отклик ЖК-матрицы на внешнее магнитное поле заключается в том, чтобы использовать в качестве примеси диамагнитные частицы, но с аномально высокой анизотропией диамагнитной восприимчивости  $\chi_a^p$ . В качестве такой примеси выбирают углеродные нанотрубки (УНТ) [10–15], имеющие  $\chi^p_a \sim$  $\sim~10^{-6}\text{--}10^{-5}$  [16–21]. Существует способ усилить магнитоориентационный отклик самих УНТ. Для этого внутрь трубки инкапсулируют феррочастицы [22–24] или же размещают ферромагнитную примесь на поверхности трубки; такие УНТ называют функционализированными [12, 25]. В дальнейшем при построении феноменологической теории ЖК-суспензий будет существенно только то, что такие УНТ обладают магнитным моментом; при этом подразумевается, что феррочастицы могут быть как на поверхности УНТ, так и инкапсулированы внут-

<sup>\*</sup> E-mail: anz@psu.ru

ри УНТ. Следуя работе [23], их называют ферромагнитными углеродными нанотрубками (ФМ УНТ). Благодаря сильно вытянутой форме (аспектное отношение порядка  $10^2-10^3$ ) УНТ обеспечивают сильную ориентационную связь с молекулами ЖК, а малые поперечные размеры (порядка 1 нм для однослойных и порядка 10 нм для многослойных УНТ) не вносят появления существенных дефектов в ЖК-матрицу. Все это делает ФМ УНТ перспективным материалом для создания ЖК-композитов с уникальными физическими свойствами [14, 26].

Недавние экспериментальные исследования ориентационных свойств ЖК-суспензий УНТ в электрическом [10, 11, 27–29] и магнитном [12, 21, 23, 30] полях показали существенное уменьшение пороговых полей перехода Фредерикса [1] по сравнению с беспримесным ЖК. Имеющиеся теоретические подходы к описанию ЖК-суспензий УНТ ограничены, в основном, рассмотрением вопросов фазового поведения [31-33] либо индуцированных магнитным полем переходов Фредерикса в рамках континуальной теории [21, 34] и не затрагивают исследования ЖК-суспензий ФМ УНТ. Настоящая работа посвящена построению континуальной теории ориентационных фазовых переходов, индуцированных внешним магнитным полем, в суспензиях ФМ УНТ в НЖК.

#### 2. УРАВНЕНИЯ РАВНОВЕСИЯ

Рассмотрим плоский слой толщиной L суспензии ФМ УНТ на основе НЖК. Начало координат поместим в середину слоя, пусть ось х параллельна границам слоя, а ось *z* ортогональна им (рис. 1). Магнитное поле  $\mathbf{H} = (0, 0, H)$  направим вдоль оси z. Для описания преимущественной ориентации молекул ЖК и УНТ будем использовать единичные векторы — директоры соответственно **n** и **m**. Будем считать сцепление директора **n** на границах слоя жестким и планарным, так что в отсутствие магнитного поля директор ЖК в слое параллелен оси легкого ориентирования  $\mathbf{n}_0 = (1, 0, 0)$ . Согласно работам [35,36], длинные оси УНТ ориентируются в отсутствие поля параллельно директору ЖК-матрицы, что отвечает планарному сцеплению  $\mathbf{n} \parallel \mathbf{m}$ .

Известно, что анизотропия  $\chi^p_a$  диамагнитной восприимчивости УНТ положительна [18–20]. Будем полагать также положительной диамагнитную анизотропию  $\chi_a$  ЖК-матрицы. Напомним, что рассматриваемые нами ФМ УНТ обладают магнитным моментом, направленным вдоль длинной оси нано-



Рис. 1. Геометрия задачи

трубки [23]. Включение магнитного поля, ортогонального направлениям **n** и **m**, вызывает искажение ориентационной структуры, обусловленное, наряду с поворотом магнитных моментов в направлении поля, диамагнитными механизмами УНТ и ЖК-матрицы, вызывающими вращение директоров **n** и **m** в направлении поля вследствие положительных величин  $\chi_a$  и  $\chi_a^p$ . Эти искажения ориентационной структуры суспензии будем описывать на основе континуальной теории.

Состоянию термодинамического равновесия суспензии отвечает минимум свободной энергии

$$\mathcal{F} = \int F_V dV, \tag{1}$$

где объемная плотность свободной энергии  $F_V$  имеет вид

$$F_V = F_1 + F_2 + F_3 + F_4 + F_5 + F_6, \qquad (2)$$

$$F_{1} = \frac{1}{2} \times$$

$$\times \left( K_{11} (\operatorname{div} \mathbf{n})^{2} + K_{22} (\mathbf{n} \cdot \operatorname{rot} \mathbf{n})^{2} + K_{33} [\mathbf{n} \times \operatorname{rot} \mathbf{n}]^{2} \right),$$

$$F_{2} = -\frac{1}{2} \chi_{a} (\mathbf{n} \cdot \mathbf{H})^{2}, \quad F_{3} = -\frac{1}{2} \chi_{a}^{p} f(\mathbf{m} \cdot \mathbf{H})^{2},$$

$$F_{4} = -M_{s} f \mathbf{m} \cdot \mathbf{H},$$

$$F_{5} = -\frac{W_{p} f}{d} (\mathbf{n} \cdot \mathbf{m})^{2}, \quad F_{6} = \frac{k_{B} T}{v} f \ln f.$$

Здесь  $K_{11}$ ,  $K_{22}$  и  $K_{33}$  — константы Франка ориентационной упругости НЖК,  $\chi_a > 0$  и  $\chi_a^p > 0$  анизотропии диамагнитной восприимчивости соответственно ЖК-матрицы и УНТ,  $M_s$  — намагниченность насыщения ФМ УНТ, f — объемная доля УНТ в ЖК-суспензии,  $W_p$  — поверхностная плотность энергии сцепления ЖК-матрицы с поверхностью УНТ, d — поперечный диаметр УНТ, v — объем УНТ,  $k_B$  — постоянная Больцмана, T — температура. Концентрацию УНТ в ЖК будем считать малой,  $\overline{f} \ll 1$  ( $\overline{f} = Nv/V$ , N — число УНТ в суспензии, V — объем суспензии), что позволяет не учитывать дисперсионные и диполь-дипольные взаимодействия УНТ между собой.

