ДВИЖЕНИЕ НЕЙТРАЛЬНОЙ ЧАСТИЦЫ ВБЛИЗИ ЧЕРНОЙ ДЫРЫ ШВАРЦШИЛЬДА В МОДИФИЦИРОВАННОЙ ГРАВИТАЦИИ

M. Шари ϕ^* , M. Шахзад u^{**}

Математический факультет, Пенджабский университет 54590, Лахор, Пакистан

Поступила в редакцию 1 марта 2018 г.

(Перевод с английского)

M. Sharif, M. Shahzadi

Исследуется круговое движение нейтральной пробной частицы в экваториальной плоскости вблизи черной дыры в скалярно-тензорно-векторной гравитации. Чтобы найти области, где такое движение возможно, рассмотрены три случая: $\alpha < G/G_N$, $\alpha = G/G_N$ и $\alpha > G/G_N$. Вычислены соответствующие эффективный потенциал, энергия, момент импульса и энергия в системе центра масс. Определены четыре различных случая при $\alpha > G/G_N$, а также области устойчивых и неустойчивых круговых орбит. Найдено, что круговые орбиты, имеющие нулевой момент импульса, существуют при $r = \alpha G_N M$ вследствие гравитационных эффектов отталкивания. Оказалось, что структура устойчивых областей в случаях $\alpha < G/G_N$ и $\alpha = G/G_N$ существенно отличается от таковой в случае $\alpha > G/G_N$.

DOI: 10.1134/S0044451018090122

1. ВВЕДЕНИЕ

Модифицированная гравитация (МОГ) или скалярно-тензорно-векторная гравитация (СТВГ) описывается с помощью действия трех скалярных полей и массивного векторного поля, действия материи и члена Эйнштейна—Гильберта. Эта теория используется при изучении кривых вращения галактик, гравитационного линзирования галактик, а также скоплений галактик и ускоренного расширения Вселенной без учета темной материи [1]. В работе [2] рассматривались кривые вращения галактик и сравнивались модифицированный закон ускорения в СТВГ с гравитацией четвертого порядка и с модифицированной ньютоновской динамикой. В работе [3] исследовалось приближение слабого поля для те-

стирования динамики скопления галактик в СТВГ. В работе [4] анализировались тени черных дыр (ЧД) в рамках той же теории и было найдено, что размер тени увеличивается при увеличении параметра α. В работе [5] исследовались точные решения в рамках подхода, основанного на симметрии Нетер для локально-вращательно-симметричной модели Бьянки типа-І. В работе [6] исследовалась термодинамика ЧД (как невращающихся, так и вращающихся) в МОГ и было обнаружено, что при увеличении параметра α измененяется энтропийный закон для площади. В этой работе также были получены логарифмические поправки для термодинамики невращающихся ЧД. В работе [7] обсуждались гравитационные волны и закономерность их возникновения с учетом данных коллаборации LIGO-VIRGO. В этой работе были получены линеаризованные полевые уравнения, а также обнаружено уменьшение радиуса бинарной системы, включающей два компактных объекта.

^{**} E-mail: msharif.math@pu.edu.pk ** E-mail: misbahshahzadi51@gmail.com

В последнее время изучение движения частиц (нейтральных или заряженных, массивных или безмассовых) вблизи ЧД продолжает вызывать интерес ученых, работающих в области астрофизики ЧД. Геодезические помогают понять геометрическую структуру пространства-времени и высокоэнергетические явления, происходящие вблизи ЧД. В работе [8] исследовалось движение массивной пробной частицы вблизи ЧД в рамках теории Калуцы - Клейна и было показано существование устойчивых круговых орбит ниже шварцшильдовского предела (r = 6M, где r и M - радиус и масса ЧД).В настоящей работе мы используем геометризованные единицы (G = c = 1). В работе [9] исследовалось движение нейтральной частицы по круговым орбитам вблизи ЧД Райснера-Нордстрема. Оказалось, что область устойчивости круговых орбит вблизи ЧД является непрерывной, а для голой сингулярности область устойчивости разбивается на две несвязанные области. Те же авторы в работе [10], являющейся продолжением предыдущей работы, получили, что для ЧД Керра и ЧД Керра-Ньюмана для идентификации голой сингулярности достаточно наличия вращающейся в противоположном направлении пробной частицы определенного типа.

В работе [11] было показано, что для радиальных светоподобных геодезических структура ЧД Шварцшильда-анти-де Ситтера аналогична структуре ЧД Шварцшильда, в то время как для нерадиальных светоподобных геодезических при $E^2 > 0$ $> L^2/l^2$ существуют замкнутые орбиты. В работе было также найдено, что такие орбиты соответствуют захваченным фотонам и не существуют для ЧД Шварцшильда. В работе [12] исследовались светоподобные геодезические для экстремальной ЧД Райснера – Нордстрема и было показано существование устойчивых круговых геодезических на горизонте событий. В работе [13] обсуждались времениподобные геодезические вокруг ЧД Шварцшильда в МОГ и было получено, что самая внутренняя устойчивая круговая орбита более устойчива, чем соответствующая круговая орбита для ЧД Шварцшильда. В работе [14] были найдены области внутри ергообласти ЧД Керра и было установлено, что распределение круговых орбит зависит от параметра вращения источника. В работе [15] рассматривалось движение частицы вокруг четырехмерной асимптотически анти-де-ситтеровской ЧД со скалярными волосами и было получено, что радиальное движение эквивалентно соответствующему движению для анти-де-ситтеровской ЧД Шварцшильда. В недавней работе [16] мы исследовали динамику частицы,

движущейся вблизи ЧД Керра в МОГ, и получили, что в этом случае круговые орбиты менее устойчивы как по сравнению с ЧД Керра, так и по сравнению с ЧД Шварцшильда.

При столкновении частиц рождаются новые частицы, это требует соответствующего количества энергии, известной как энергия в системе центра масс (ЭЦМ). В работе [17] было получено, что при столкновении двух бесспиновых частиц, имеющих равные массы и ускоряющихся гравитационным полем вблизи ЧД Шварцшильда, выделяется максимальная ЭЦМ. В работе [18] было показано, что частица, рожденная в процессе столкновения, может не упасть в ЧД, но претерпевает сильный сдвиг в красную область. В работе [19] было показано, что бесконечная ЭЦМ для взаимодействующих частиц, движущихся вблизи ЧД Керра, может быть получена только на внешнем горизонте на бесконечных временах. В работе [20] рассматривалась ЭЦМ для двух нейтральных частиц вблизи горизонтов для экстремальной и неэкстремальной ЧД Керра-Ньюмана – Тауба – НУТ (Ньюман – Унти – Тамбурино) и было найдено, что высокую энергию можно получить при тех же условиях. В работе [21] было обнаружено увеличение ЭЦМ при столкновениях вращающихся массивных частиц вблизи ЧД Шварцшильда, если их спин передается в ЧД.

