ОСОБЕННОСТИ ТЕПЛОЕМКОСТИ И ТРАНСПОРТА ФОНОНОВ В Er-СОДЕРЖАЩИХ АЛЮМО-РЕДКОЗЕМЕЛЬНЫХ ГРАНАТАХ В ОБЛАСТИ Не-ТЕМПЕРАТУР

Е. И. Саламатов^а, А. В. Таранов^{b*}, Е. Н. Хазанов^b, Е. В. Чарная^c, Е. В. Шевченко^c

^а Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук 426067, Ижевск, Россия

^b Институт радиотехники и электроники им. В. А. Котельникова Российской академии наук 103907, Москва, Россия

^с Физический факультет, Санкт-Петербургский государственный университет 198504, Санкт-Петербург, Россия

Поступила в редакцию 23 апреля 2018 г.

Исследованы особенности температурных зависимостей теплоемкости и транспортных характеристик фононов тепловых частот в области гелиевых температур в монокристаллах твердых растворов алюморедкоземельных гранатов при наличии шоттки-подобных низкоэнергетических возбуждений. Измерены кинетические характеристики фононов в зависимости от состава твердого раствора. Проанализирована связь кинетических и теплофизических характеристик материала в твердых растворах алюморедкоземельных гранатов в условиях нестационарного процесса и пространственной неоднородности, обусловленной зависимостью состояния низкоэнергетических возбуждений от координаты. Оценены условия термализации в системе неравновесные фононы – низкоэнергетические возбуждения.

DOI: 10.1134/S0044451018100115

1. ВВЕДЕНИЕ

Редкоземельные алюмогранаты (АРГ) являются одними из широко используемых лазерных материалов. В них удачно сочетаются спектральногенерационные свойства трехвалентных редкоземельных ионов с высокой механической прочностью, химической стойкостью, оптической прозрачностью в широком спектральном диапазоне [1,2].

Изоморфное замещение при легировании и тип редкоземельного иона помимо оптических характеристик определяют теплопроводность, диэлектрическую проницаемость и акустическую прозрачность материала [3–5]. Синтез микроструктурированных поликристаллических керамик на основе АРГ, не уступающих по физическим свойствам монокристаллам [6], позволяет создавать рабочие элементы оптических устройств произвольной апертуры. Интерес к изучению магнитокалорических свойств АРГ обусловлен их применением в низкотемпературных магнитных рефрижераторах [7].

Наличие парамагнитных редкоземельных ионов в кристаллической решетке твердых растворов АРГ может приводить к формированию магнитоупорядоченных фаз при низких температурах [8], появлению нетривиальных состояний, индуцированных магнитным полем [9–11], возникновению низкоэнергетических шоттки-подобных возбуждений в кристаллической решетке АРГ, что может определять фононный транспорт и термодинамические характеристики в области гелиевых температур. Анализ результатов независимых экспериментов по кинетике фононов и низкотемпературной теплоемкости c(T) позволяет исследовать природу низкотемпературных колебательных состояний в области $T < 4 {
m K}$ [12], проблемной для методов оптической спектроскопии, где эти эффекты остаются малоизученными в большинстве АРГ.

Таким образом, исследования кинетики фононов и термодинамических характеристик гранатов с частично или полностью замещенной диамагнитной подрешеткой способствуют пониманию особенностей оптических, магнитных и кинетических свойств подобных твердых растворов замещения, наблюдаемых в области гелиевых температур.

^{*} E-mail: taranov@cplire.ru

Отдельной малоизученной проблемой является анализ режимов распространения коротких тепловых импульсов в области гелиевых температур. Данная задача была подробно рассмотрена Левинсоном [13] как результат конкуренции двух механизмов: интенсивного упругого (изотопического) и неупругого фонон-фононного взаимодействия, обусловленного ангармонизмом кристаллической решетки. Наличие в данной области температур низкоэнергетических возбуждений в значительной мере усложняет фононный транспорт и приводит к пространственной неоднородности, связанной с зависимостью состояния низкоэнергетических возбуждений от координаты.

Цель данной работы — исследование природы низкоэнергетических возмущений и их влияния на транспортные характеристики фононов и теплоемкость редкоземельных гранатов в области гелиевых температур.