Слагаемое F<sub>1</sub> представляет собой плотность свободной энергии ориентационно-упругих деформаций ЖК [1]. Следующие три вклада описывают влияние магнитного поля на ориентационную структуру суспензии: слагаемые  $F_2$  и  $F_3$  учитывают соответственно энергии диамагнитных ЖК-матрицы и УНТ в магнитном поле (диамагнитные механизмы влияния поля); вклад  $F_4$  отвечает энергии взаимодействия магнитных моментов ФМ УНТ с магнитным полем (ферромагнитный механизм). Мы полагаем, что в отсутствие магнитного поля магнитные моменты УНТ в среднем ориентированы в направлении оси x. Слагаемое  $F_5$  — объемная плотность энергии ориентационного взаимодействия (сцепления) УНТ с ЖК-матрицей [37] (мы полагаем  $W_p > 0$ , поэтому в отсутствие поля минимум энергии F<sub>5</sub> достигается при **n** || **m**, что соответствует планарному сцеплению ЖК-матрицы с УНТ). Последнее слагаемое F<sub>6</sub> учитывает вклад энтропии смешения идеального раствора УНТ в суспензии 2.

Для рассматриваемой геометрии (см. рис. 1) директоры ЖК и УНТ можно представить в следующем виде:

$$\mathbf{n} = \left[\cos\varphi(z), 0, \sin\varphi(z)\right], \mathbf{m} = \left[\cos\psi(z), 0, \sin\psi(z)\right].$$
(3)

Здесь  $\varphi(z)$  и  $\psi(z)$  — углы отклонения директоров соответственно **n** и **m** от оси легкого ориентирования  $\mathbf{n}_0 = (1, 0, 0)$ , см. рис. 1.

После подстановки выражений (3) в (1) получим следующее выражение для свободной энергии:

$$\mathcal{F} = \int \left\{ \frac{1}{2} \left[ K_{11} \cos^2 \varphi(z) + K_{33} \sin^2 \varphi(z) \right] \times \left( \frac{d\varphi}{dz} \right)^2 - \frac{1}{2} \chi_a H^2 \sin^2 \varphi(z) - \frac{1}{2} \chi_a^p f H^2 \sin^2 \psi(z) - M_s f H \sin \psi(z) - \frac{W_p f}{d} \cos^2 \left[ \varphi(z) - \psi(z) \right] + \frac{k_B T}{v} f \ln f \right\} dV.$$
(4)

Выберем в качестве единицы длины толщину слоя L и определим безразмерную координату  $\tilde{z} =$ = z/L (далее знак «тильда» будем опускать), а также приведенную объемную долю УНТ в суспензии,  $g = f/\overline{f}$ , и безразмерную напряженность магнитного поля  $h = HL\sqrt{\chi_a/K_{11}}$ . В качестве единицы напряженности магнитного поля Н мы выбрали величину  $H_q = L^{-1} \sqrt{K_{11}/\chi_a}$ , которая определяется балансом энергии ориентационно-упругих деформаций F<sub>1</sub> и диамагнитного вклада ЖК-матрицы F<sub>2</sub>. По аналогии с  $H_q$  можно ввести характерное поле  $H_d = K_{11}/M_s \overline{f} L^2$ , следующее из баланса энергии F1 ориентационно-упругих деформаций и энергии  $F_4$  феррочастиц в магнитном поле. При  $H \geq H_q$ ориентационные искажения в ЖК возникают изза диамагнитного механизма влияния поля на ЖКматрицу, а при  $H \ge H_d$  — из-за ферромагнитного механизма влияния поля на УНТ.

Далее определим безразмерные параметры суспензии:

$$\sigma = \frac{W_p \overline{f} L^2}{K_{11} d}, \quad \kappa = \frac{k_B T \overline{f} L^2}{K_{11} v}, \quad \gamma = \frac{\chi_a^p}{\chi_a} \overline{f},$$
  
$$b = \frac{M_s \overline{f} L}{\sqrt{K_{11} \chi_a}}, \quad k = \frac{K_{33}}{K_{11}}.$$
(5)

Здесь k — отношение констант Франка,  $\sigma$  — безразмерная энергия сцепления УНТ с ЖК-матрицей. Параметр b представляет собой отношение двух характерных магнитных полей,  $b = H_q/H_d$ . При b >> 1 ориентационные деформации вызваны преимущественно ферромагнитным механизмом, а при b << 1 — диамагнитной анизотропией ЖК. Параметр γ определяется балансом энергии F<sub>2</sub> диамагнитной ЖК-матрицы и энергии F<sub>3</sub> диамагнитных нанотрубок в магнитном поле [34] и показывает, какой из двух диамагнитных механизмов ориентации суспензии магнитным полем преобладает в суспензии. При  $\gamma > 1$  деформация ориентационной структуры вызвана преимущественно диамагнитным механизмом, связанным с УНТ, а при  $\gamma < 1$  появление искажений поля директора n обусловлено диамагнетизмом ЖК. Параметр сегрегации  $\kappa = (L/L_s)^2$  является квадратом отношения двух характерных размеров системы — толщины L слоя суспензии и сегрегационной длины  $L_s = \sqrt{vK_{11}/k_BTf}$  [2,38], которая находится из баланса вкладов F<sub>1</sub> и F<sub>6</sub> в объемную плотность свободной энергии. Сегрегационный параметр к представляет собой меру концентрационного расслоения УНТ в слое суспензии [2]. При  $\kappa \gg$ ≫ 1 перераспределение УНТ в слое ЖК пренебрежимо мало и становится существенным при  $\kappa \leq 1$ .

В системе единиц СГС согласно работам [14,16,23,39] типичные значения материальных параметров НЖК и УНТ составляют  $\chi_a \approx 10^{-7}$ ,  $K_{33} > K_{11} \approx 10^{-7}$  дин,  $\chi_a^p \approx 10^{-5} - 10^{-4}$ ,  $d \approx 10^{-6}$  см,  $l \approx 10^{-4}$  см,  $v \approx 10^{-16}$  см<sup>3</sup>,  $M_s \approx 10^2$  Гс,  $\overline{f} \approx 10^{-5} - 10^{-4}$ . Примем температуру T = 300 К, толщину ячейки L = 20 мкм. Энергия сцепления ЖК и УНТ согласно работам [40,41] принимает значения в диапазоне  $W_p \approx 10^{-3}$ –1 дин/см. Тогда получим следующие оценки для безразмерных параметров:  $\kappa \approx 1$ ,  $\sigma \approx 1 - 10^2$ ,  $b \approx 10$ ,  $k \approx 1$ ,  $\gamma \approx 10^{-1}$ .