В настоящей работе мы рассматриваем круговое движение нейтральных пробных частиц вблизи ЧД Шварцшильда в МОГ для трех случаев, а именно, $\alpha < G/G_N$, $\alpha = G/G_N$ и $\alpha > G/G_N$. Работа построена следующим образом. В следующем разделе мы рассматриваем эффективный потенциал пробной частицы, движущейся в экваториальной плоскости вблизи ЧД Шварцшильда в МОГ для случаев $\alpha < G/G_N$, $\alpha = G/G_N$ и $\alpha > G/G_N$. Кроме того, мы выводим уравнения для круговых орбит и для последней устойчивой круговой орбиты. Также вычисляются энергия и момент импульса этих частиц. Раздел 3 посвящен исследованию ЭЦМ двух сталкивающихся частиц. Наконец, в последнем разделе приведены результаты.

2. ЧЕРНАЯ ДЫРА ШВАРЦШИЛЬДА В МОГ

Черная дыра Шварцшильда в МОГ представляет собой статическое сферически-симметричное и асимптотически плоское решение полевых уравнений МОГ. Линейный элемент, представляющий ЧД

Шварцшильда в МОГ, имеет вид [22]

$$ds^{2} = -Z(r) dt^{2} + Z^{-1}(r) dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2}, \quad (1)$$

где

$$Z(r) = 1 - \frac{2GM}{r} + \frac{\alpha G_N G M^2}{r^2}.$$

Здесь $G=G_N(1+\alpha)$ — гравитационная постоянная, α — безразмерный параметр, определяющий напряженность гравитационного поля, M — масса ЧД, а G_N — ньютоновская гравитационная постоянная. При $\alpha=0$ ЧД в МОГ редуцируется к ЧД Шварцшильда. Вычисляя корни уравнения Z(r)=0, можно получить выражения для горизонтов для метрики (1):

$$r_{\pm} = GM \pm \sqrt{G^2 M^2 - \alpha G_N G M^2},$$

где знаки $*\pm$ » относятся к внешнему и внутреннему горизонтам, соответственно.

Рассмотрим круговое движение пробной частицы, имеющей массу μ , для случая ЧД Шварцшильда в МОГ. Ограничимся случаем орбит, расположенных в экваториальной плоскости ($\theta=\pi/2$ и $d\theta/d\tau=0,~\tau$ — собственное время). 4-импульс частицы

$$p^{\nu} = \mu \dot{x}^{\nu},$$

где \dot{x}^{ν} — касательная к кривой $x^{\nu}(\tau)$, можно нормировать как

$$g_{\nu\eta}\dot{x}^{\nu}\dot{x}^{\eta} = -k,$$

где k=-1,0,1 соответствуют пространственно-подобной, свето-подобной и времени-подобной кривым. Для случая ЧД Шварцшильда в МОГ приведенное выше уравнение дает

$$-Z(r)\dot{t}^2 + \frac{\dot{r}^2}{Z(r)} + r^2\dot{\phi}^2 = -k.$$
 (2)

Поскольку компоненты метрики не зависят от t и ϕ , 4-импульс частицы, т.е. p_t и p_ϕ , сохраняется вдоль геодезических, что дает

$$E = -g_{\nu\eta}\xi_t^{\nu}p^{\eta} = \mu \dot{t}Z(r), \quad L = g_{\nu\eta}\xi_{\phi}^{\nu}p^{\eta} = \mu r^2\dot{\phi}.$$

Здесь E и L интерпретируются как энергия и момент импульса частицы, связанные с векторными полями Киллинга $\xi_t = \partial_t$ и $\xi_\phi = \partial_\phi$, соответственно.

Тогда уравнение (2) приобретает вид

$$-\frac{E^2}{\mu^2 Z(r)} + \frac{\dot{r}^2}{Z(r)} + \frac{L^2}{\mu^2 r^2} = -k,$$

что можно переписать как

$$\dot{r}^2 + U_{eff}^2 = \frac{E^2}{\mu^2},\tag{3}$$

где

$$U_{eff} \equiv \sqrt{\left(k + \frac{L^2}{r^2 \mu^2}\right) \left\{1 - \frac{2GM}{r} + \frac{\alpha G_N G M^2}{r^2}\right\}}$$

— эффективный потенциал. Максимальное и минимальное значения U_{eff} определяют неустойчивые и устойчивые круговые орбиты, а экстремальные значения U_{eff} соответствуют $U_{eff,r}=0$. Экстремумы эффективного потенциала связаны с круговыми орбитами $(\dot{r}=0)$ [23]. Решая уравнение $U_{eff,r}=0$, получаем

$$\frac{L^2}{\mu^2} = \frac{kr^2 \left(GMr - \alpha G_N GM^2\right)}{r^2 - 3GMr + 2\alpha G_N GM^2}.$$
 (4)

Подставляя приведенное выше выражение в уравнение (3), получаем

$$\frac{E^2}{\mu^2} = \frac{k \left(r^2 - 2GMr + \alpha G_N GM^2\right)^2}{r^2 \left(r^2 - 3GMr + 2\alpha G_N GM^2\right)}.$$
 (5)

Подставляя выражение (4) в уравнение для эффективного потенциала и дифференцируя, получаем

$$GMr^3 - 6G^2M^2r^2 + 9GMr(\alpha G_NGM^2) - 4(\alpha G_NGM^2)^2 = 0,$$
 (6)

где мы выбрали k=1 и $\mu=1$. С помощью этого уравнения можно получить радиус устойчивой круговой орбиты.

Для обсуждения движения частицы рассмотрим три случая: случай I, $\alpha < G/G_N$; случай II, $\alpha = G/G_N$ и случай III, $\alpha > G/G_N$.

