КВАЗИУСТОЙЧИВЫЕ КОНФИГУРАЦИИ ТОРИЧЕСКИХ ВИХРЕВЫХ УЗЛОВ И ЗАЦЕПЛЕНИЙ

В. П. Рубан*

Институт теоретической физики им. Л. Д. Ландау Российской академии наук 142432, Черноголовка, Московская обл., Россия

Поступила в редакцию 6 мая 2018 г.

В рамках регуляризованного закона Био-Савара численно промоделирована динамика торических вихревых конфигураций $V_{n,p,q}$ в сверхтекучей жидкости при нуле температуры (n — число квантованных вихревых нитей, p — число витков каждой нити вокруг оси симметрии тора, q — число витков нити вокруг его центральной окружности; радиусы тора R_0 и r_0 в начальный момент времени велики по сравнению с шириной ξ кора вихря). Время существования вихревых систем до момента их значительной деформации вычислено с мелким шагом по параметру $B_0 = r_0/R_0$ для различных значений параметра $\Lambda = \ln(R_0/\xi)$. Оказалось, что для некоторых значений n, p и q имеются области квазиустойчивости в плоскости параметров (B_0, Λ), где вихри остаются в среднем практически неизменными в течение многих десятков и даже сотен характерных времен.

DOI: 10.1134/S0044451018090225

1. ВВЕДЕНИЕ

Вихревые узлы и зацепления являются объектом интереса в классической гидродинамике еще с XIX столетия. В частности, лорд Кельвин [1] выдвинул гипотезу о том, что в идеальной жидкости могут существовать равномерно вращающиеся и продвигающиеся (вдоль определенной оси) симметричные стационарные конфигурации из n тонких вихревых нитей, каждая с циркуляцией Г. При этом форма нитей близка к торическим вихрям $V_{n,p,q}$, которые определяются параметрически следующими выражениями:

$$X_j(\beta) = \left[R_0 + r_0 \sin\left(q\beta + \frac{2\pi j}{np} - \Theta_0\right) \right] \cos(p\beta), \quad (1)$$

$$Y_j(\beta) = \left[R_0 + r_0 \sin\left(q\beta + \frac{2\pi j}{np} - \Theta_0\right) \right] \sin(p\beta), \quad (2)$$

$$Z_j(\beta) = r_0 \cos\left(q\beta + \frac{2\pi j}{np} - \Theta_0\right) + Z_0, \tag{3}$$

где $j = 1, \ldots, n$ — номер вихря, n — число квантованных вихревых нитей, продольный параметр β пробегает интервал $0 \leq \beta < 2\pi$, а Θ_0 и Z_0 — линейные функции времени t. Натуральные числа p

и q не должны иметь общих множителей. Нетрудно видеть, что p — число витков каждой нити вокруг оси симметрии тора, q — число витков вокруг его центральной окружности. Если p > 1 и q > 1, то каждая вихревая линия является торическим узлом $\mathcal{T}_{p,q}$. Если хотя бы одно из чисел, p или q, равно единице, то каждая линия представляет собой «неузел» (unknot), $\mathcal{U}_{p,1}$ либо $\mathcal{U}_{1,q}$, но при этом она зацеплена со всеми остальными (при $n \ge 2$). Если p = 1 и q = 1, то получается зацепление из n колец.

Несмотря на столь долгую историю вопроса, лишь совсем недавно подобные вихревые узлы и зацепления были впервые созданы экспериментально [2].

Отметим, что наиболее близкими к теории реальными объектами оказываются квантованные вихревые нити в сверхтекучих жидкостях, например в гелии при достаточно низкой температуре, когда влияние нормальной компоненты пренебрежимо мало. В этом случае $\Gamma = 2\pi \hbar/m_{at}$ — квант циркуляции скорости (m_{at} — масса атома гелия), а ширина кора каждого вихря равна ξ . К сожалению, для квантовых вихрей экспериментальная методика создания узлов и зацеплений пока не разработана.