Для безразмерной свободной энергии  $\tilde{\mathcal{F}} = \mathcal{F}L/K_{11}S$  с учетом выражений (5) получаем

1 /0

$$\tilde{\mathcal{F}} = \int_{-1/2}^{1/2} \left[ \frac{1}{2} \left( \frac{d\varphi}{dz} \right)^2 K(\varphi) - \frac{1}{2} h^2 \sin^2 \varphi - \frac{1}{2} \gamma g h^2 \sin^2 \psi - b h g \sin \psi - \sigma g \cos^2(\varphi - \psi) + \kappa g \ln g \right] dz. \quad (6)$$

Здесь S — площадь пластин, ограничивающих ячейку, и введено обозначение

$$K(\varphi) = \cos^2 \varphi + k \sin^2 \varphi. \tag{7}$$

Свободная энергия (6) является функционалом относительно трех функций,  $\varphi(z)$ ,  $\psi(z)$  и g(z). Минимизация по  $\varphi(z)$  и  $\psi(z)$  дает уравнение для угла ориентации директора ЖК,

$$K(\varphi)\frac{d^{2}\varphi}{dz^{2}} + \frac{1}{2}\frac{dK(\varphi)}{d\varphi}\left(\frac{d\varphi}{dz}\right)^{2} + \frac{1}{2}h^{2}\sin 2\varphi - \sigma g\sin 2(\varphi - \psi) = 0, \quad (8)$$

и уравнение связи директоров **n** и **m**,

$$\frac{1}{2}\gamma h^2 \sin 2\psi + bh \cos \psi + \sigma \sin 2(\varphi - \psi) = 0.$$
 (9)

Минимизация по g проводится с дополнительным условием постоянства числа УНТ в суспензии  $\int f \, dV = Nv$ , которое в безразмерной форме имеет вид

$$\int_{-1/2}^{1/2} g(z) \, dz = 1. \tag{10}$$

В результате получим

$$g = Q \exp\left\{\frac{\gamma h^2 \sin^2 \psi}{2\kappa} + \frac{bh \sin \psi}{\kappa} + \frac{\sigma \cos^2(\varphi - \psi)}{\kappa}\right\}, \quad (11)$$

где для постоянной нормировки введено обозначение

$$Q^{-1} = \int_{-1/2}^{1/2} \exp\left\{\frac{\gamma h^2 \sin^2 \psi}{2\kappa} + \frac{bh \sin \psi}{\kappa} + \frac{\sigma \cos^2(\varphi - \psi)}{\kappa}\right\} dz. \quad (12)$$

Выражение (11) описывает концентрационное распределение УНТ в слое суспензии. Под действием магнитного поля возникают искажения ориентационной структуры ЖК, приводящие к перераспределению примеси по толщине слоя, так что УНТ накапливаются в той части слоя, где минимальна сумма их магнитной энергии в поле и ориентационной энергии в матрице. Это явление в физике ферронематиков получило название эффекта сегрегации [2], а в ЖК-суспензиях УНТ его существование установлено в работе [34].

Систему уравнений (8), (9), (11), (12) необходимо дополнить условиями планарного сцепления директора **n** с границами слоя:

$$\varphi|_{z=\pm 1/2} = 0.$$
 (13)

В силу симметрии задачи середине слоя (z = 0) отвечает максимальное отклонение  $\varphi_m$  директора от оси легкого ориентирования; тогда можно записать

$$\varphi(0) = \varphi_m, \quad \left. \frac{d\varphi}{dz} \right|_{z=0} = 0.$$
 (14)

Значение  $\varphi_m$  определяется напряженностью приложенного магнитного поля и материальными параметрами суспензии.

Проинтегрируем систему уравнений (8), (9) и (11). Для этого умножим уравнение (8) на  $d\varphi/dz$ , а уравнение (9) на  $g d\psi/dz$  и сложим их, в результате получим

$$\frac{d\varphi}{dz} = \pm \frac{1}{\sqrt{R(\varphi, \psi)}} \,. \tag{15}$$

Здесь введено обозначение

$$R(\varphi,\psi) = K(\varphi) \left[ h^2 (\cos^2 \varphi - \cos^2 \varphi_m) - 2\kappa (g - g_m) \right]^{-1},$$

где  $\psi(0) \equiv \psi_m$  — угол ориентации директора УНТ и  $g(\varphi_m, \psi_m) \equiv g_m$  — приведенная объемная доля нанотрубок в середине слоя суспензии.

Знак «плюс» в уравнении (15) отвечает нижней половине слоя, «минус» — верхней, если рассматривать поворот директора против часовой стрелки. Напомним, что в уравнении (15) содержится угол поворота директора нанотрубок,  $\psi = \psi(\varphi)$ , который определяется уравнением связи (9). Зависимость концентрации нанотрубок  $g = g(\varphi, \psi)$  от углов  $\varphi$  и  $\psi$  задается соотношением (11).

Интегрируя уравнение (15), получим неявную зависимость угла ориентации  $\varphi(z)$  директора ЖК от координаты z:

$$\int_{0}^{\varphi(z)} \sqrt{R(\tilde{\varphi}, \psi)} \, d\tilde{\varphi} = \frac{1}{2} + z, \quad z \in \left[-\frac{1}{2}, 0\right], \quad (16)$$

$$\int_{0}^{\varphi(z)} \sqrt{R(\tilde{\varphi},\psi)} \, d\tilde{\varphi} = \frac{1}{2} - z, \quad z \in \left[0, \frac{1}{2}\right]. \tag{17}$$

Если положить z = 0 в выражении (16) или (17), то с учетом (14) получим уравнение, которое позволяет найти угол ориентации директора  $\varphi_m$  в середине слоя:

$$\int_{0}^{\varphi_m} \sqrt{R(\tilde{\varphi}, \psi)} \, d\tilde{\varphi} = \frac{1}{2}.$$
 (18)

Для определения константы нормировки Q перейдем в выражении (10) от интегрирования по пространственной координате к интегрированию по углу, используя выражение (15); тогда получим

$$\int_{0}^{\varphi_m} g(\tilde{\varphi}, \psi) \sqrt{R(\tilde{\varphi}, \psi)} \, d\tilde{\varphi} = \frac{1}{2}.$$
 (19)

Система интегральных уравнений (9), (18) и (19) позволяет определить величину Q и значения углов отклонения директоров ЖК и УНТ от оси легкого ориентирования в середине слоя, соответственно  $\varphi_m$  и  $\psi_m$ , как функции приложенного магнитного поля h и материальных параметров суспензии  $\sigma$ ,  $\gamma$ ,  $\kappa$  и k. Для найденных значений  $\varphi_m$ ,  $\psi_m$  и Q с помощью выражений (9), (11), (16) и (17) можно найти пространственные распределения углов ориентации директоров ЖК и УНТ,  $\varphi(z)$  и  $\psi(z)$ , а также приведенную объемную долю нанотрубок g(z).