2.1. Случай I, $\alpha < G/G_N$

Сначала рассмотрим неэкстремальный случай ЧД Шварцшильда в МОГ. Из уравнений (4) и (5) следует, что движение происходит только при

$$r > \alpha G_N M = r^*$$

И

$$r^2 - 3GMr + 2\alpha G_N GM^2 > 0.$$

т. е.

$$\tilde{r}_+ < r < \tilde{r}_-,$$

где

$$\tilde{r}_{\pm} = \frac{3GM \pm \sqrt{9G^2M^2 - 8\alpha G_N GM^2}}{2}.$$

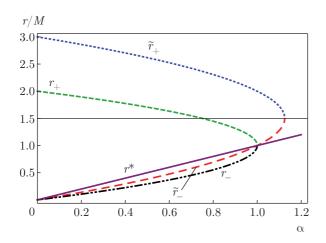


Рис. 1. Зависимости радиусов \tilde{r}_+ , \tilde{r}_- , r_+ , r_- и r^* от параметра α для случая I

Более того, движение осуществляется вдоль пространственно-подобных геодезических при $r < r^*$ и $r \in (\tilde{r}_-, \tilde{r}_+)$, а случай $r = \tilde{r}_+$ соответствует светоподобным геодезическим. Кроме того, имеем

$$r_- < \tilde{r}_- < r^* < r_+ < \tilde{r}_+$$
 при $\alpha \neq 0,$
$$r_+ = r_- = \tilde{r}_- = r^*$$
 при $\alpha = \frac{G}{G_N},$
$$r_- = \tilde{r}_- = r^*$$
 при $\alpha = 0.$

Зависимости радиусов от параметра α показаны на рис. 1.

Обсудим теперь только времени-подобные круговые орбиты $(r > \tilde{r}_+)$. Графики зависимостей энергии E/μ и момента импульса $L/\mu M$ от параметра r/M для круговых орбит показаны на рис. 2. На рисунке видно, что значения энергии и момента импульса при $\alpha=0.3$ меньше, чем соответствующие значения для ЧД Шварцшильда $(\alpha=0)$.

Чтобы найти радиус круговой орбиты r_{co} , решим уравнение $U_{eff,r}=0$:

$$GMr^{3} - \left(\frac{L^{2}}{\mu^{2}} + \alpha G_{N}GM^{2}\right)r^{2} + \frac{3GML^{2}}{\mu^{2}}r - \frac{2\alpha G_{N}GM^{2}L^{2}}{\mu^{2}} = 0. \quad (7)$$

Вообще говоря, внутри области $r > \tilde{r}_+$ круговые орбиты существуют не всегда. При $\alpha=0$ круговые орбиты возможны только при $|L/\mu M| > 3.47$, а при $\alpha=1$ и $\alpha=0.3$ — при $|L/\mu M| > 2.94$ и $|L/\mu M| > 3.31$, соответственно. Поэтому было бы интересно исследовать свойства устойчивости при $r=r_{co}$. Минимальный радиус устойчивой круговой орбиты соответствует точкам перегиба функции эффективного потенциала [24]. Чтобы найти радиус последней устойчивой круговой орбиты r_{lsco} , решим уравнение (6) относительно r, что дает

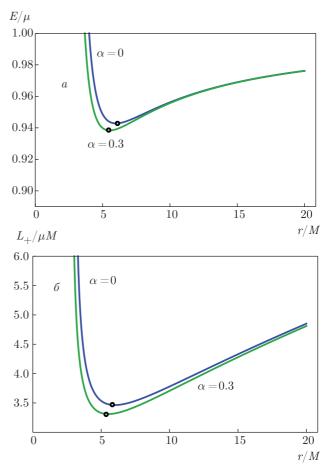


Рис. 2. Зависимости энергии E/μ (a) и момента импульса $L_+/M\mu \equiv L^*$ (b) для круговых орбит для различных значений параметра α для случая b

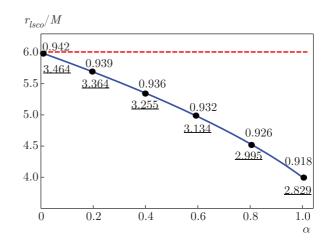


Рис. 3. Зависимости радиуса последней устойчивой круговой орбиты r_{lsco}/M от параметра α для случая І. Предел Шварцшильда $(r_{lsco}=6M)$ показан штриховой линией. Подчеркнутые величины соответствуют значениям момента импульса $L/M\mu$, а величины рядом с точками — значениям энергии E/μ для соответствующих орбит

$$4 - \frac{3\alpha G_N}{G} + \left[8 + 2\left(\frac{\alpha G_N}{G}\right)^2 + \frac{\alpha G_N \left(-9 + \sqrt{5 - \frac{9\alpha G_N}{G} + \left(\frac{2\alpha G_N}{G}\right)^2}\right)}{G} \right]^{2/3}$$

$$\frac{r_{lsco}}{M} = 2 + \frac{\alpha G_N \left(-9 + \sqrt{5 - \frac{9\alpha G_N}{G} + \left(\frac{2\alpha G_N}{G}\right)^2}\right)}{G}$$

$$\left[8 + 2\left(\frac{\alpha G_N}{G}\right)^2 + \frac{\alpha G_N \left(-9 + \sqrt{5 - \frac{9\alpha G_N}{G} + \left(\frac{2\alpha G_N}{G}\right)^2}\right)}{G} \right]^{1/3}$$
(8)

При $\alpha=0$ получаем шварцшильдовский предел

$$r_{lsco}^{max}=6M. \\$$

На рис. З видно, что при возрастании α радиус r_{lsco} убывает и при $\alpha=1$ достигает своего минимального значения

$$r_{lsco}^{min} = 4M.$$

Следует отметить, что радиус последней устойчивой круговой орбиты лежит ниже шварцшильдовского предела, причем $r_{lsco} < 6M$ при всех $\alpha > 0$. Круговые орбиты являются устойчивыми при $r > r_{lsco}$ и неустойчивыми при $\tilde{r}_+ < r < r_{lsco}$.

Выражения для энергии и момента импульса частицы для последней устойчивой круговой орбиты мы получаем, подставляя уравнение (8) в уравнения (4) и (5). Соответствующие зависимости представлены на рис. 4. Видно, что как энергия, так и момент импульса для последней устойчивой круговой орбиты убывают при возрастании α . При $\alpha>0$ значения E_{lsco}/M и $L_{lsco}/\mu M$ всегда лежат ниже шварцшильдовского предела. Вообще говоря, из того, что при увеличении α значения r_{lsco} , E_{lsco}/M и $L_{lsco}/\mu M$ уменьшаются, следует, что дополнительное гравитационное поле, порожденное параметром α , действует на нейтральную частицу как дополнительная притягивающая сила, уменьшающая радиус последней устойчивой круговой орбиты.