Надо сказать, что точные стационарные конфигурации торического типа до сих пор не найдены (даже численно), а их устойчивость не исследована. Затруднения в немалой мере обусловлены тем фак-

E-mail: ruban@itp.ac.ru

том, что стационарные решения соответствуют не минимуму функционала энергии при заданных значениях импульса и углового момента, а лишь седловой точке. Поэтому пока приходится иметь дело с приближенными формулами (1)–(3). Опубликован ряд работ, в которых численно моделировалась динамика торических вихрей для небольшого числа наборов параметров и на не слишком долгих временах, когда вихри успевали продвинуться вдоль оси z не более чем на несколько десятков R_0 (R_0 и r_0 радиусы тора), а затем деформация нитей нарастала [3–11]. В квантовом случае это приводило к перезамыканиям. Казалось бы, такие результаты свидетельствуют о (хотя и относительно слабой, но все же) неустойчивости торических узлов и зацеплений.

В действительности ситуация оказывается более сложной и интересной. В недавней работе автора [12] на примере простейших узлов $\mathcal{T}_{2,3}$ и $\mathcal{T}_{3,2}$ было показано, что в пространстве параметров

$$B_0 = \frac{r_0}{R_0}, \quad \Lambda = \ln\left(\frac{R_0}{\xi}\right)$$

 $(\xi$ — ширина кора вихря) существуют области квазиустойчивости, представляющие собой промежутки между основными параметрическими резонансами различных типов, и там узел остается в среднем практически неизменным в течение многих десятков и даже сотен характерных времен, проходя при этом иногда тысячи начальных радиусов R_0 . Другими словами, торическая форма вихря содержит в себе моды возмущений по отношению к соответствующей (неизвестной) стационарной конфигурации, и не всегда амплитуды этих мод нарастают со временем.

Чтобы найти квазиустойчивые области, потребовалось выполнить компьютерные вычисления времени жизни узлов до момента их значительной деформации с достаточно мелким шагом по параметру B_0 при заданной величине Λ . Все найденные в работе [12] квазистабильные зоны узла-трилистника $\mathcal{T}_{2,3}$ имеют небольшую ширину $\Delta B_0 \leq 0.01$ и соответствуют относительно «тонким» торам $B_0 \leq 0.2$ (см. верхний из рис. 1, представленных ниже). Существенно, что максимальные значения B_0 достигаются при $\Lambda \approx 3.5$. При $\Lambda \leq 3$ зоны отсутствуют, а при $\Lambda \gtrsim 6$ они сдвигаются к малым $B_0 \leq 0.1$ Эти области не были обнаружены ранее, скорее всего, именно по причине их «периферийного» расположения и малости размеров.

Естественно задаться вопросом: а как обстоят дела для других узлов и зацеплений? Целью данной работы является поиск аналогичных квазиустойчивых конфигураций и для других $V_{n,p,q}$, помимо $V_{1,2,3}$ и $V_{1,3,2}$. Как мы увидим далее, не для всяких наборов $\{n, p, q\}$ такие конфигурации существуют, по крайней мере — в интересующей нас области $B_0 \gtrsim 0.1$ (которая в случае небольших n соответствует достаточным расстояниям $l \sim 2r_0 \gtrsim 4\xi$ между корами вихрей при $\Lambda \approx 3$).

2. ДИНАМИЧЕСКАЯ МОДЕЛЬ

Напомним, что динамика нескольких тонких вихревых нитей с хорошей точностью определяется регуляризованным законом Био–Савара в сочетании со вкладом локальной индукции (см., например, работы [13–15] и многочисленные ссылки в них),

$$\dot{\mathbf{X}}_{j}(\beta, t) = \sum_{i=1}^{n} \frac{\Gamma}{4\pi} \oint \frac{\tilde{\mathbf{X}}_{i}' \times (\mathbf{X}_{j} - \tilde{\mathbf{X}}_{i})}{\operatorname{reg}_{\xi} |\mathbf{X}_{j} - \tilde{\mathbf{X}}_{i}|^{3}} d\tilde{\beta} + \frac{\Gamma \Lambda_{0}}{4\pi} \varkappa_{j} \mathbf{b}_{j}, \quad (4)$$