# 3. ОРИЕНТАЦИОННЫЕ ФАЗЫ СУСПЕНЗИИ И ПОЛЯ ПЕРЕХОДОВ

В отсутствие магнитного поля система уравнений (8), (9), (11) и (12) с граничными условиями (14) допускает однородное решение

$$\varphi(z) \equiv 0, \quad \psi(z) \equiv 0, \quad g(z) = 1,$$



Рис. 2. Ориентационные фазы суспензии: *а* — планарная; *б* — угловая; *в* — гомеотропная

отвечающее исходному состоянию, в котором директоры ЖК и УНТ параллельны оси легкого ориентирования  $\mathbf{n}_0$  во всем слое суспензии,  $\mathbf{n} \parallel \mathbf{m} \parallel \mathbf{n}_0$ , что соответствует планарному сцеплению УНТ и ЖК. Такую фазу будем называть планарной (рис. 2*a*). При включении магнитного поля это состояние перестает быть устойчивым и система из однородной планарной фазы беспороговым образом переходит в неоднородную угловую фазу [34,42], в которой угол между директорами  $\mathbf{n}$  и  $\mathbf{m}$  отличен от нуля и  $\pi/2$  и зависит от координаты *z* (рис. 2*б*).

В присутствии поля система уравнений (8), (9), (11) и (12) допускает другое однородное решение  $\varphi(z) \equiv 0, \psi(z) \equiv \pi/2$  и g(z) = 1, описывающее состояние, в котором директор ЖК направлен вдоль оси легкого ориентирования  $\mathbf{n} \parallel \mathbf{n}_0$ , а директор УНТ  $\mathbf{m}$ ориентирован вдоль поля ( $\mathbf{n} \perp \mathbf{m} \parallel \mathbf{H}$ ), что отвечает гомеотропному сцеплению УНТ с ЖК-матрицей. Такую фазу согласно работам [34, 42] будем называть гомеотропной (рис. 26). Неоднородная (угловая) фаза суспензии описывается полной системой интегральных уравнений равновесия.

Вблизи перехода между угловой и гомеотропной фазами угол  $\varphi$  мал, а угол  $\psi$  близок к  $\pi/2$ , т.е.  $\varphi(z) \ll 1, \ \psi(z) = \pi/2 - \delta\psi(z), \ где \ \delta\psi(z) \ll 1, \ и$ распределение УНТ в слое близко к однородному,  $g(z) \approx 1$ . В этом случае система уравнений (8), (9), (11) и (12) может быть представлена в виде разложения в степенной ряд по малым величинам  $\varphi$  и  $\delta\psi$ :

$$\frac{d^2\varphi}{dz^2} + h^2\varphi + 2\sigma(\varphi + \delta\psi) = 0, \qquad (20)$$

$$(\gamma h^2 + bh)\delta\psi - 2\sigma(\varphi + \delta\psi) = 0.$$
 (21)

Исключая из выражений (20) и (21) малую поправку  $\delta\psi,$  приходим к уравнению

$$\frac{d^2\varphi}{dz^2} + \Lambda^2 \varphi = 0, \qquad (22)$$

где введено обозначение

$$\Lambda^2 = h^2 - \frac{2\sigma h(\gamma h + b)}{2\sigma - h(\gamma h + b)}.$$
(23)

Нетривиальное решение  $\varphi(z) = \varphi_m \cos(\pi z)$  уравнения (22) с граничными условиями (13) и (14) существует при  $\Lambda = \pi$ . В этом случае выражение (23) позволяет получить уравнение для определения порогового поля  $h = h_r$  перехода суспензии из угловой в гомеотропную фазу:

$$h_r^2 - \frac{2\sigma h_r(\gamma h_r + b)}{2\sigma - h_r(\gamma h_r + b)} = \pi^2.$$
 (24)

В случае, когда примесными являются ферромагнитные частицы ( $\gamma = 0$ ), выражение (24) совпадает с полученным в работе [43] для ферронематического ЖК, а если УНТ не являются ферромагнитными (b = 0), то формула (24) сводится к результату работы [34] для ЖК-суспензии УНТ.

Выражение (24) можно разрешить относительно  $\sigma$ :

$$\sigma = \frac{1}{2} \frac{h_r(\pi^2 - h_r^2)(\gamma h_r + b)}{h_r(\gamma h_r + b) + \pi^2 - h_r^2}.$$
 (25)

На рис. 3 показаны фазовые диаграммы ЖК-суспензии ФМ УНТ, построенные по формуле (25). Кривые на этих рисунках определяют границу перехода между гомеотропной и угловой фазами. Внутренняя область по отношению к двузначной кривой



Рис. 3. Зависимости поля перехода  $h_r$  от энергии сцепления УНТ с ЖК-матрицей  $\sigma$ : a — при различных значениях параметра b ( $\sigma_{m1} = 0.972$ ,  $\sigma_{m2} = 1.973$ ,  $\sigma_{m3} = 2.554$ );  $\delta$  — при различных значениях параметра  $\gamma$  ( $\sigma_{m1} = 0.620$ ,  $\sigma_{m2} = 0.748$ ,  $\sigma_{m3} = 1.039$ )

 $h_r(\sigma)$  отвечает фазе с гомеотропным сцеплением директоров ЖК и УНТ,  $\mathbf{n}_0 \parallel \mathbf{n} \perp \mathbf{m}$ . Вне этой области находится неоднородная угловая фаза, в которой угол между директором ЖК  $\mathbf{n}$  и директором УНТ  $\mathbf{m}$  принимает значения от 0 до  $\pi/2$ . Решение уравнения (24), отвечающее нижнему участку двузначной кривой  $h_r(\sigma)$  на рис. 3, будем далее обозначать  $h_{r-}$ , а верхнему —  $h_{r+}$ .

На рис. 3 видно, что в зависимости от энергии сцепления примесных частиц с ЖК-матрицей возможны два принципиально разных ориентационных отклика суспензии на внешнее магнитное поле. Как видно, имеется некоторое пороговое значение энергии сцепления  $\sigma_m$  (показано штриховыми линиями на рис. 3), зависящее от параметров суспензии *b* и  $\gamma$ , выше которого (жесткое сцепление,  $\sigma > \sigma_m$ ) переход в гомеотропную фазу отсутствует при любых значениях напряженности поля. Таким образом, в случае жесткого сцепления в отсутствие магнитного поля начальное состояние суспензии с планарным сцеплением ЖК и УНТ вследствие ферромагнитного механизма после включения поля теряет устойчивость и сменяется неоднородной угловой фазой. Такой ориентационный отклик экспериментально обнаружен в работе [23], в которой исследованы ЖК-суспензии агрегированных ФМ УНТ.

В предельном случае b = 0, что соответствует чистым нанотрубкам, согласно работе [34], переход из начальной планарной фазы в угловую имеет порог и происходит при достижении магнитным полем некоторого значения.

