ПОНИЖЕНИЕ ТЕМПЕРАТУРЫ КЮРИ ПОД ДАВЛЕНИЕМ В $\mathrm{Gd}_2\mathrm{Fe}$: РАСЧЕТЫ МЕТОДОМ $\mathrm{LSDA}\mathrm{+U}$

П. А. Игошев^a, Е. Е. Кокорина^b, М. В. Медведев^b, И. А. Некрасов^{b*}

^а Институт физики металлов Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

^b Институт электрофизики Уральского отделения Российской академии наук 620016, Екатеринбург, Россия

Поступила в редакцию 7 апреля 2018 г.

Объяснение экспериментаторами магнитных свойств перспективных ферромагнитных интерметаллических соединений класса R_2Fe (R- редкоземельный элемент) часто опирается на гипотезу о конкуренции ферромагнитного и антиферромагнитного обменов между четырьмя типами ближайших атомов железа в неэквивалентных кристаллографических позициях. В настоящей работе для ромбоэдрического ферромагнетика $\mathrm{Gd}_2\mathrm{Fe}$ выполнен расчет магнитных моментов ионов железа и гадолиния, параметров обмена между атомами Fe, а также температуры Кюри T_C как при нулевом давлении, так и при гидростатическом сжатии решетки. Показано, что под давлением магнитный момент элементарной ячейки ${\rm Gd}_2{\rm Fe}$ уменьшается, причем это уменьшение почти полностью связано с уменьшением магнитных моментов ионов Fe, а не ионов Gd, для которых зависимость величин магнитных моментов от давления на порядок слабее. Выяснено, что в противоположность гипотезе о конкуренции обменных взаимодействий между разными типами атомов Fe параметры обмена между ближайшими атомами железа в разных кристаллографических позициях являются положительными ферромагнитными (как при нулевом давлении, так и при сжатии) и что ферромагнитный характер взаимодействия сохраняется под давлением даже у атомов ${
m Fe}$ в так называемых гантельных позициях с кратчайшими межатомными расстояниями. Показано, что температура Кюри T_C в $\mathrm{Gd}_2\mathrm{Fe}$ падает при увеличении давления. Выявлено, что изменение обменных параметров и магнитных моментов $\mathrm{Gd}_2\mathrm{Fe}$ при сжатии в основном связано с изменением положения ветвей энергетического спектра относительно друг друга и относительно уровня Φ ерми ϵ_F , а не с изменением степени перекрытия волновых функций, играющим второстепенную роль.

DOI: 10.1134/S0044451018080187

1. ВВЕДЕНИЕ

Интерметаллические соединения R_2Fe (R — редкоземельный элемент), наиболее богатые железом среди всех интерметаллидов железа и редких земель, широко изучаются как экспериментаторами, так и теоретиками [1]. С экспериментальной точки зрения эти соединения интересны существованием такого эффекта, как аномалии теплового расширения инварного типа (например в Y_2Fe [2]), и перспективами достижения сильной магнитной анизотропии в сплавах внедрения на основе R_2Fe (например, N_y ($y \approx 2.6$) в Sm_2Fe [3]). С теоретической точки зрения данные интерметаллиды железа интересны как модельный объект для изучения зависимости величины и знака параметров обменных взаимодействий между ионами железа от межатомных расстояний в сложных многоподрешеточных магнитных системах.

В работе [2] (по-видимому, впервые) было высказано соображение, что в интерметаллидах R_2 Fe между атомами железа в так называемых гантельных позициях с наименьшими расстояниями между парами атомов Fe (в кристаллографических позициях 4f в соединениях с гексагональной структурой типа Th_2Ni_{17} [2] и аналогично в позициях 6c в случаях ромбоэдрической структуры типа Th_2Zn_{17}) существует сильное антиферромагнитное взаимодействие, тогда как при межатомных расстояниях r > 2.44 Å обменные взаимодействия будут ферромагнитными.