где $\tilde{\mathbf{X}}_i = \mathbf{X}_i(\tilde{\beta}, t), \ \tilde{\mathbf{X}}'_i = \partial \mathbf{X}_i(\tilde{\beta}, t)/\partial \tilde{\beta}, \ \Lambda_0$ — безразмерный положительный параметр порядка единицы, характеризующий кор вихря, \varkappa_j — локальная кривизна *j*-й нити, \mathbf{b}_j — локальный единичный вектор бинормали. Способ регуляризации логарифмически расходящихся интегралов почти не влияет на динамику нити, если параметр Λ_0 определяется согласованно. Часто выбирают так называемое приближение Розенхеда-Мура (Rosenhead-Moore аpproximation):

$$\operatorname{reg}_{\xi} |\mathbf{X}_2 - \mathbf{X}_1|^3 = \sqrt{(|\mathbf{X}_2 - \mathbf{X}_1|^2 + \xi^2)^3}.$$
 (5)

Очевидно, что динамика вихревых нитей как одномерных объектов в трехмерном пространстве инвариантна по отношению к произвольным (регулярным) заменам продольного параметра β . Этот факт позволяет добавить в правые части уравнений движения (4) слагаемые вида $\mu_i \mathbf{X}'_i / |\mathbf{X}'_i|$ с произвольными функциями μ_i . Выбрать их можно так, чтобы в процессе численного моделирования избежать неконтролируемого чрезмерного сгущения либо разрежения дискретных точек, аппроксимирующих вихревую линию. Например, можно взять μ_i в виде $\mu_j = C |\mathbf{X}'_j|'$, и это будет создавать благоприятную тенденцию к равномерному распределению точек вдоль кривой. Другой вариант — выбрать μ_i так, чтобы азимутальная компонента вектора \mathbf{X}_i обратилась в нуль — годится для ситуаций, когда геометрический центр возмущенной торической вихревой структуры не уходит с течением времени далеко от оси z. В данной работе применялись оба варианта.

С практической точки зрения также важно, что длинноволновая динамика системы (4) слабо чувствительна к замене параметров

$$\xi \to \delta, \quad \Lambda_0 \to \Lambda_0 + \ln(\delta/\xi),$$
 (6)

где δ — произвольная величина порядка ξ , если только конфигурация нитей достаточно далека от пересечений. В частности, можно переопределить параметр ξ таким образом, что $\Lambda_0 = 0$. Это и будет предполагаться в дальнейшем. Данная замена оставляет неизменным полный параметр локальной индукции

$$\Lambda = \ln(R_0/\xi) = \ln(R_0/\delta) + \tilde{\Lambda}_0, \tag{7}$$

где $\tilde{\Lambda}_0 = \ln(\delta/\xi)$. Указанное свойство системы (4) позволяет проводить компьютерное моделирование с меньшими массивами дискретных точек, чем того требовали бы малые значения ξ/R_0 , если при этом брать δ больше нескольких ξ . В описывемых далее численных экспериментах основными параметрами были Λ и δ (обычно бралось значение $\delta/R_0 = 0.05$ и иногда для сравнения $\delta/R_0 = 0.025$). Использовались безразмерные переменные, так что $\Gamma = 2\pi$, $R_0 = 1$. Коэффициент C в функциях μ_j выбирался не слишком большим из условия численной устойчивости.