В случае  $\sigma < \sigma_m$  (слабое сцепление) включение магнитного поля также приводит к беспороговому переходу из планарной в угловую фазу, однако при достижении полем значения  $h_{r-}$  происходит переход в гомеотропную фазу, которая остается устойчивой в полях, не превышающих значения  $h_{r+}$ , выше которого происходит возвратный переход в угловую фазу. Наличие гомеотропной фазы в интервале полей  $h_{r-} \leq h \leq h_{r+}$ , а следовательно, и возвратных переходов в угловую фазу, обусловлено конкуренцией слагаемых в свободной энергии (1). В указанном интервале полей рост слагаемых F<sub>2</sub> и F<sub>5</sub> компенсируется убылью всех остальных вкладов в выражении (1). При достижении полем значения  $h_{r+}$ диамагнитный эффект, создаваемый ЖК-матрицей, становится существенным и приводит к ориентационным деформациям директора ЖК, которые вызывают переход в неоднородную угловую фазу. Похожий эффект имеет место в ферронематических жидких кристаллах [43].

В случае слабого сцепления УНТ и ЖК ( $\sigma \ll \sigma_m$ ) формула (25) позволяет получить выражения для магнитных полей переходов, соответствующих нижнему и верхнему начальным участкам двузначной кривой (см. рис. 3):

$$h_{r-}|_{\sigma \to 0} \approx \frac{2\sigma}{b}, \quad h_{r+}|_{\sigma \to 0} \approx \pi - \frac{\sigma}{\pi}.$$
 (26)

Из формул (26) видно, что в полях, превышающих пороговое поле Фредерикса в чистом ЖК  $(h > \pi)$ , суспензия всегда находится в угловой фазе, независимо от значений ее материальных параметров.

Как отмечалось выше, значение  $\sigma_m$  зависит от параметров *b* и  $\gamma$ . На рис. З*a* видно, что с ростом параметра *b*, т. е. по мере усиления влияния ферромагнитного ориентационного механизма, обусловленного наличием магнитных моментов УНТ, над диамагнитным, связанным с ЖК-матрицей, расширяется область существования гомеотропной фазы и увеличивается пороговое значение энергии сцепления  $\sigma_m$ . Вместе с этим происходит уменьшение поля перехода  $h_{r-}$  и увеличение  $h_{r+}$ . Таким образом, с ростом параметра b переход из угловой фазы в гомеотропную происходит в меньших полях, а переход из гомеотропной в угловую фазу — в больших полях. На рис. 36 видно, что области существования гомеотропной фазы также расширяются с ростом параметра  $\gamma$ , чему отвечает увеличение относительного вклада диамагнитного ориентационного механизма, связанного с УНТ, по сравнению с диамагнитным влиянием ЖК.

## 4. ХАРАКТЕР ОРИЕНТАЦИОННЫХ ПЕРЕХОДОВ

Рассмотрим поведение суспензии вблизи поля  $h_{r-}$  перехода из угловой фазы в гомеотропную. В результате разложения свободной энергии суспензии (6) в степенной ряд по малым  $\varphi(z) = \varphi_m \cos(\pi z)$  выражение (6) для свободной энергии принимает форму разложения Ландау:

$$F = F_r + \frac{\alpha_-}{2}(h - h_{r-})\varphi_m^2 + \frac{\beta_-}{4}\varphi_m^4 + \dots$$
 (27)

Здесь коэффициенты разложения являются функциями материальных параметров:

$$F_{r} = -\frac{\gamma h^{2}}{2} - bh,$$

$$\alpha_{-} = -h_{r-} + s_{-}^{2} \left(\gamma h_{r-} + \frac{b}{2}\right),$$

$$\beta_{-} = \beta_{-}^{*} (\kappa - \kappa_{-}^{*}),$$

$$\beta_{-}^{*} = \frac{1}{16\kappa} \left[4k\pi^{2} + 24\sigma s_{-}(s_{-} + 1)^{2} + 3bh_{r-}s_{-}^{4}\right],$$

$$s_{-} = \frac{\pi^{2} - h_{r-}^{2}}{h_{r-}(\gamma h_{r-} + b)} > 0,$$

$$\kappa_{-}^{*} = \frac{4\sigma^{2}(s_{-} + 1)^{2}}{4k\pi^{2} + 24\sigma s_{-}(s_{-} + 1)^{2} + 3bh_{r-}s_{-}^{4}}.$$
(28)

В результате минимизации выражения (27) по  $\varphi_m$  получим зависимость угла ориентации директора ЖК в середине слоя,  $\varphi_m$ , от приложенного магнитного поля вблизи  $h_{r-}$ :

$$\varphi_m = \pm \sqrt{\frac{\alpha_-}{\beta_-^*} \frac{h_{r-} - h}{\kappa - \kappa_-^*}} \,. \tag{29}$$

Для  $h_{r-} < h_m$  (нижняя ветвь двузначной кривой  $h_r(\sigma)$ ), где  $h_m$  отвечает значению энергии сцепления  $\sigma_m$  (см. рис. 3), коэффициент  $\alpha_- > 0$  и, как видно из формул (28),  $\beta_-^* > 0$  и  $\kappa_-^* > 0$ , так как  $h_{r-} < \pi$ . Таким образом, при  $\kappa \ge \kappa_-^*$  действительные решения (29) существуют при  $h \le h_{r-}$ , а значит, ориентационный переход из угловой фазы в гомеотропную является переходом второго рода. В противоположном случае, когда  $\kappa < \kappa_-^*$ , этот переход является переходом деание  $\kappa_-^*$  отвечает трикритической точке.

Рассмотрим теперь поведение суспензии вблизи поля  $h_{r+}$ , которое отвечает переходу из гомеотропной фазы в угловую. По аналогии с предыдущим случаем представим выражение (6) для свободной энергии в виде разложения Ландау. В результате получим

$$F = F_r + \frac{\alpha_+}{2}(h_{r+} - h)\varphi_m^2 + \frac{\beta_+}{4}\varphi_m^4 + \dots, \quad (30)$$

где введены обозначения

$$\alpha_{+} = h_{r+} - s_{+}^{2} \left( \gamma h_{r+} + \frac{b}{2} \right),$$
  

$$\beta_{+} = \beta_{+}^{*} (\kappa - \kappa_{+}^{*}),$$
  

$$\beta_{+}^{*} = \frac{1}{16\kappa} \left[ 4k\pi^{2} + 24\sigma s_{+} (s_{+} + 1)^{2} + 3bh_{r+} s_{+}^{4} \right], \quad (31)$$
  

$$\kappa_{+}^{*} = \frac{4\sigma^{2} (s_{+} + 1)^{2}}{4k\pi^{2} + 24\sigma s_{+} (s_{+} + 1)^{2} + 3bh_{r+} s_{+}^{4}},$$
  

$$s_{+} = \frac{\pi^{2} - h_{r+}^{2}}{h_{r+} (\gamma h_{r+} + b)} > 0.$$

После минимизации свободной энергии (30) по  $\varphi_m$  для угла ориентации директора ЖК в центре слоя вблизи  $h_{r+}$  получим выражение

$$\varphi_m = \pm \sqrt{\frac{\alpha_+}{\beta_+^*}} \frac{h - h_{r+}}{\kappa - \kappa_+^*} . \tag{32}$$

Для  $h_{r+} > h_m$  (верхняя ветвь двузначной кривой  $h_r(\sigma)$ ) коэффициент  $\alpha_+ > 0$  и, согласно (31), параметры  $\beta^*_+ > 0$  и  $\kappa^*_+ > 0$ , так как  $h_{r+} < \pi$ . Таким образом, из выражения (32) следует, что при  $\kappa \ge \kappa^*_+$  ориентационный переход между гомеотропной и угловой фазами является переходом второго рода, а при  $\kappa < \kappa^*_+$  — переходом первого рода, т.е. значение  $\kappa^*_+$  отвечает трикритической точке.