На рис. 5 представлены зависимости эффективного потенциала от параметра r/M при различных значениях $L_+/\mu M=L^*$. Видно, что минимальное значение $U_{eff}^{min}\approx 0.88$ соответствует $r_{min}\approx 5.52M$ и $L^*\approx 3.31$, а максимальное значение $U_{eff}^{max}\approx 2.97$ соответствует значениям $r\approx 2.87$ и $L^*=8$. При подходе к внешнему горизонту $r_+=1.836$ эффективный потенциал достигает глобального минимума, т.е. становится равным нулю.

2.2. Случай II, $\alpha = G/G_N$

В данном разделе мы рассмотрим случай экстремальной ЧД ($\alpha=G/G_N$), для которой $\tilde{r}_+=2GM$. Кроме того, внутренний и внешний горизонты совпадают с $r_\pm=GM$. Используя уравнение (3), запишем эффективный потенциал в виде

$$U_{eff} = \sqrt{1 + \frac{L^2}{r^2 \mu^2} \left(1 - \frac{2GM}{r} \right)}.$$
 (9)

При $r\to\infty$ имеем $U_{eff}\to 1$. Зависимости эффективного потенциала от параметра r/M при различных значениях L^* для случая экстремальной ЧД приведены на рис. 6. На рисунке видно, что U_{eff} обращается в нуль на горизонте. Минимальное значение $U_{eff}^{min}\approx 0.91$ достигается при $L^*\approx 2.83$ и $r_{min}=4M$, а максимальные $U_{eff}^{max}\approx 1.83$ и $U_{eff}^{max}\approx 2.32$ — при $L^*\approx 7$, $r\approx 2.04$ и $L^*=9$, $r\approx 2.06$, соответственно. Используя уравнение (9), для радиуса круговой орбиты получаем

$$\frac{r_{co}}{M} = \frac{L^2 - L\sqrt{L^2 - 8G^2M^2\mu^2}}{2G^2M^2\mu^2}.$$

Соответствующие энергия и момент импульса частицы, движущейся по круговой орбите, определяются как E^2 ($\sim CM)^3$

$$\begin{split} \frac{E^2}{\mu^2} &= \frac{\left(r - GM\right)^3}{r^2 \left(r - 2GM\right)}, \\ \frac{L^2}{\mu^2} &= \frac{GMr^2}{r - 2GM}. \end{split}$$

При $r\to 2GM$ эти величины расходятся, откуда следует, что движение происходит вдоль свето-подобных геодезических только при $r=\tilde{r}_+$, так что времени-подобные круговые орбиты существуют при r>2GM. На рис. 7 приведены зависимости энергии и момента импульса частицы, движущейся вблизи экстремальной ЧД Шварцшильда в МОГ. Локальный минимум соответствует радиусу последней устойчивой круговой орбиты. Видно, что при возрастании r энергия и момент импульса возрастают. При $r=r_{lsco}=4M$ имеем $E\approx 0.918\mu$ и $L\approx 2.82\mu M$.

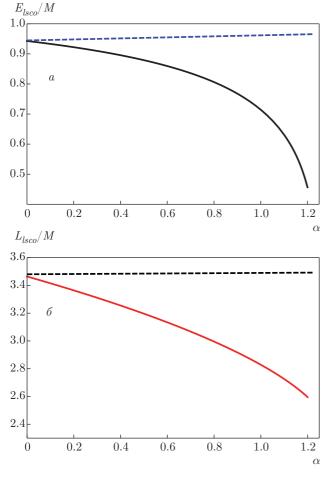


Рис. 4. Зависимости энергии E_{lsco}/M (a) и момента импульса $L_{lsco}/M\mu$ (δ) частицы для последней устойчивой круговой орбиты от параметра α для случая I

2.3. Случай III, $\alpha > G/G_N$

В данном разделе мы рассмотрим движение нейтральной пробной частицы для случая голой сингулярности ($\alpha > G/G_N$). Можно вычислить соответствующие энергию и момент импульса частицы:

$$\frac{E}{\mu} = \frac{r^2 - 2GMr + \alpha G_N GM^2}{r\sqrt{r^2 - 3GMr + 2\alpha G_N GM^2}},$$

$$\frac{L}{\mu} = r\sqrt{\frac{GMr - \alpha G_N GM^2}{r^2 - 3GMr + 2\alpha G_N GM^2}}.$$

Основываясь на уравнениях (4) и (5), рассмотрим четыре различных случая.

(i)
$$r = r^* = \alpha G_N M$$
,

(ii)
$$1 < \alpha G_N / G < 9/8$$
,

(iii)
$$\alpha G_N/G = 9/8$$
,

(iv)
$$\alpha G_N/G > 9/8$$
.

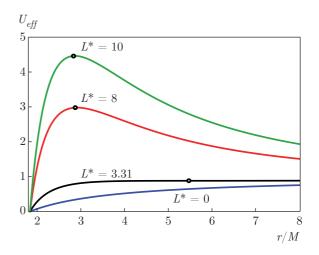


Рис. 5. Зависимости эффективного потенциала U_{eff} от параметра r/M для случая I при $\alpha=0.3$ при различных значениях L^* . Внешнему горизонту соответствует значение $r_+ \approx 1.836$

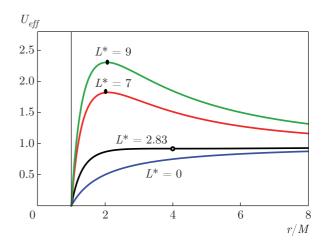


Рис. 6. Зависимости эффективного потенциала U_{eff} от параметра r/M для случая II при различных значениях L^*

Таблица. Значения момента импульса, радиуса и эффективного потенциала

α	L^*	r_{min}	U_{eff}^{min}
1.09	0	1.09	0.31
1.09	2.69	1.22	0.78
1.2	0	1.2	0.41
1.2	3.34	9	0.94
1.3	0	1.3	0.48
1.3	2	3.78	0.85

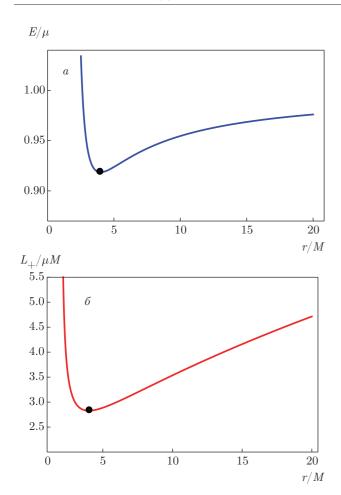


Рис. 7. Зависимости энергии E/μ (a) и момента импульса $L_+/\mu M \equiv L^*$ $(\emph{б})$ частицы, движущейся по круговой орбите, для случая II