Следует отметить, что в рассматриваемой системе имеются такие стандартные законы сохранения, как гамильтониан \mathcal{H} (энергия), импульс **P** и момент импульса **M**:

$$\mathcal{H} = \frac{1}{4} \sum_{j} \sum_{i} \oint \oint \frac{(\mathbf{X}'_{j} \cdot \tilde{\mathbf{X}}'_{i}) d\beta d\tilde{\beta}}{\sqrt{|\mathbf{X}_{j} - \tilde{\mathbf{X}}_{i}|^{2} + \delta^{2}}} + \frac{\tilde{\Lambda}_{0}}{2} \sum_{j} \oint |\mathbf{X}'_{j}| d\beta, \quad (8)$$

$$\mathbf{P} = \frac{1}{2} \sum_{j} \oint [\mathbf{X}_{j} \times \mathbf{X}_{j}'] d\beta, \qquad (9)$$

$$\mathbf{M} = -\frac{1}{2} \sum_{j} \oint |\mathbf{X}_{j}|^{2} \mathbf{X}_{j}' d\beta, \qquad (10)$$

а уравнения движения с учетом свободы перепараметризации обладают неканонической гамильтоновой структурой $[\mathbf{X}'_j \times \dot{\mathbf{X}}_j] = \delta \mathcal{H} / \delta \mathbf{X}_j$. Динамику торических вихрей можно представить в канонической форме, если перейти к цилиндрическим координатам и ввести *n* пар $2\pi p$ -периодических по азимутальному углу φ функций $Z_j(\varphi, t)$ и $S_j(\varphi, t) = R_j^2(\varphi, t)/2$, описывающих форму вихревых нитей. Соответствующую подстановку следует провести и в гамильтониане (8), в результате чего получится довольно громоздкое выражение, которое мы здесь не приводим. Существенно, что тогда уравнения движения будут иметь канонический вид:

$$\dot{Z}_j = \frac{\delta \mathcal{H}}{\delta S_j}, \quad -\dot{S}_j = \frac{\delta \mathcal{H}}{\delta Z_j}.$$
 (11)

Гамильтоново описание может оказаться полезным в будущих аналитических исследованиях торических вихрей, в частности — для теоретической интерпретации приведенных ниже численных результатов.

При численном моделировании в данной работе применялась псевдоспектральная схема по переменной β и схема Рунге–Кутта четвертого порядка для интегрирования по времени. Форма каждой нити аппроксимировалась L точками $\mathbf{X}_{j,l}(t) = \mathbf{X}_j(2\pi l/L,t)$ (типичные значения L = 512 и L = 1024). При этом

$$\mathbf{X}_{j,l} = \operatorname{Re} \sum_{k=0}^{K-1} \hat{\mathbf{X}}_{j,k} \exp\left(\frac{2\pi i k l}{L}\right).$$
(12)

На каждом шаге по времени в процедуре Рунге–Кутта участвовали $K \approx (3/8)L$ соответствующих фурье-гармоник $\hat{\mathbf{X}}_{j,k}$, после чего оставлялись только гармоники не старше $K_{eff} \approx L/4$, а остальные приравнивались к нулю. Такая методика зарекомендовала себя весьма неплохо в самых разных задачах. В нашем случае она также показала хорошую устойчивость и позволила сохранять интегралы движения \mathcal{H} , **Р** и **М** с точностью до пяти–семи десятичных знаков на протяжении большей части эволюции (а в зонах квазиустойчивости — и до самого конца прогона).

Продвижение по времени заканчивалось, когда деформация нитей становилась достаточно сильной либо достигалось определенное большое время T_{max} (типично $T_{max} = 80$, но в дополнительных уточняющих экспериментах устанавливалось $T_{max} = 320$). При этом для каждого набора параметров фиксировалось достигнутое время T_{final} . Мерой деформации кривых в наших численных экспериментах служила максимальная величина нескольких гармоник с номерами вблизи K_{eff} (как правило, рост далеких гармоник свидетельствовал о сближении некоторых участков нитей и приближении момента перезамыкания). Время T_{final} , вообще говоря, зависит от того, какие μ_j используются, но, как показала практика вычислений, точный вид критерия завершения

Рис. 1. (В цвете онлайн) Обратное время жизни вихревых узлов $\mathcal{T}_{2,q}$ для q = 3, 5, 7 при разных параметрах Λ и B_0 . На всех трех рисунках видны зоны квазиустойчивости в виде близких к горизонтальной оси участков графиков

отдельного прогона не очень важен для нахождения квазиустойчивых конфигураций, поэтому мы здесь не приводим всех подробностей.