Заметим, что выражение (24) позволяет определить только поля перехода второго рода. Поле равновесного перехода первого рода,  $h_t$ , можно найти из условия равенства свободных энергий гомеотропной и угловой фаз. Переходя в выражении (6) для свободной энергии от интегрирования по координате к интегрированию по углу с помощью (15), можно записать условие равенства свободных энергий в виде

$$2\int_{0}^{\varphi_m} \frac{K(\varphi)}{\sqrt{R(\varphi,\psi)}} \bigg|_{h=h_t} d\varphi - \frac{h_t^2}{2}\sin^2\varphi_m + \kappa[\ln eQ - g_m] + \frac{\gamma h_t^2}{2} + bh_t = 0.$$
(33)

Уравнение (33) совместно с (9), (18) и (19) позволяет найти поле  $h_t$  равновесного перехода первого рода как функцию материальных параметров суспензии. По аналогии с полями перехода второго рода введем следующие обозначения:  $h_{t-}$  — равновесное поле перехода первого рода из угловой фазы в гомеотропную,  $h_{t+}$  — равновесное поле перехода первого рода из гомеотропной фазы в угловую.

## 5. ОРИЕНТАЦИОННЫЙ И МАГНИТООПТИЧЕСКИЙ ОТКЛИКИ НА ПРИЛОЖЕННОЕ ПОЛЕ

Рассмотрим ориентационный отклик суспензии на приложенное магнитное поле. На рис. 4 и 5 представлены результаты численного решения системы уравнений (9), (18) и (19) для различных значений материальных параметров.

На рис. 4 показаны углы ориентации директоров ЖК и УНТ (рис. 4*a*) и приведенной объемной доли УНТ (рис. 4б) в центре слоя от приложенного магнитного поля h, полученные путем численного решения системы уравнений (9), (18) и (19) для  $\sigma = 1$ ,  $b = 5, \gamma = 0.2, \kappa = 0.05$  и k = 1.5. Соответствующая фазовая диаграмма представлена на рис. За. Значения полей переходов второго рода из угловой фазы в гомеотропную,  $h_{r-} = 0.50$  и  $h_{r+} = 2.75$ , pacсчитаны по формуле (24). Равновесное поле перехода первого рода из гомеотропной фазы в угловую,  $h_{t+} = 2.72$ , найдено с помощью уравнения (33), которое решалось совместно с уравнениями (9), (18) и (19). Значения трикритических параметров сегрегации,  $\kappa_{-}^{*} = 0.02$  и  $\kappa_{+}^{*} = 0.08$ , рассчитаны, соответственно, с помощью выражений (28) и (31). На рис. 4а видно, что при включении магнитного поля в суспензии беспороговым образом появляются искажения ориентационной структуры. Примесные ФМ УНТ стремятся повернуться в направлении поля и, благодаря ориентационной связи между компонентами суспензии, их механическое вращение передается ЖК-матрице, что отвечает росту углов  $\varphi_m$  и  $\psi_m$  на рис. 4*а*. С ростом искажений ориентационной структуры в результате сегрегационных эффектов



Рис. 4. Зависимости углов ориентации директоров ЖК и УНТ (*a*) и приведенной объемной доли УНТ (*б*) в центре слоя от приложенного магнитного поля h для  $\sigma = 1, b = 5, \gamma = 0.2, \kappa = 0.05$  и k = 1.5. Здесь  $h_{r-} = 0.50, h_{r+} = 2.75$  и  $h_{t+} = 2.72$ 

примесь начинает накапливаться в середине слоя, чему отвечает увеличение  $g_m$  (рис.  $4\delta$ ).

При увеличении магнитного поля в результате слабого сцепления ( $\sigma < \sigma_m$ ) директор ЖК отрывается от директора УНТ и возвращается к исходной планарной текстуре при  $h = h_{r-}$ , в то время как УНТ ориентируются в направлении поля, т.е. происходит переход между угловой и гомеотропной фазами, который для выбранных материальных параметров является переходом второго рода, так как  $\kappa > \kappa_-^*$ . С исчезновением искажений ориентационной структуры ЖК-матрицы примесь однородно



Рис. 5. Зависимости углов ориентации директоров ЖК и УНТ (*a*) и приведенной объемной доли УНТ (*б*) в центре слоя от приложенного магнитного поля h для  $\sigma = 2$ , b = 10,  $\gamma = 0.2$ ,  $\kappa = 0.1$  и k = 1.5 ( $h_{r-} = 0.69$ ,  $h_{r+} = 2.25$ ,  $h_{t-} = 0.78$ ,  $h_{t+} = 1.89$ )

распределена по всему слою, чему отвечает значение  $g_m = 1$  в полях  $h_{r-} < h < h_{t+}$  (см. рис. 46). Гомеотропная фаза является устойчивой, пока магнитное поле не достигнет значения  $h_{t+}$ , выше которого углы ориентации  $\varphi_m$  и  $\psi_m$  меняются скачком, т.е. происходит переход первого рода из гомеотропной фазы в угловую (этому переходу отвечают вертикальные отрезки прямых на рис. 4), так как значение параметра сегрегации меньше трикритического,  $\kappa < \kappa_+^*$ . Заметим, что поле равновесного перехода первого

рода  $h_{t+}$  имеет меньшее значение, чем поле перехода второго рода  $h_{r+}$ . На рис. 4 пунктиром показаны участки кривых, отвечающие метастабильным состояниям. В угловой фазе при  $h > h_{t+}$  с ростом поля директоры ЖК и УНТ ориентируются в направлении поля и углы  $\varphi_m$  и  $\psi_m$  стремятся к  $\pi/2$ . При этом происходит расширение области, в которой директор ЖК ориентирован по полю, от центра слоя к его границам, и УНТ мигрируют к границам слоя. Это отвечает возрастанию, а затем и уменьшению концентрации  $g_m$  нанотрубок, показанным на рис. 46.