На рис. 8 приведены зависимости эффективного потенциала при различных значениях α . Соответствующие минимальные значения приведены в таблице. При $\alpha=1.09$ имеем $\tilde{r}_+\approx 1.76$ и $\tilde{r}_-\approx 1.23$. На рисунке видно, что неравенство $r^*\leq \tilde{r}_-\leq \tilde{r}_+$ выполнено при $\alpha>G/G_N$, где

$$\tilde{r}_{\pm} = \frac{3GM \pm \sqrt{9G^2M^2 - 8\alpha G_N GM^2}}{2}$$

— радиусы, соответствующие энергии и моменту импульса частицы [25]. Используя уравнения (4) и (5), рассмотрим четыре различных случая:

(i)
$$r = r^* = \alpha G_N M$$
,

(ii)
$$1 < \alpha G_N/G < 9/8$$
,

(iii)
$$\alpha G_N/G = 9/8$$
,

(iv)
$$\alpha G_N/G > 9/8$$
.

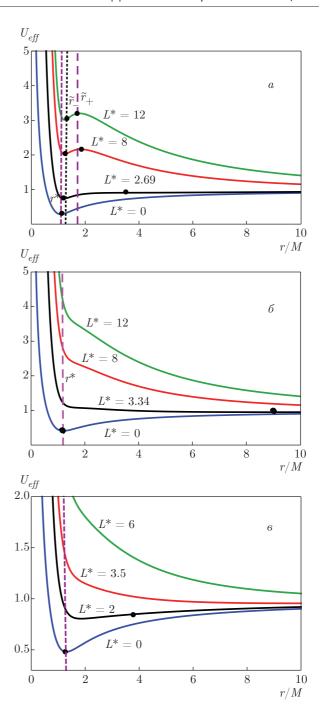


Рис. 8. Зависимости эффективного потенциала для случая III при $\alpha = 1.09$ (a), 1.2 (б) и 1.3 (в)

Случай (i),
$$r = r^*$$

В этом случае энергия и момент импульса определяются как

$$\frac{E}{\mu} = \sqrt{1 - \frac{G^2 M^2}{\alpha G_N G M^2}}, \quad L = 0, \label{eq:energy}$$

что означает, что частицы остаются статическими по отношению к наблюдателю, находящемуся на

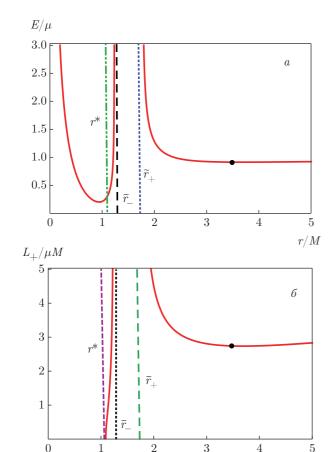


Рис. 9. Зависимости энергии E/μ (a) и момента импульса $L_+/\mu M$ (δ) для случая III, $\alpha=1.09<9/8$

бесконечности. Как можно видеть, частицы могут приближаться к радиусу r^* как при $\alpha < G/G_N$, так и при $\alpha = G/G_N$, при этом r^* расположен внутри внешнего горизонта и пробные частицы не могут его достичь.

Случай (ii), $1 < \alpha G_N/G < 9/8$

Для этого случая круговые орбиты могут существовать внутри областей $r^* < r < \tilde{r}_-$ и $r > \tilde{r}_+$. Светоподобные геодезические определяются границами $r = \tilde{r}_\pm$. Это указывает на то, что в областях $r \in [\tilde{r}_-, \tilde{r}_+]$ и $r < r^*$ невозможно обнаружить времени-подобные частицы. Зависимости энергии E/μ и момента импульса $L_+/\mu M$ показаны на рис. 9. При $\alpha G_N/G \to 1$ радиус r^* совпадает с радиусом \tilde{r}_- , так что частица, которая остается статической при $r = r^*$, должна быть фотоном.

Случай (iii),
$$\alpha G_N/G = 9/8$$

В этом случае внешняя и внутренняя орбиты пробной частицы совпадают. Времени-подобные

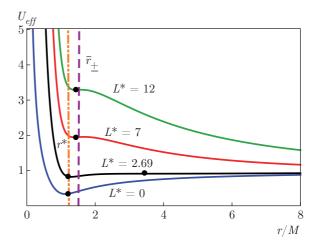


Рис. 10. Зависимости эффективного потенциала для случая III, $\alpha=9/8$

круговые орбиты существуют при всех $r>r^*$, кроме $r=\tilde{r}_\pm=3GM/2$ (что соответствует орбите фотона). Энергия и момент импульса круговых орбит определяются как

$$\frac{E}{\mu} = \frac{r^2 - 2GMr + \frac{9}{8}G^2M^2}{r\left(r - \frac{3}{2}GM\right)}$$

$$\frac{L_{+}}{\mu} = r \frac{\sqrt{GM\left(r - \frac{9}{8}GM\right)}}{r - \frac{3}{2}GM}$$

Зависимости эффективного потенциала, энергии и момента импульса показаны на рис. 10 и 11. Из рисунков видно, что большему значению L^* соответствует большее значение эффективного потенциала. При этом значению $\tau_{min}\approx 3.55$ соответствуют значения энергии $E=0.91\mu$ и момента импульса $L=2.72\mu M$.