2. ОСОБЕННОСТИ МЕТОДИКИ

Анализ транспорта тепловых слабонеравновесных фононов (СНФ) в режиме диффузии в области гелиевых температур является достаточно простым и информативным методом исследования материалов со сложной структурой, к которым относятся твердые растворы замещения АРГ [14]. Используемая методика представляет собой развитие метода «тепловых» импульсов [15]. Особенность ее заключается в том, что в результате нагрева коротким импульсом тока (t < 100 нс) превышение температуры T_h инжектора фононов над температурой T_0 термостата таково, что $\Delta T = T_h - T_0 \ll T_0$, т.е. фононы являются слабонеравновесными, а исследуемый образец имеет температуру термостата. Такой подход позволяет исследовать температурные зависимости коэффициента диффузии D(T) фононов путем изменения температуры термостата. В области гелиевых температур ($T_0 < 4$ K) неупругие фононфононные взаимодействия, обусловленные ангармонизмом решетки, в сравнительно коротких образцах маловероятны, поэтому эффективность рассеяния СНФ в этих условиях определяется в основном упругим рассеянием на «дефекте масс», связанным с замещением редкоземельных ионов на додекаэдрических с-позициях кристаллической решетки твердого раствора АРГ [14]. При этом измеряемой величиной в эксперименте является время t_{m0} прихода максимума диффузионного сигнала СНФ, однозначно связанное с коэффициентом диффузии,

$$t_{m0}(T) = L^2/2D_0(T) \tag{1}$$

(«плоская» геометрия), где D_0 — коэффициент диффузии при упругом рассеянии СНФ, $D_0 = v^2 \tau_0(\omega)/3$, v — средняя по поляризации скорость звука, $\tau_0(\omega)$ — время упругого рассеяния СНФ.

Включение фонон-фононных процессов может менять распределение СНФ, изменяя их эффективный коэффициент диффузии. При малых числах заполнения инжектируемых фононов в трехфононных процессах эффективными могут быть только процессы распада [13]. Диффузионная длина l_{ph} в процессе жизни фонона относительно распада, обусловленного ангармонизмом решетки [16], равна

$$l_{ph}(\omega) = \sqrt{D_0(\omega)\tau_{ph}(\omega)},\qquad(2)$$

где $\tau_{ph}(\omega)$ — время неупругого фонон-фононного рассеяния относительно спонтанного распада.

Теоретические оценки величины $\tau_{ph}(\omega)$ на основании упругих постоянных второго и третьего порядков в YAG [17] для фононов тепловых частот в области гелиевых температур и экспериментальные наблюдения [18] при T = 4 К дают значение в интервале $\tau_{ph}(\omega) = 10^{-3} - 10^{-2}$ с, что обычно превышает наблюдаемые в эксперименте значения t_{m0} времени регистрации сигнала СНФ в образцах L < 1 см при выделяемой в нагревателе мощности P = 0.01 - 0.03 BT/мм² [19].

Поэтому при наличии низкоэнергетических возбуждений различной природы их влияние на кинетические характеристики фононов в относительно коротких образцах можно наблюдать в отсутствие фонон-фононных взаимодействий, учитывая только упругое рассеяние СНФ. Таким образом, данный метод может быть информативным при изучении двухуровневых систем (ДУС), спиновых взаимодействий и локальных колебательных состояний в области температур T < 4 K [20, 21].

В одной из первых теоретических работ [22], в которой рассматривался фононный транспорт в аморфных средах в рамках общей модели мягких потенциалов (включающей в предельном случае и модель ДУС), было показано, что в условиях описанного выше эксперимента в диапазоне температур, предшествующем области «плато» теплопроводности, температурные зависимости времени задержки максимума сигнала $t_m(T) \propto T^{-n}$ и коэффициента диффузии $D(T) \propto T^{-n}$ (n > 4), что и наблюдалось в стеклах различного состава [21]. В работе [21] показано, что в плавленом кварце в области контакта с инжектором возможно образование «горячего» пятна. При этом, согласно оценкам из обзора [23], его размер в направлении распространения СНФ при T = 4 К составляет около 100 мкм. Однако в работе [20] при анализе транспортных характеристик СНФ в сильно «дефектном» монокристалле иттрий – стабилизированный диоксид циркония с ДУС, обусловленными наличием вакансий в анионной подрешетке, это не нашло подтверждения. При этом широкий бозонный пик на температурной зависимости c/T^3 был сдвинут в область более высоких температур, что характерно для монокристаллов. Это позволило заключить, что предположение о стеклоподобной природе наблюдаемых особенностей кинетических характеристик не находит своего подтверждения в монокристаллах.