^E-mail: nekrasov@iep.uran.ru

Эти выводы были получены для гексагонального интерметаллида Lu₂Fe [2], и они основывались на результатах нейтронографических исследований магнитной структуры Lu₂Fe [4], установивших наличие геликоидального магнитного порядка, происхождение которого можно связать с конкуренцией ферромагнитных и антиферромагнитных обменных взаимодействий. При этом для подтверждения своих соображений о знаках обменных взаимодействий между атомами железа различных пар авторы работы [2] апеллировали к кривой Бете-Слэтера для зависимости точек Кюри и Нееля для пяти переходных металлов 3*d*-группы от межатомных расстояний между ближайшими магнитными соседями. Следует при этом отметить, что хотя кривая Бете-Слэтера была построена для металлов с не совпадающими по структуре кристаллическими решетками и радикально различающимися электронными заполнениями *d*-полосы, она интерпретировалась многими экспериментаторами как однозначная зависимость величины и знака прямого обменного взаимодействия между ближайшими магнитными соседями от расстояния между ними.

В большинстве интерметаллидов R_2Fe (за исключением Ce_2Fe , Tm_2Fe и Lu_2Fe [5]) магнитные подрешетки неэквивалентных атомов Fe образуют коллинеарную ферромагнитную структуру. Поэтому утверждение о решающей роли конкуренции ферромагнитного и антиферромагнитного обменов между парами ближайших атомов Fe во всех соединениях R_2Fe , опирающееся на косвенные свидетельства из экспериментов по Lu_2Fe , не является очевидным.

Чтобы прояснить этот вопрос, в работе [6] был выполнен методом LSDA+U [7] расчет магнитных моментов и параметров обменных взаимодействий между ближайшими атомами Fe и соседями второго порядка. На основании данных расчетов получены температуры Кюри Т_С для двух кристаллографических фаз (гексагональной и ромбоэдрической) интерметаллида Gd₂Fe. Оказалось, что в гантельных парах Gd₂Fe как в гексагональной фазе (пара с позициями 4f-4f, расстояние между атомами железа r = 2.400 Å), так и в ромбоэдрической фазе (пара с позициями 6c-6c, r = 2.385 Å) обменные взаимодействия между атомами железа являются максимальными по своей величине и ферромагнитными, а не антиферромагнитными вопреки выводам работы [2]. Более того, в гексагональной фазе Gd₂Fe все обменные связи Fe-Fe с атомами Fe в разных кристаллографических позициях на расстояниях ближайшего соседства являются ферромагнитными, а в ромбоэдрической фазе Gd_2Fe из 11 вариантов ближайших обменных связей только связь между атомами в позициях 12j-12j (r = 2.466 Å) является слабой антиферромагнитной. В то же время обменные взаимодействия между атомами Fe на расстояниях соседей второго порядка в обеих фазах, как правило, являются антиферромагнитными, но по абсолютной величине они на порядок меньше, чем взаимодействия в первой координационной сфере.

Поскольку в расчетной схеме [7] максимальный ферромагнитный обмен возникает между атомами Fe в случаях минимального межатомного расстояния (в гантельных парах), возникает подозрение [8], что уменьшение межатомных расстояний в кристаллической решетке Gd₂Fe₁₇ под давлением усилит ферромагнитный обмен между гантельными атомами и приведет к увеличению температуры Кюри T_C , что противоречит эксперименту. Однако экспериментально известно, что, как правило, гидростатическое давление уменьшает температуру ферромагнитного перехода T_C в данных системах.

Цель настоящей работы состоит в том, чтобы промоделировать изменение кристаллической решетки ромбоэдрической фазы Gd₂Fe при всестороннем сжатии и рассчитать, как гидростатическое давление влияет на магнитные моменты атомов и на величины обменных взаимодействий между ближайшими атомами Fe в эквивалентных и неэквивалентных позициях и, соответственно, на величину температуры Кюри T_C .