Поскольку симметрия возможных неустойчивых мод не обязана совпадать с исходной симметрией торических вихрей, в начальные условия было необходимо добавить возмущения, содержащие «зародыши» несимметричных мод. При n = 1 снятие симметрии достигалось умножением правых частей выражений (1) и (2) соответственно на $(1+\epsilon)$ и $(1+\epsilon)^{-1}$ (где $\epsilon \sim 0.01$), использованием несоизмеримого с 2π параметра Θ_0 , а в некоторых случаях (для четных

Рис. 2. (В цвете онлайн) Обратное время жизни вихревых узлов $\mathcal{T}_{3,q}$ для q = 2, 4, 5, 7. Наиболее отчетливо зоны квазиустойчивости проявляются при q = 2 и при q = 4

Рис. 3. (В цвете онлайн) Обратное время жизни вихревых узлов $\mathcal{T}_{4,3}$ и $\mathcal{T}_{4,5}$. Зоны квазиустойчивости отсутствуют

q) — умножением первого слагаемого в выражении (3) на 1 + 0.005 sin($p\beta$). При $n \ge 2$ для нарушения симметрии достаточно слегка сместить один из вихрей в плоскости xy.

3. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

Численно найденные зависимости (обратного) времени жизни от параметра B_0 при фиксированных значениях Λ для различных узлов, не-узлов и зацеплений показаны на рис. 1–7. Прокомментируем представленные рисунки, которые, собственно, являются главными результатами данной работы.

Прежде всего надо сказать, что некоторая нерегулярность в расположении точек на графиках, в особенности при не очень малых B_0 , объясняется, по всей видимости, заметным отличием начальных условий от стационарных конфигураций.

Подчеркнем, что вычисленное обратное время жизни не есть инкремент неустойчивости, поскольку начальные и конечные амплитуды неустойчивых мод не были фиксированы, да и сами такие моды не были известны. Время жизни в целом зависит от выбора начальных возмущений формы торических

Рис. 4. (В цвете онлайн) Обратное время жизни вихревых узлов $\mathcal{T}_{5,q}$ для q = 2, 3, 4. Зоны квазиустойчивости отсутствуют

вихрей. Более-менее независимы от этого только те (наиболее интересные) участки графиков, где точки близки к горизонтальной оси.

Типичные значения $1/T_{final}$ во всех случаях оказываются порядка единицы. Однако на некоторых графиках имеются небольшие, но конечные участки, где обратное время жизни не превышает малой величины $1/T_{max}$. Вблизи их краев обратное время жизни проявляет примерно корневую зависимость. Это и есть искомые зоны квазиустойчивости. Они появляются обычно с увеличением Λ , когда соседние параметрические резонансы динамической системы перестают перекрываться. Особенно отчетли-

Рис. 5. (В цвете онлайн) Обратное время жизни вихревых не-узлов $\mathcal{U}_{2,1}$, $\mathcal{U}_{3,1}$, и $\mathcal{U}_{4,1}$. В случае $\mathcal{U}_{2,1}$ имеются квазиустойчивые конфигурации даже на довольно больших $B_0 \approx 0.2$

во такой механизм появления квазистабильных зон виден на примерах узла $\mathcal{T}_{3,2}$, не-узла $\mathcal{U}_{2,1}$ и простейшего зацепления из двух колец $V_{2,1,1}$. Для многих других $V_{n,p,q}$ окна квазиустойчивости так и не появляются. В частности, узлы $\mathcal{T}_{4,q}$, $\mathcal{T}_{5,q}$, не-узлы $\mathcal{U}_{p\geq 3,1}$ и три кольца в конфигурации $V_{3,1,1}$ практически всегда неустойчивы.