При тех же температурах наличие низкоэнергетических состояний непосредственно проявляется в теплоемкости. Для теоретического описания экспериментально полученных температурных зависимостей теплоемкости c(T) в исследуемых материалах наряду с традиционными решеточными вкладами (вклад Дебая и эйнштейновские моды) необходимо учитывать вклад в теплоемкость, связанный с магнитными центрами, который обычно рассчитывается в модели ДУС. Анализ температурных зависимостей кинетических характеристик фононов в сочетании с измерениями температурных зависимостей теплоемкости в этом случае позволяет исследовать связь кинетических и теплофизических характеристик твердых растворов АРГ [12]. Помимо этого, поскольку распространение короткого теплового импульса является сугубо нестационарным процессом, возникает возможность проанализировать влияние пространственной неоднородности, связанной с зависимостью состояния низкоэнергетических ДУС от координаты, на транспортные характеристики $CH\Phi$ и условия установления равновесия (термализации) в системе СНФ-ДУС.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В работе исследовались температурные зависимости теплоемкости c(T) и транспортные характеристики фононов в Er-содержащих монокристаллах твердых растворов $Y_{3-x}Er_xAl_5O_{12}$ (x = 0.2, 0.6, 1.1, 3), $Er_xTm_{3-x}Al_5O_{12}$ (x = 0, 1, 2, 3), $Er_2HoAl_5O_{12}$. Предварительные исследования показали значительное влияние низкоэнергетических возбуждений на температурные зависимости c(T) и аномальный характер температурных зависимостей транспортных характеристик фононов [12].

Рис. 1. Экспериментальная (сплошная линия) и расчетная (штриховая) зависимости теплоемкости $Y_{1.9}Er_{1.1}Al_5O_{12}$ от температуры

Известно, что энергия низшего уровня мультиплета ${}^{4}I_{15/2}$ в YAG:Er³⁺ при различной концентрации Er составляет 30–40 K, что намного больше энергии фонона тепловых частот в области гелиевых температур. Однако крамерсов характер иона Er³⁺ предполагает возможность снятия вырождения основного состояния в нулевом внешнем магнитном поле за счет взаимодействия магнитных моментов соседних ионов Er³⁺ [7, 12], что наряду с Ho³⁺ определяет аномальный характер транспорта фононов при T < 4 K в монокристалле Er₂HoAl₅O₁₂.

Температурные зависимости c(T) в монокристаллах твердых растворов $Y_{3-x}Er_xAl_5O_{12}$ (x = 0.6, 1.1, 3) в интервале температур 1.9–220 К были измерены в работе [24]. Энергии возбуждений определялись стандартным методом фитинга при учете дебаевского вклада и эйнштейновских мод.

На рис. 1 видно, что в исследуемом диапазоне температур T < 4 К в образце YAG:Er (x = 1.1) зависимость c(T) удовлетворительно описывается только энергией низшего штарковского уровня $\Delta_1 = 34$ К и наличием низкоэнергетической ДУС ($\Delta = 1.3$ K).

В табл. 1 приведены результаты оценки энергии расщепления основного состояния в Ег-содержащих твердых растворах АРГ из работы [24]. По мере увеличения концентрации Ег значение Δ увеличивается до 1.3 К при концентрации твердого раствора примерно 33%, затем уменьшается до значения около 1 К.