На рис. 5 показаны результаты численного решения системы уравнений (9), (18) и (19) для  $\sigma = 2$ ,  $b = 10, \gamma = 0.2, \kappa = 0.1$  и k = 1.5, которым отвечают значения полей переходов  $h_{r-} = 0.69, h_{r+} = 2.25,$  $h_{t-} = 0.78, h_{t+} = 1.89$  и трикритические значения параметров сегрегации  $\kappa_{-}^{*} = 0.18$  и  $\kappa_{+}^{*} = 0.32$ . Соответствующая этому рисунку фазовая диаграмма представлена на рис. За. В этом случае переходы угловая-гомеотропная-угловая фазы являются переходами первого рода, так как выбранное значение  $\kappa < \kappa_{-}^{*} < \kappa_{+}^{*}$ . На рис. 5 видно, что для перехода между угловой и гомеотропной фазами поле  $h_{t-}$  равновесного перехода первого рода больше, чем поле  $h_{r-}$  перехода второго рода, а для перехода из гомеотропной фазы в угловую имеем  $h_{t+} < h_{r+}$ . Таким образом, для суспензии с параметром сегрегации меньшим, чем трикритические значения, область существования гомеотропной фазы уменьшается. Для рассматриваемых значений параметров поведение углов отклонения директоров компонент суспензии от оси легкого ориентирования и приведенной объемной доли УНТ в центре слоя качественно похожи на предыдущий случай, но переход из угловой в гомеотропную фазу является теперь переходом первого рода.

Одним из способов экспериментального обнаружения ориентационных переходов в ЖК является измерение оптической разности фаз  $\delta$  между обыкновенным и необыкновенным лучами монохроматического света, прошедшего через ячейку суспензии. Для нормально падающего луча света, согласно работе [39], оптическая разность фаз имеет вид

$$\delta = \frac{2\pi L}{\lambda} \int_{-1/2}^{1/2} (n_{eff} - n_o) \, dz, \qquad (34)$$

где L — толщина ячейки, в которой находится суспензия,  $\lambda$  — длина волны монохроматического света,  $n_{eff}$  — эффективный показатель преломления, определяемый соотношением



Рис. 6. Зависимость оптической разности фаз от приложенного магнитного поля для  $\sigma = 2$ , b = 10,  $\gamma = 0.2$ ,  $\kappa = 0.1$  и k = 1.5 ( $h_{r-} = 0.69$ ,  $h_{r+} = 2.25$ ,  $h_{t-} = 0.78$ ,  $h_{t+} = 1.89$ )

$$\frac{1}{n_{eff}^2} = \frac{\sin^2 \varphi(z)}{n_o^2} + \frac{\cos^2 \varphi(z)}{n_e^2}, \qquad (35)$$

 $n_o$  и  $n_e$  — показатели преломления соответственно обыкновенного и необыкновенного лучей света. Используя (15), в выражении (34) можно перейти от интегрирования по пространственной переменной к интегрированию по углу  $\varphi$ . Тогда можно записать

$$\frac{\delta}{\delta_0} = 2 \int_0^{\varphi_m} \frac{\left(1 - \xi + \sqrt{1 - \xi}\right) \cos^2 \varphi}{1 - \xi \cos^2 \varphi + \sqrt{1 - \xi \cos^2 \varphi}} \times R^{1/2}(\varphi, \psi) \, d\varphi, \quad (36)$$

где введены обозначения

$$\delta_0 = 2\pi L \frac{n_e - n_o}{\lambda}, \quad \xi = \frac{n_e^2 - n_o^2}{n_e^2}.$$
 (37)

В качестве примера рассмотрим суспензию на основе жидкого кристалла 6СНВТ с  $n_o = 1.52$  и  $n_e =$ = 1.67 для  $\lambda = 632.8$  нм [44]. На рис. 6 представлены результаты расчета фазовой задержки (36) для суспензии, отвечающие рис. 5. На рис. 6 видно, что в отсутствие поля в планарной фазе фазовая задержка максимальна. При включении поля происходит переход в угловую фазу, и фазовая задержка уменьшается, достигая локального минимума, который отвечает локальному максимуму отклонения директора ЖК от оси легкого ориентирования в центре слоя (см. рис. 5*a*). Затем она возрастает и скачкообразно при  $h = h_{t-}$  становится равной единице, чему отвечает исчезновение искажений ориентационной структуры в ЖК-матрице и переход первого рода в гомеотропную фазу. Далее с ростом поля при  $h = h_{t+}$  происходит переход первого рода в угловую фазу, в которой угол ориентации директора ЖК монотонно возрастает, а фазовая задержка монотонно уменьшается. Наличие переходов первого рода свидетельствует об оптической бистабильности суспензии.

#### 6. ЗАКЛЮЧЕНИЕ

В работе изучены индуцированные магнитным полем ориентационные фазовые переходы в ЖК-суспензии УНТ. Рассмотрение проведено для ФМ УНТ, которые, наряду с типичной для УНТ положительной анизотропией диамагнитной восприимчивости  $\chi_a^p > 0$ , обладают собственным магнитным моментом, связанным с инкапсулированием магнитных частиц внутри трубки либо с покрытием поверхности трубки соединениями железа (функционализированные УНТ).

Показано, что ориентационный отклик суспензии на приложенное магнитное поле существенным образом зависит от энергии сцепления нанотрубок с ЖК-матрицей и от сегрегационного параметра. В случае сильного сцепления нанотрубок с матрицей начальное состояние суспензии с планарным типом сцепления сменяется в магнитном поле неоднородной угловой фазой. При слабом сцеплении нанотрубок с матрицей с ростом поля происходит последовательность переходов однородная планарная фаза-неоднородная угловая фаза-однородная гомеотропная фаза – неоднородная угловая фаза. Показано, что переходы между угловой и гомеотропной фазами могут быть переходами первого или второго рода в зависимости от параметра сегрегации. Получены аналитические выражения для полей переходов второго рода и для параметра сегрегации, отвечающего трикритической точке переходов.

Изучены зависимости углов ориентации директора ЖК и длинных осей УНТ, а также распределение концентрации УНТ от напряженности поля и материальных параметров суспензии и на их основе рассчитана оптическая разность фаз между обыкновенным и необыкновенным лучами монохроматического света, прошедшего через ячейку суспензии. Показана возможность оптической бистабильности суспензии.

Рассмотренные в работе ЖК-суспензии ФМ УНТ отличаются характером магнитоориентационного отклика на внешнее магнитное поле от беспримесных ЖК [1], а также от ЖК-суспензий обычных (диамагнитных) УНТ [34]. При  $\gamma = 0$ рассмотренная модель приводит к результатам работы [43] для ферронематического ЖК.

В заключение отметим, что безразмерная энергия сцепления  $\sigma$  (см. формулы (5)), определяющая характер ориентационного отклика суспензии на приложенное магнитное поле, представляет собой комбинацию материальных параметров суспензии, которая линейно зависит от квадрата толщины слоя и объемной доли примеси. Таким образом, варьируя эти величины, можно подобрать параметры суспензии, позволяющие обнаружить возвратные ориентационные переходы угловая – гомеотропная – угловая фаза.