Случай (iv),
$$\alpha G_N/G > 9/8$$

В этом случае орбиты фотонов не могут существовать, при этом времени-подобные круговые орбиты возможны для всех $r>r^*$. Зависимость эффективного потенциала такая же, как на рис. 86 и 6. Зависимости энергии и момента импульса приведены на рис. 12 и 13. При $\alpha=1.2$ минимальные значения $E_{min}/\mu\approx 0.9$ и $L_{min}^*=2.60$ соответствуют $r_{min}\approx 3.15$. Из рисунков видно, что как энергия, так и момент импульса возрастают при возрастании радиуса орбиты, при этом $E=\mu$ при бо́льших значениях r. Для исследования устойчивости круговых орбит вблизи ЧД Шварцшильда в МОГ при $\alpha>$ $>G/G_N$ решаем уравнение (6) и находим

r/M

$$\begin{split} r_{lsco}^{+} &= 2GM - 2\sqrt{4G^{2}M^{2} - 3\alpha G_{N}GM^{2}} \times \\ &\times \sin\left[\frac{1}{3}\arcsin\left(\frac{8G^{4}M^{4} - 9G^{2}M^{2}(\alpha G_{N}GM^{2}) + 2\left(\alpha G_{N}GM^{2}\right)^{2}}{GM(4G^{2}M^{2} - 3\alpha G_{N}GM^{2})^{3/2}}\right)\right], \\ r_{lsco}^{-} &= 2GM + 2\sqrt{4G^{2}M^{2} - 3\alpha G_{N}GM^{2}} \times \\ &\times \cos\left[\frac{1}{3}\arccos\left(\frac{8G^{4}M^{4} - 9G^{2}M^{2}(\alpha G_{N}GM^{2}) + 2\left(\alpha G_{N}GM^{2}\right)^{2}}{GM(4G^{2}M^{2} - 3\alpha G_{N}GM^{2})^{3/2}}\right)\right], \\ r_{c} &= 2GM - 2\sqrt{4G^{2}M^{2} - 3\alpha G_{N}GM^{2}} \times \\ &\times \sin\left[\frac{\pi}{6} + \frac{1}{3}\arccos\left(\frac{8G^{4}M^{4} - 9G^{2}M^{2}(\alpha G_{N}GM^{2}) + 2\left(\alpha G_{N}GM^{2}\right)^{2}}{GM(4G^{2}M^{2} - 3\alpha G_{N}GM^{2})^{3/2}}\right)\right]. \end{split}$$

Эти решения существуют только в интервале

$$1 < \alpha G_N / G < 5/4$$
.

Они находятся внутри радиуса

$$r_c < \alpha G_N M = r^*,$$

где не существует времени-подобных круговых геодезических. Более того, $r_{lsco}^- < r_{lsco}^+$ во всем интервале, кроме $\alpha G_N/G=5/4$, для которого $r_{lsco}^-=r_{lsco}^+$. При $\alpha G_N/G > 5/4$ не существует решения уравнения (6) в области $r > \alpha G_N M$, а при $\alpha G_N / G > 9/8$ последней устойчивой круговой орбите соответствует значение $r = \alpha G_N M$, как показано на рис. 14. При $r = r^*$ энергия частицы возрастает с ростом α . При $1 < \alpha G_N/G < 5/4$ и $9/8 < \alpha G_N/G < 5/4$ энергия и момент импульса, соответствующие орбитам $r=r_{lsco}^+$ и $r=r_{lsco}^-$, убывают с ростом α . Это происходит потому, что при $\alpha G_N/G=9/8$ радиус $r_{lsco}^$ совпадает с радиусами \tilde{r}^+ и \tilde{r}^- . При $\alpha G_N/G > 5/4$ последней устойчивой круговой орбите соответствует значение $r=r^*$ и область $r>r^*$ является областью устойчивости. При $9/8 < \alpha G_N/G < 5/4$ имеются две области устойчивых орбит, $r^* < r < r_{lsco}^-$ и $r>r_{lsco}^+$. Эти области разделены областью неустойчивости, $r_{lsco}^- < r < r_{lsco}^+$. При $1 < \alpha G_N/G < 9/8$ имеются две области устойчивых орбит $r^* < r < \tilde{r}_$ и $r > r_{lsco}^+$, разделенные областью $\tilde{r}_- < r < \tilde{r}_+$, для которой не существует времени-подобных круговых орбит.

Заметим, что геометрия и положение областей устойчивости для движущейся вблизи ЧД нейтральной частицы существенно различаются для случаев $\alpha < G/G_N$ и $\alpha > G/G_N$. Зависимости радиуса последней устойчивой круговой орбиты приведены на рис. 15. В случае $\alpha < G/G_N$ имеется толь-

ко одна область устойчивости, которая продолжается от минимального радиуса $r_{lsco} \in [4M,6M]$ до бесконечности. В случае $\alpha > G/G_N$ область устойчивости продолжается от $r^* = \alpha G_N M$ до бесконечности при $\alpha G_N/G \geq 5/4$, в то время как при $1 < \alpha G_N/G < 5/4$ существуют две области устойчивости, разделенные областью неустойчивости, где не существует времени-подобных круговых орбит (запрещенная область).

3. ЭНЕРГИЯ В СИСТЕМЕ ЦЕНТРА МАСС

Энергия в системе центра масс зависит от взаимодействующих частиц и гравитационного поля вблизи астрофизического объекта. Для двух взаимодействующих частиц мы получаем ее, складывая их кинетические энергии и массы покоя. Рассмотрим столкновение двух нейтральных частиц, движущихся в одной и той же плоскости и имеющих одну и ту же массу покоя (μ_0), но различные 4-скорости (u_1^{ν} и u_2^{η}). ЭЦМ этих частиц определяется как

$$\frac{E_{cm}}{\sqrt{2}m_0} = \sqrt{1 - g_{\nu\eta}u_1^{\nu}u_2^{\eta}},\tag{10}$$

где

$$u_i^{\nu} = \left(\frac{E_i}{\mu Z(r)}, -S_i, 0, \frac{L_i}{\mu r^2}\right),\,$$

$$S_i = \sqrt{E_i^2 - Z(r)\left(1 + \frac{L_i^2}{r^2}\right)}, \quad i = 1, 2.$$

Здесь E_i и L_i — энергия и момент импульса соответствующих частиц. Для ЧД Шварцшильда в МОГ уравнение (10) приобретает вид

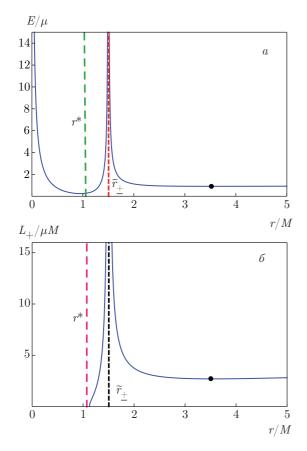


Рис. 11. Зависимости энергии E/μ (a) и момента импульса $L_+/\mu M$ (δ) для случая III, $\alpha=9/8$

$$\begin{split} \frac{E_{cm}}{\sqrt{2}m_0} &= \sqrt{1 + \frac{E_1 E_2}{Z(r)} - \frac{S_1 S_2}{Z(r)} - \frac{L_1 L_2}{r^2}} = \\ &= \left[1 + \frac{1}{2} \left(\frac{E_1^2 + E_2^2}{E_1 E_2} \right) - \frac{Z(r)}{2E_1 E_2 r^2} \left(L_1^2 + L_2^2 \right) + \right. \\ &+ \frac{1}{2r^2} \left(\frac{E_2^2 L_1^2 + E_1^2 L_2^2}{E_1 E_2} \right) - \frac{Z(r)}{2E_1 E_2} - \\ &- L_1 L_2 \left(\frac{L_1 L_2 Z(r) + 2E_1 E_2 r^2}{2E_1 E_2 r^4} \right) \right]^{1/2}. \end{split}$$