Таблица	1
---------	---

	$Y_{2.4}Er_{0.6}Al_5O_{12}$	$Y_{1.9}Er_{1.1}Al_5O_{12}$	$\mathrm{Er}_{3}\mathrm{Al}_{5}\mathrm{O}_{12}$	$\mathrm{ErTm}_{2}\mathrm{Al}_{5}\mathrm{O}_{12}$	$\mathrm{Er}_{2}\mathrm{TmAl}_{5}\mathrm{O}_{12}$	$\mathrm{Er}_{2}\mathrm{HoAl}_{5}\mathrm{O}_{12}$
Δ, K	0.6	1.3	1.1	0.7	1.0	1.0

На рис. 2 представлены регистрируемые болометром в режиме диффузии импульсы СНФ S(t)при различных температурах термостата в образцах $Y_{2.8}Lu_{0.2}Al_5O_{12}$, $Y_{2.8}Er_{0.2}Al_5O_{12}$, $Y_{1.5}Er_{1.5}Al_5O_{12}$. Первые два образца имели одинаковые геометрию и длину (L = 0.68 см).

В отсутствие взаимодействия между фононами в образце YAG:Lu_{0.2} на рис. 2*a* положение максимума и форма сигнала несут информацию только об упругом рассеянии фононов, обусловленном разностью масс ионов Y^{3+} и немагнитного редкоземельного иона Lu³⁺.

Увеличение времени регистрации максимума сигнала в образце (рис. 26) при замене Lu³⁺ на Er³⁺ при той же степени легирования, значительное увеличение задержки сигнала и смена знака производной dt_m/dT при большей концентрации Er³⁺ в образце (рис. 26) связаны с наличием низкоэнергетических возбуждений упомянутой выше природы, определяющих значения измерений зависимости c(T) в той же области температур.

Если рассматривать процесс распространения фононов в среде с низкоэнергетическими возбуждениями, пользуясь моделью ДУС, то большие времена задержки сигнала на рис. 26, 6 по сравнению со случаем рис. 2a можно связать с последовательностью захватов и переизлучений фононов системой ДУС, обусловленной крамерсовой природой иона Er^{3+} , при интенсивном упругом (рэлеевском) рассеянии фононов тепловых частот из-за разности масс ионов Y^{3+} и Re^{3+} в *с*-позициях в кристаллической решетке граната.

Тот факт, что при температуре T = 2.91 К время максимума и форма сигнала на рис. 2a и 2b совпадают, позволяет определить длину и время пробега фононов относительно рассеяния (захвата) на ДУС в образце $Y_{2.8}Er_{0.2}Al_5O_{12}$ при данной температуре из выражения общей теории диффузии, аналогичного (2):

$$l_R = \sqrt{D_0 \tau_R} \ge L,\tag{3}$$

где l_R и τ_R — соответственно длина свободного пробега СНФ и время относительно захвата фононов на ДУС, L = 0.68 см — длина образца. Значение D_0 может быть определено из выражения (1) с точностью до геометрического фактора из времени прихода максимума сигнала при $T=2.91~{\rm K}$ в образце $Y_{2.8}Lu_{0.2}Al_5O_{12}~(D_0=10^4~{\rm cm}^2/{\rm c});$ при этом значение $\tau_R\sim 10^{-5}~{\rm c}.$

Таким образом, наличие иона Er³⁺ в YAG приводит к образованию низкоэнергетических ДУС, определяющих замедление транспорта фононов тепловых частот в области гелиевых температур.

Рассмотрим температурные зависимости $t_m(T)$ в образцах разной длины в направлении распространения СНФ для состава $Y_{3-x} Er_x Al_5 O_{12}$ (x = 1.1), отражающие состояние системы СНФ-ДУС. Из рис. 26 и 2в следует, что форма сигнала и время его распространения сильно зависят от присутствия в системе парамагнитного иона Er³⁺. Теоретическое объяснение этому явлению было дано в работе [25], в которой рассматривалось одномерное распространение теплового импульса в системе с центрами неупругого рассеяния фононов (центров захвата) в модели ДУС. Было показано, что в общем случае в системе могут возникнуть два потока СНФ: быстрый, сформированный только фононами, которые не успели провзаимодействовать с центрами захвата (время его распространения по образцу определяется согласно выражению (1) коэффициентом диффузии D_0 , зависящим только от упругого рассеяния фононов на дефектах), и медленный, фононы которого были захвачены и переизлучены ДУС в процессе распространения. Время его распространения $t_m = L^2/2D$, где D — эффективный коэффициент диффузии СНФ.