На верхнем рис. 1 видно, что при фиксированном значении Λ различие результатов, соответствующих разным δ , довольно невелико в согласии со сделанным ранее замечанием. Но различия все же имеются, так как из-за нелинейных взаимодействий на больших временах появляются коротковолновые

Рис. 6. (В цвете онлайн) Обратное время жизни зацеплений $V_{2,1,1}$ и $V_{2,1,2}$

Рис. 7. (В цвете онлайн) Обратное время жизни зацеплений $V_{3,1,1}$ и $V_{3,1,2}$

возбуждения формы нити, несомненно чувствующие разницу между разными δ . Поэтому максимально аккуратное моделирование в рамках уравнений (4), по-видимому, все-таки требует использования оригинальных (непереопределенных) параметров ξ и Λ_0 . Это замечание не отменяет основной вывод о наличии квазиустойчивых областей в плоскости параметров (B_0, Λ).

Интересно отметить, что в ряде случаев квазистабильные зоны располагаются при достаточно больших значениях $B_0 = 0.16...0.20$, когда начальный тор уже нельзя назвать в полной мере тонким. При этом отличие начальных условий от стационарных решений оказывается настолько большим, что говорить о сохранении формы вихрей можно только в среднем. Фактически вихревые нити довольно сильно осциллируют в нелинейном режиме, но, что интересно, эти осцилляции не приводят к разрушению системы в течение весьма долгого времени. Так, в некоторых дополнительных вычислениях вихревые узлы и зацепления с параметрами из таких зон устойчивости без существенных изменений проходили более тысячи начальных радиусов *R*₀. Существование подобных решений представляется автору наиболее нетривиальным результатом данного исследования.

4. ЗАКЛЮЧЕНИЕ

Таким образом, проведенные численные эксперименты выявили наличие весьма долгоживущих конфигураций для некоторых видов торических вихревых узлов и зацеплений. Эти результаты несомненно увеличили объем наших знаний о весьма «почтенной» гидродинамической задаче. Кроме того, они обладают эстетической привлекательностью. Вместе с тем возникает множество новых вопросов, поскольку на данном этапе строгое теоретическое описание этого феномена практически начисто отсутствует. Пока также неясно, удастся ли в ближайшем будущем приготовить и пронаблюдать такие квазиустойчивые квантовые вихревые структуры экспериментально.

ЛИТЕРАТУРА

- W. Thomson (Lord Kelvin), Proc. Roy. Soc. Edin. 9, 59 (1875).
- D. Kleckner and W. T. M. Irvine, Nature Phys. 9, 253 (2013).
- R. L. Ricca, D. C. Samuels, and C. F. Barenghi, J. Fluid Mech. 391, 29 (1999).
- 4. F. Maggioni, S. Alamri, C. F. Barenghi, and R. L. Ricca, Phys. Rev. E 82, 026309 (2010).
- O. Velasco Fuentes, Theor. Comput. Fluid Dyn. 24, 189 (2010).
- A. Romero Arteaga, Vórtices Eslabonados Cuasi-Estacionarios, Master's thesis, CICESE (2011).
- O. Velasco Fuentes and A. Romero Arteaga, J. Fluid Mech. 687, 571 (2011).
- D. Proment, M. Onorato, and C. F. Barenghi, Phys. Rev. E 85, 036306 (2012).
- D. Proment, M. Onorato, and C. F. Barenghi, J. Phys.: Conf. Ser. 544, 012022, (2014).
- P. Clark di Leoni, P. D. Mininni, and M. E. Brachet, Phys. Rev. A 94, 043605 (2016).
- D. Kleckner, L. H. Kauffman, and W. T. M. Irvine, Nature Phys. 12, 650 (2016).
- **12**. В. П. Рубан, Письма в ЖЭТФ **107**(5), 325 (2018).
- 13. K. W. Schwarz, Phys. Rev. B 31, 5782 (1985).
- 14. M. Tsubota, T. Araki, and S. K. Nemirovskii, Phys. Rev. B 62, 11751 (2000).
- A. W. Baggaley and C. F. Barenghi, Phys. Rev. B 83, 134509 (2011).