Вблизи горизонта событий это уравнение принимает вид

$$\frac{E_{cm}}{\sqrt{2}m_0} = \sqrt{\frac{4r_+^2 + (L_1 - L_2)^2}{2r_+^2}},$$

где для простоты мы положили $E_1=E_2=1$. Зависимости ЭЦМ от параметра r/M при различных значениях α показаны на рис. 16.

В случае $\alpha = G/G_N$ ЭЦМ для двух взаимодействующих частиц меньше ЭЦМ для случая $\alpha < G/G_N$. Видно, что значения ЭЦМ убывают с ростом α и лежат ниже шварцшильдовского предела для всех $\alpha > 0$. В случае $1 < \alpha G_N/G < 9/8$ име-

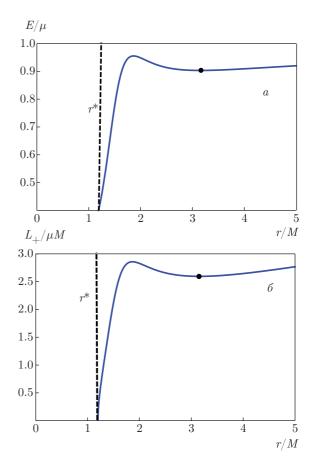


Рис. 12. Зависимости энергии E/μ (a) и момента импульса $L_+/\mu M$ (b) для случая III, $\alpha=1.2$

ем $\tilde{r}_+=1.816$ и $\tilde{r}_-=1.1837$ при $\alpha=1.075$. Кроме того, ЭЦМ возрастает при $0.9672\lesssim r\lesssim 1.1837$, убывает при $1.1837\lesssim r\lesssim 1.9089$, а затем возрастает от r=1.9089 до бесконечности, в то время как при $\alpha G_N/G=9/8$ и при $\alpha G_N/G>9/8$ она быстро возрастает. Зависимости ЭЦМ при различных значениях L_1 показаны на рис. 17. На рисунке видно, что в случае $\alpha < G/G_N$ ЭЦМ возрастает с ростом момента импульса, в то время как в случае $\alpha = G/G_N$ при возрастании r/M она сначала возрастает, а затем убывает. На рис. 18 показаны зависимости ЭЦМ при $1<\alpha G_N/G<9/8$, $\alpha G_N/G=9/8$ и $\alpha G_N/G>9/8$. Для всех этих областей ЭЦМ демонстрирует поведение, аналогичное поведению для случая $\alpha = G/G_N$.

4. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

В настоящей работе мы исследовали движение пробной частицы по круговым орбитам, находящим-

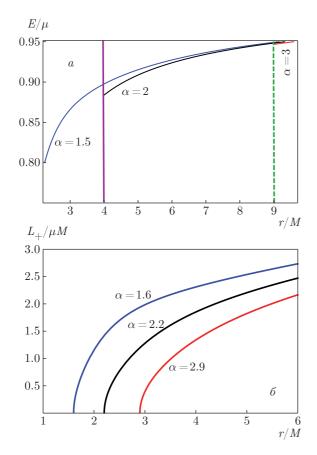


Рис. 13. Зависимости энергии E/μ (a) и момента импульса $L_+/\mu M$ (\mathfrak{o}) для случая III, $\alpha>9/8$

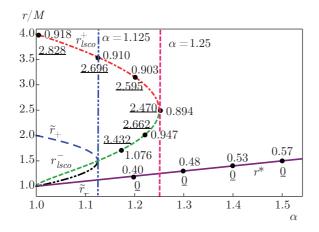


Рис. 14. Зависимости радиусов r_{lsco}^+ , r_{lsco}^- , \tilde{r}_+ , \tilde{r}_- и r^* от параметра α . Числа рядом с точками соответствуют значениям энергии E/μ , а подчеркнутые числа — значениям момента импульса $L/\mu M$ частицы для последней устойчивой круговой орбиты. Вертикальная штриховая линия соответствует $\alpha=5/4=1.125$, а вертикальная штрихпунктирная — $\alpha=9/8=1.25$

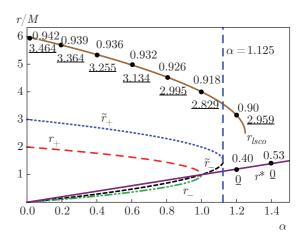


Рис. 15. Зависимости радиусов r_{lsco}^+ , $r_{lsco}^ \tilde{r}_\pm$, r_\pm и r^* от параметра $\alpha \in [0,1.5]$. Числа рядом с точками соответствуют значениям энергии E/μ , а подчеркнутые числа — значениям момента импульса $L/\mu M$ частицы для последней устойчивой круговой орбиты

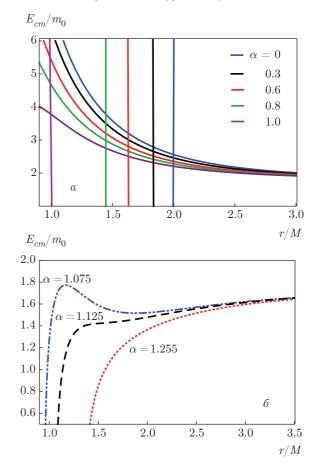
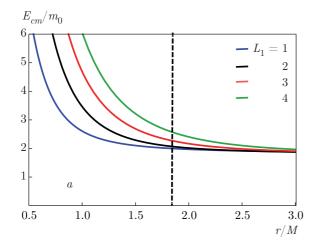


Рис. 16. Зависимости ЭЦМ от r/M при $L_1=4$ и $L_2=1$: a — случаи I и II, $\alpha\in[0,1]$, вертикальными линиями показаны соответствующие горизонты событий; δ — случай III, $1<\alpha G_N/G<9/8$ (штрихпунктир), $\alpha G_N/G=9/8$ (штрихи) и $\alpha G_N/G>9/8$ (пунктир)