Вклад каждого из этих потоков в общий поток определяется отношением между временем распространения импульса в отсутствие центров захвата (t_{m0}) и временем τ_R взаимодействия фононов с ДУС. Если отношение $k = t_{m0}/\tau_R \ll 1$ (при слабом взаимодействии или его отсутствии), то положение максимума сигнала несет информацию только об упругом рассеянии фононов (см. рис. 2*a*). При обратном соотношении ($k \gg 1$) процесс распространения СНФ замедляется для большинства фононов (взаимодействие с ДУС), и время прихода максимума сигнала на болометр определяется медленными процессами (рис. 2*6*). Если *k* порядка единицы, то

Рис. 2. Распространение СНФ в образцах: a — $Y_{2.8}Lu_{0.2}Al_5O_{12}$ при T = 3.83, 3.43, 2.91, 2.53, 2.3 К (сверху вниз), на вставке — температурные зависимости времен максимума сигнала в $Y_{2.8}Lu_{0.2}Al_5O_{12}$ (×) и первого максимума в $Y_{2.8}Er_{0.2}Al_5O_{12}$ (◦), L = 0.68 см; δ — $Y_{2.8}Er_{0.2}Al_5O_{12}$ при T = 3.77, 3.38, 3.12, 2.91, 2.54, 2.2 К (сверху вниз); a — $Y_{1.5}Er_{1.5}Al_5O_{12}$ (L = 0.60 см) при T = 3.87, 3.5, 2.95, 2.57, 2.24 К (сверху вниз)

Рис. 3. Нормированная на квадрат длины зависимость характеристики t_{m0} упругого (рэлеевского) рассеяния СНФ от концентрации и состава легирующей примеси Re^{3+} в образцах $Y_{3-x}\text{Re}_x\text{Al}_5\text{O}_{12}$ при температуре термостата T = 3.4 К (Re - редкоземельный элемент): Re=Yb (\triangle), Dy (\Box), Er (\circ), Tb (\Diamond), Lu (∇), Tm (+), Ho (\times)

на болометре возможна регистрация двух максимумов, которые могут быть разрешимы, когда $D \ll D_0$ (см. рис. 2*б*). При низких температурах подобная ситуация может возникать при наличии ДУС, энергетический параметр Δ которых лежит в интервале температур (энергий) СНФ.

В выражение для k входит величина t_{m0} , зависящая, согласно выражению (1), от длины образца в направлении распространения теплового импульса, которая целенаправленно изменялась в условиях эксперимента. Представление о характере зависимости величины t_{m0} от концентрации x и состава легирующей примеси Re^{3+} в образцах $Y_{3-x}\text{Re}_x\text{Al}_5\text{O}_{12}$ разной длины во всем интервале изменения x при T = 3.4 K дает рис. 3, построенный на основании данных из работы [14].

В работе [25] было показано, что при выполнении условия $k \gg 1$ температурная зависимость $t_m(T)$ связана с теплоемкостью системы ($c = c_{ph} + Nc_{tls}$) соотношением

$$t_m(N,T) = t_{m0}(T) \left(1 + \frac{Nc_{tls}}{c_{ph}}\right) \propto \frac{t_{m0}(T)Nc_{tls}}{c_{ph}}, \quad (4)$$

где $c_{tls}(T)$ и N — соответственно теплоемкость ДУС и их число, c_{ph} — теплоемкость фононов, а последнее приближенное равенство справедливо при выполнении условия $Nc_{tls} \gg c_{ph}$. Выражение (4) отражает связь двух независимых экспериментов по определению $t_m(T)$ и c(T). При этом $t_m(T) > t_{m0}$.

Рис. 4. Температурные зависимости времени прихода максимума сигнала СНФ на болометр в образцах $Er_1Y_2Al_5O_{12}$ различной длины

На рис. 4 представлены температурные зависимости времени прихода максимума сигнала СНФ на болометр в образцах $\text{Er}_1\text{Y}_2\text{Al}_5\text{O}_{12}$ различной длины, в которых преобладают медленные процессы. На это указывает знак производной и аномальная (не диффузионная $t_{m0} \propto L^2$) зависимость времени прихода максимума сигнала от длины образца ($t_m \propto L$). Такая зависимость от длины непосредственно следует из выражения (4), так как число ДУС ($N = SLn_{tls}$), где $S = 1 \text{ см}^2$ — площадь образца, n_{tls} — число ДУС в единице объема, одинаковое для всех образцов.