Работа выполнена при поддержке РФФИ (грант № 16-02-00196).

# ЛИТЕРАТУРА

- 1. P. G. de Gennes and J. Prost, *The Physics of Liquid Crystals*, Clarendon Press, Oxford (1993).
- F. Brochard and P. G. de Gennes, J. de Phys. 31, 691 (1970).
- Y. A. Garbovskiy and A. V. Glushchenko, Sol. St. Phys. 62, 1 (2010).
- P. Kopčanský, N. Tomašovičová, M. Koneracká, V. Závišová, M. Timko, A. Džarová, and A. Šprincová, Phys. Rev. E 78, 011702 (2008).
- N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, J. Colloid Interf. Sci. 386, 158 (2012).
- Y. Reznikov, A. Glushchenko, and Y. Garbovskiy, In: Liquid Crystals with Nano and Microparticles, ed. by P. F. J. Lagerwall and G. Scalia, World Sci. Publ. Comp. (2016), pp. 657–693.
- Yu. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, Appl. Phys. Lett. 82, 1917 (2003).
- F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Yu. Reznikov, T. J. Sluckin, and J. L. West, Phys. Rev. Lett. 97, 147801 (2006).

- G. Cook, V. Yu. Reshetnyak, R. F. Ziolo, S. A. Basun, P. P. Banerjee, and D. R. Evans, Opt. Express 18, 7339 (2010).
- I. Dierking, G. Scalia, and P. Morales, J. Appl. Phys. 97, 044309 (2005).
- 11. H. Y. Chen and W. Lee, Appl. Phys. Lett. 88, 222105 (2006).
- 12. Z. Mitróová, M. Koneracká, N. Tomasovicova, M. Timko, J. Jadzyn, I. Vávra, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, and P. Kopcansky, Phys. Procedia 9, 41 (2010).
- 13. H. Agha and Y. Galerne, Phys. Rev. E 93, 042703 (2016).
- 14. S. P. Yadav and S. Singh, Progr. Mater. Sci. 80, 38 (2016).
- C. Chang, Y. Zhao, Y. Liu, and L. An, RSC Adv. 8, 15780 (2018).
- 16. A. P. Ramirez, R. C. Haddon, O. Zhou, R. M. Fleming, J. Zhang, S. M. McClure, and R. E. Smalley, Science 265, 84 (1994).
- J. Heremans, C. H. Olk, and D. T. Morelli, Phys. Rev. B 49, 15122 (1994).
- M. Fujiwara, E. Oki, M. Hamada, Y. Tanimoto, I. Mukouda, and Y. Shimomura, J. Phys. Chem. A 105, 4383 (2001).
- 19. S. Zaric, G. N. Ostojic, J. Kono, J. Shaver, V. C. Moore, R. H. Hauge, R. E. Smalley, and X. Wei, Nano Lett. 4, 2219 (2004).
- 20. T. A. Searles, Y. Imanaka, T. Takamasu, H. Ajiki, J. A. Fagan, E. K. Hobbie, and J. Kono, Phys. Rev. Lett. 105, 017403 (2010).
- 21. C. Cîrtoaje and E. Petrescu, Physica E 84, 244 (2016).
- 22. С. В. Комогорцев, Р. С. Исхаков, А. Д. Балаев, А. Г. Кудашов, А. В. Окотруб, С. И. Смирнов, ФТТ 49, 700 (2007).
- 23. O. Buluy, S. Nepijko, V. Reshetnyak, E. Ouskova, V. Zadorozhnii, A. Leonhardt, M. Ritschel, G. Schönhense, and Y. Reznikov, Soft Matter 7, 644 (2011).
- 24. H. S. Jeong, S. C. Youn, Y. H. Kim, and H.-T. Jung, Phys. Chem. Chem. Phys. 15, 9493 (2013).
- 25. H. J. Yoo, S. Y. Lee, N.-H. You, D. S. Lee, H. Yeo,

Y. M. Choi, M. Goh, J. Park, K. Akagi, and J. W. Cho, Synth. Met. **181**, 10 (2013).

- 26. L. Lisetski, M. Soskin, and N. Lebovka, Springer Proc. Phys. 171, 243 (2015).
- 27. H. Y. Chen and W. Lee, Opt. Rev. 12, 223 (2005).
- 28. C. Cîrtoaje, E. Petrescu, and C. Moţoc, Physica E 54, 242 (2013).
- 29. E. S. M. Peterson, G. Georgiev, J. T. Atherton, and P. Cebe, Liq. Cryst. 45, 450 (2018).
- 30. N. Dalir and S. Javadiana, J. Appl. Phys. 123, 115103 (2018).
- 31. A. Matsuyama, J. Chem. Phys. 132, 214902 (2010).
- 32. V. Popa-Nita, J. Chem. Phys. 140, 164905 (2014).
- 33. V. Popa-Nita, J. Chem. Phys. 143, 094901 (2015).
- 34. D. A. Petrov, P. K. Skokov, and A. N. Zakhlevnykh, Beilstein J. Nanotechnol. 8, 2807 (2017).
- 35. M. D. Lynch and D. L. Patrick, Nano Lett. 2, 1197 (2002).
- 36. I. Dierking, G. Scalia, P. Morales, and D. LeClere, Adv Mater. 16, 865 (2004).
- 37. S. V. Burylov and Yu. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 107 (1995).
- 38. A. N. Zakhlevnykh and D. A. Petrov, Tech. Phys. 57, 1208 (2012).
- L. M. Blinov and V. G. Chigrinov, *Electrooptic Effects* in Liquid Crystal Materials, Springer-Verlag, New York (1994).
- 40. Z. Mitróová, N. Tomašovičová, M. Timko, M. Koneracká, J. Kováč, J. Jadzyn, I. Vávra, N. Éber, T. Tóth-Katona, E. Beaugnon, X. Chaud, and P. Kopčanský, New J. Chem. 35, 1260 (2011).
- 41. P. van der Schoot, V. Popa-Nita, and S. Kralj, J. Phys. Chem. B 112, 4512 (2008).
- 42. A. N. Zakhlevnykh, J. Magn. Magn. Mater. 269, 238 (2004).
- 43. A. N. Zakhlevnykh and D. A. Petrov, J. Mol. Liq. 198, 223 (2014).
- 44. J. Kedzierski, Z. Raszewski, M. A. Kojdecki, E. Kruszelnicki-Nowinowski, P. Perkowski, W. Piecek, E. Miszczyk, J. Zielinski, P. Morawiak, and K. Ogrodnik, Opto-Electron. Rev. 18, 214 (2010).