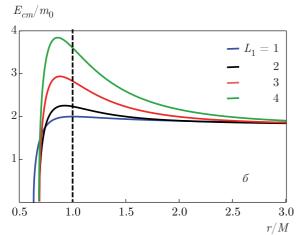


Рис. 17. Зависимости ЭЦМ для неэкстремальной ЧД при $L_2=1,~\alpha=0.3~(a)$ и $1~(\emph{6}),$ случай II

ся в экваториальной плоскости вблизи ЧД Шварцшильда в МОГ. Чтобы проанализировать области, в которых возможно круговое движение, мы рассмотрели три случая, а именно, $\alpha < G/G_N$, $\alpha = G/G_N$ и $\alpha > G/G_N$. При обсуждении положения и устойчивости круговых орбит использовался подход эффективного потенциала. Кроме того, исследовалось поведение энергии и момента импульса частиц в соответствующих областях. Оказалось, что круговые орбиты с нулевым моментом импульса существуют при $r^* = \alpha G_N M$.

Было получено, что при $\alpha < G/G_N$ радиус последней устойчивой круговой орбиты r_{lsco} и соответствующие значения энергии E_{lsco}/M и момента импульса $L_{lsco}/\mu M$ существуют в области ниже шварцшильдовского предела, тогда как при $\alpha = G/G_N$ радиусу последней круговой орбиты r_{lsco} соответствует значение r=4M. Это существенно отличается от случая $\alpha > G/G_N$, когда существуют че-

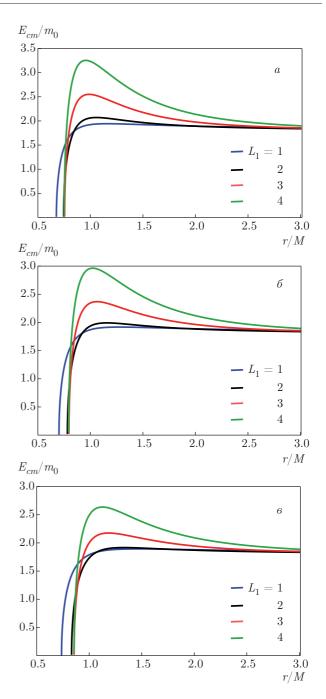


Рис. 18. Зависимости ЭЦМ при $L_2=1,\,1<\alpha G_N/G<9/8$ (a), $\alpha G_N/G=9/8$ (б), $\alpha G_N/G>9/8$ (б), случай III

тыре различных области кругового движения, зависящих от значения α . При $\alpha G_N/G \geq 5/4$ имеется только одна непрерывная область устойчивости, от $r^* = \alpha G_N M$ до бесконечности, в то время как при $1 < \alpha G_N/G < 5/4$ существуют две области устойчивости (либо при $9/8 < \alpha G_N/G < 5/4$, либо при $1 < \alpha G_N/G < 9/8$), разделенные областью неустойчивости. Таким образом, при $1 < \alpha G_N/G < 5/4$ об-

ласть устойчивости разбивается на две несвязанные области, что позволяет частице бесконечно двигаться вдоль орбит.

Наконец, была исследована ЭЦМ для ЧД Шварцшильда в МОГ. Оказалось, что она меньше ЭЦМ для ЧД Шварцшильда и убывает при возрастании α . В случае $\alpha < G/G_N$ значения ЭЦМ больше, чем в случае $\alpha = G/G_N$. В случае $\alpha > G/G_N$ ЭЦМ сначала возрастает, а затем убывает с ростом r/M. В случае $\alpha < G/G_N$ ЭЦМ двух взаимодействующих частиц возрастает с ростом момента импульса, в то время как в случаях $\alpha = G/G_N$ и $\alpha > G/G_N$ с ростом r/M она сначала возрастает, а затем убывает.

ЛИТЕРАТУРА

- J. W. Moffat, J. Cosmol. Astropart. Phys. 03, 004 (2006).
- P. Mishra and T. P. Singh, Phys. Rev. D 88, 104036 (2013).
- **3**. J. W. Moffat and S. Rahvar, Mon. Not. R. Astron. Soc. **441**, 3724 (2014).
- 4. J. W. Moffat, Eur. Phys. J. C 75, 130 (2015).
- M. Sharif and A. Yousaf, Eur. Phys. J. Plus 131, 307 (2016).
- J. R. Mureika, J. W. Moffat, and M. Faizal, Phys. Lett. B 757, 528 (2016).
- 7. J. W. Moffat, Phys. Lett. B 763, 427 (2016).
- 8. V. Lacquaniti, G. Montani, and D. Pugliese, Gen. Relativ. Gravit. 43, 1103 (2011).
- D. Pugliese, H. Quevedo, and R. Ruffini, Phys. Rev. D 83, 024021 (2011).

- D. Pugliese, H. Quevedo, and R. Ruffini, Phys. Rev. D 84, 044030 (2011); ibid. 88, 024042 (2013).
- 11. N. Cruz, M. Olivares, and J. R. Villanueva, Class. Quantum Grav. 22, 1167 (2005).
- P. Pradhan and P. Majumdar, Phys. Lett. A 375, 474 (2011).
- **13**. S. Hussain and M. Jamil, Phys. Rev. D **92**, 043008 (2015).
- D. Pugliese and H. Quevedo, Eur. Phys. J. C 75, 130 (2015).
- P. A. Gonzalez, M. Olivares, and Y. Vasquez, Eur. Phys. J. C 75, 234 (2015).
- M. Sharif and M. Shahzadi, Eur. Phys. J. C 77, 363 (2017).
- 17. N. Baushev, Int. J. Mod. Phys. D 17, 30 (2009).
- M. Banados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009).
- T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 104, 021101 (2010).
- A. Zakria and M. Jamil, J. High Energy Phys. 05, 147 (2015).
- **21**. C. Armaza, M. Banados, and B. Koch, Class. Quantum Grav. **33**, 105014 (2016).
- 22. J. W. Moffat, Eur. Phys. J. C 75, 175 (2015).
- **23**. S. Chandrasekhar, *The Mathematical Theory of Black Holes*, Oxford University Press (1983).
- **24**. J. M. Cohen and R. Gautreau, Phys. Rev. D **19**, 2273 (1979).
- 25. E. P. T. Liang, Phys. Rev. D 9, 3257 (1974).