На рис. 5 приведены экспериментальные результаты $t_m(T)/L$ для трех образцов, которые легли вблизи одной кривой 1. На том же рисунке представлена зависимость $t_m(T)$ в образце длиной 0.065 см, в котором длина захвата на ДУС сопоставима с длиной образца (кривая 2).

Возможность знака равенства в соотношении между левой (кинетической) и правой (термодинамической) частями выражения (5), полученного из

Рис. 5. Экспериментальные результаты измерения величины $t_m(T)/L$ для трех образцов (1) и зависимость $t_m(T)$ в образце длиной 0.065 см (2)

соотношения (4), при условии $n_{tls}c_{tls} \gg c_{ph}$,

$$\frac{t_m(T)}{Lt_{m0}} \approx \frac{n_{tls}c_{tls}}{c_{ph}},\tag{5}$$

позволяет оценить длину образца и время $t_m(T)$, при которых возможна термализация в системе СНФ–ДУС. Оценки делались следующим образом: значения c(T) брались из данных по теплоемкости и расчетной температуры Дебая (рис. 6) для $Y_{3-x}\text{Re}_x\text{Al}_5\text{O}_{12}$ (x = 1.1), $T_D = 731$ К из работы [7]. Для редкоземельных гранатов, согласно [26], значение T_D выбиралось одним и тем же (молярная масса практически одинакова). Значения $t_{m0}(L,T)$, $t_m(L,T)$, $n_{tls}c_{tls}$ и c_{ph} для трех температур в исследуемом диапазоне для каждого из образцов приведены в табл. 2.

Вычисление отношения левой и правой частей выражения (5) для каждой из температур для образцов длиной L = 0.12, 0.25, 0.5 см показывает,

L, cm		T = 3.4 K	T = 3.0 K	T = 2.4 K
0.012	t_m,c	$2 \cdot 10^{-4}$	$2.4 \cdot 10^{-4}$	$4 \cdot 10^{-4}$
	t_{m0},c	$1.44 \cdot 10^{-6}$	$8.6 \cdot 10^{-7}$	$3.6 \cdot 10^{-7}$
0.25	t_m,c	$4 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$8 \cdot 10^{-4}$
	t_{m0},c	$6.25 \cdot 10^{-6}$	$3.75 \cdot 10^{-6}$	$1.56 \cdot 10^{-6}$
0.5	t_m , c	$8 \cdot 10^{-4}$	$9 \cdot 10^{-4}$	$1.65 \cdot 10^{-3}$
	t_{m0},c	$2.5 \cdot 10^{-5}$	$1.5 \cdot 10^{-5}$	$6.2 \cdot 10^{-6}$
	$n_{tls}c_{tls},$ мкДж/мг·К	$6 \cdot 10^{-1}$	$6.5 \cdot 10^{-1}$	1
	$c_{ph},$ мкДж/мг $\cdot { m K}$	$6 \cdot 10^{-3}$	$4 \cdot 10^{-3}$	$2 \cdot 10^{-3}$

Таблица 2

Рис. 6. Зависимости c(T) в ряде образцов АРГ: $Y_{1.5}Ho_{1.5}Al_5O_{12}$ (1), $Er_2HoAl_5O_{12}$ (2), $Er_3Al_5O_{12}$ (3), $Y_2Er_1Al_5O_{12}$ (4), $Er_2TmAl_5O_{12}$ (5), $ErTm_2Al_5O_{12}$ (6), $Tm_3Al_5O_{12}$ (7). Штрихпунктирная линия — расчетная зависимость $c_{ph}(T)$ для $Y_2Er_1Al_5O_{12}$, штриховая — для $Er_3Al_5O_{12}$

что отношение близкое к единице в выражении (5) достигается только в достаточно длинном образце (L > 0.25 см) при времени задержки $t_m(T,L) \ge$ $\ge 10^{-3}$ с. Условия термализации улучшаются по мере увеличения температуры термостата. Данный результат не противоречит оценкам из работы [27], где обсуждалась возможность термализации в системе фононы–ДУС за счет эффективного ангармонизма ДУС в отсутствие фонон-фононного взаимодействия.

На рис. 7 приведены временные зависимости сигнала СНФ при различных температурах термостата в образцах смешанных АРГ: $Er_2TmAl_5O_{12}$ (L = 3.9 мм), $ErTm_2Al_5O_{12}$ (L = 3.9 мм). Для всех образцов АРГ характерна большая молекулярная масса, практически отсутствие дефекта масс на позициях замещения и, как следствие, пренебрежимо малое различие в упругом рассеянии СНФ. Поэтому в области исследуемых температур особенности рассеяния в указанных образцах обусловлены преимущественно наличием низкоэнергетических ДУС.

Квазибаллистический характер распространения СНФ в коротких образцах (вставки на рис. 7*a,б*) позволяет оценить длину свободного пробега и время относительно захвата на ДУС согласно выражению (3). Практически для всех смешанных АРГ $D_0 \approx 10^4 \text{ см}^2/\text{с}$ при T = 3 K. Оценка для T = 3 K показывает, что $\tau_R \ge 10^{-6} \text{ с}$ для $\text{Er}_2 \text{TmAl}_5 \text{O}_{12}$. Это не противоречит данным для образца $Y_{2.8} \text{Er}_{0.2} \text{Al}_5 \text{O}_{12}$ в предположении, что $\tau_R \propto 1/N$. (При T = 3 K время переизлучения ДУС, согласно [27], дает оценку 10^{-7} с.)

Интенсивное рассеяние СНФ в коротком образце ${\rm Er_2HoAl_5O_{12}}$ (рис. 7*6*) связано с присутствием дополнительных низкоэнергетических уровней иона ${\rm Ho^{3+}}$ ($\Delta = 5.8$ K), наличие которых обусловлено понижением симметрии локального кристаллического поля [8]. При T = 3 K значение $\tau_R \ge 10^{-8}$ с.

На рис. 8 представлены экспериментальные зависимости $t_m(T)$ в образцах $\text{ErTm}_2\text{Al}_5\text{O}_{12}$, $\text{Er}_2\text{TmAl}_5\text{O}_{12}$, $\text{Er}_3\text{Al}_5\text{O}_{12}$, $\text{Er}_2\text{HoAl}_5\text{O}_{12}$. Только в об-

Рис. 7. Температурные зависимости времени прихода максимума сигнала СНФ: $a - \text{Er}_2\text{TmAl}_5\text{O}_{12}$ (L = 3.9 мм); $\delta - \text{Er}\text{Tm}_2\text{Al}_5\text{O}_{12}$ (L = 3.9 мм); $e - \text{Er}_2\text{HoAl}_5\text{O}_{12}$ (L = 0.42 мм), T = 3.88, 3.63, 3.41, 3.16, 2.90, 2.51 K(сверху вниз). На вставках показаны сигналы для тех же образцов при меньшей длине (L = 1.2 мм)

разцах $Y_{1.5}Ho_{1.5}Al_5O_{12}$, $Er_3Al_5O_{12}$ и $Er_2TmAl_5O_{12}$ отношение левой и правой частей выражения (5) близко к единице, когда в системе $CH\Phi$ –ДУС возможна термализация.

Рис. 8. Экспериментальные зависимости $t_m(T)$ в образцах $ErTm_2Al_5O_{12}$, $Er_2TmAl_5O_{12}$, $Er_3Al_5O_{12}$, $Er_2HoAl_5O_{12}$ и $Y_{1.5}Ho_{1.5}Al_5O_{12}$ из работы [12]

Таким образом, в работе исследованы особенности транспорта СНФ в области гелиевых температур в твердых растворах АРГ при наличии низкоэнергетических возбуждений. Оценены характерные времена фононов при рассеянии на ДУС. В условиях нестационарного процесса и пространственной неоднородности, обусловленной зависимостью состояния ДУС от координаты, определены условия термализации в системе СНФ–ДУС в отсутствие фонон-фононного взаимодействия.

Температурные зависимости теплоемкости c(T) в образцах Er-содержащих АРГ исследовались на установке PPMS-9 + Ever-Cool-II производства Quantum Design с использованием встроенной опции. Измерения проводились в температурном диапазоне 1.9–220 К. Монокристаллы твердых растворов $Y_{3-x}Er_xAl_5O_{12}$ (x = 0.2, 0.6, 1.1, 3) выращивались из расплава методом горизонтальной направленной кристаллизации в молибденовом контейнере.

Авторы благодарны А. А. Каминскому за возможность исследования образцов смешанных

10 ЖЭТФ, вып. 4 (10)

АРГ. Работа частично поддержана Программой Президиума УрО РАН (грант №18-2-2-12, тема АААА-А16-116021010082-8) и РФФИ (проекты №№16-07-00592, 16-07-00181, 18-07-00191).

ЛИТЕРАТУРА

- 1. W. Koechner, *Solid State Laser Engineering*, Springer, Berlin (2006).
- A. A. Kaminskii, *Laser Crystals*, Springer-Verlag, New York (1981).
- Glen A. Slack and D. W. Oliver, Phys. Rev. B 4, 592 (1971).
- 4. V. L. Gurevich, *Transport in Phonon Systems*, North-Holland, Amsterdam (1986).
- S. N. Ivanov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 653 (1992).
- А. А. Каминский, А. В. Таранов, Е. Н. Хазанов, М. Ш. Акчурин, КЭ 42, 880 (2012).
- A. Kushino, Y. Aoki, N. Y. Yamasaki, T. Namiki, Y. Ishisaki, T. D. Matsuda, T. Ohashi, K. Mitsuda, and T. Yazawa, J. Appl. Phys. **90**, 5812 (2001).
- S. Nagata, H. Sasaki, K. Suzuki, J. Kiuchi, and N. Wada, J. Phys. Chem. Sol. 62, 1123 (2001).
- K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, Phys. Rev. B 78, 064412 (2008).
- Е. В. Шевченко, Е. В. Чарная, Е. Н. Хазанов, А. В. Таранов, А. С. Бугаев, ФТТ 59, 717 (2017).
- 11. E. V. Shevchenko, E. V. Charnaya, M. K. Lee, L. J. Chang, E. N. Khazanov, A. V. Taranov, and A. S. Bugaev, Phys. Lett. A 381, 330 (2017).

- Е. Н. Хазанов, А. В. Таранов, Е. В. Шевченко, Е. В. Чарная, ЖЭТФ 148, 56 (2015).
- 13. И. Б. Левинсон, Письма в ЖЭТФ 27, 194 (1978).
- 14. S. N. Ivanov, E. N. Khazanov, T. Paszkiewicz, A. V. Taranov, and M. Wilczyński, Z. Phys. B 99, 535 (1996).
- R. J. Gutfeld and A. H. Nethercot Jr., Phys. Rev. Lett. 12, 641 (1964).
- D. V. Kazakovtsev and Y. B. Levinson, Phys. Stat. Sol. (b) 136, 425 (1986).
- Y. K. Yogurtsu, A. J. Miller, and G. A. Sanders, Phys. C 13, 6585 (1980).
- С. Н. Иванов, А. В. Таранов, Е. Н. Хазанов, ЖЭТФ 99, 1311 (1991).
- C. H. Иванов, Ε. Η. Хазанов, Α. Β. Таранов, ΦΤΤ 29, 672 (1987).
- 20. Е. И. Саламатов, А. В. Таранов, Е. Н. Хазанов,
 Е. В. Чарная, Е. В. Шевченко, ЖЭТФ 152, 910 (2017).
- Е. И. Саламатов, А. В. Таранов, Е. Н. Хазанов, ЖЭТФ 148, 308 (2015).
- 22. V. I. Kozub, A. M. Rudin, and H. R. Schober, Phys. Rev. B 50, 6032 (1994).
- **23**. В. И. Козуб, А. М. Рудин, ФТТ **38**, 337 (1996).
- E. V. Shevchenko, E. V. Charnaya, E. N. Khazanov, A. V. Taranov, and A. S. Bugaev, J. Alloys Comp. 717, 183 (2017).
- 25. Е. И. Саламатов, ФТТ 44, 935 (2002).
- 26. M. G. Beghi, C. E. Bottani, and V. Russo, J. Appl. Phys. 87, 1769 (2000).
- **27**. И. Б. Левинсон, Письма в ЖЭТФ **37**, 157 (1983).