2. ВЛИЯНИЕ ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ НА МАГНИТНЫЕ МОМЕНТЫ Gd₂Fe₁₇

Ромбоэдрическая фаза Gd₂Fe при нулевом давлении характеризуется следующими параметрами решетки: $a_0 = 8.538$ Å и $c_0 = 12.431$ Å [9]. Объем элементарной ячейки в этой фазе Gd₂Fe отвечает одной формульной единице Gd₂Fe и описывается формулой $V_0 = a_0^2 c_0 \sin \gamma \approx 0.866 a_0^2 c_0$, где $\gamma = 120^\circ$ — угол между базисными векторами трансляций в плоскости *ab*.

В одной элементарной ячейке ромбоэдрической фазы типа Th_2Fe наименьшее расстояние между ионами Fe реализуется в гантельной паре Fe1–Fe1 в позициях 6*c*, тогда как 6 атомов железа Fe3 (в позициях 18*f*) являются элементами плоских гексагонов, у которых в центре либо находится атом Gd, либо проходит связь между атомами гантельной пары Fe1–Fe1. Эти плоскости гексагонов с Gd переме-

$(a(P) - a_0)/a_0$	0.0100	0	-0.00125	-0.0025	-0.005	-0.01	-0.015	-0.02
$(V(P) - V_0)/V_0$	0.0303	0	-0.0037	-0.0075	-0.0149	-0.0279	-0.0443	-0.0588
P, ГПа	-3.79	0	0.47	0.93	1.87	3.71	5.54	7.35
$m(\text{Fe1}(6c)), \mu_B$	2.29	2.19	2.19	2.18	2.17	2.13	2.08	2.01
$m(\text{Fe2}(9d)), \mu_B$	2.38	2.26	2.25	2.23	2.20	2.12	2.01	1.87
$m(\text{Fe3}(18f)), \mu_B$	2.32	2.17	2.15	2.14	2.12	2.06	2.00	1.89
$m(\text{Fe4}(18h)), \mu_B$	2.39	2.31	2.30	2.29	2.27	2.21	2.13	2.04
$m(\mathrm{Gd}), \mu_B$	-7.14	-7.17	-7.16	-7.16	-7.15	-7.14	-7.14	-7.14
$M_S(\sum \text{Fe}), \mu_B$	39.98	38.04	37.85	37.66	37.30	36.29	34.98	33.18
$M_S(\sum \mathrm{Gd}), \mu_B$	-14.28	-14.34	-14.33	-14.32	-14.30	-14.29	-14.29	-14.28
M_S, μ_B	25.70	23.70	23.52	23.34	23.00	22.00	20.69	18.90

Таблица 1. Зависимость локальных магнитных моментов атомов железа m(Fe) и гадолиния m(Gd), а также магнитных подрешеток железа $M_S(\sum Fe)$ и гадолиния $M_S(\sum Gd)$ и полного магнитного момента M_S элементарной ячейки Gd_2Fe от изменения параметров решетки при гидростатическом давлении

жаются с другими, слегка гофрированными, плоскостями гексагонов только из атомов Fe, на построение которых от одной формульной единицы выделяются 6 атомов Fe4 (в позициях 18h) и 3 атома Fe2 (в позициях 9d).

Следует упомянуть, что в литературе наиболее детальное исследование изменений решеточных параметров a(P) и c(P) при гидростатическом давлении P приведено не для $\text{Gd}_2\text{Fe}_{17}$, а для другого родственного соединения класса R_2Fe_{17} — гексагонального Er_2Fe [10]. При этом было показано [10], что при давлениях до P = 16 ГПа соблюдается равенство $a(P)/a_0 = c(P)/c_0$, т. е. деформация решетки является изотропной. Поэтому для наших расчетов свойств ромбоэдрической фазы $\text{Gd}_2\text{Fe}_{17}$ под давлением примем предположение об изотропности: a(P)/c(P) = const. При этом разные состояния кристаллической решетки под давлением будем маркировать относительными изменениями линейных параметров решетки,

$$\frac{a(P) - a_0}{a_0} = \frac{c(P) - c_0}{c_0},$$

которые могут быть легко пересчитаны на относительные изменения объема элементарной ячейки,

$$\frac{\Delta V}{V_0} = \frac{V(P) - V_0}{V_0},$$

что при известной из эксперимента объемной сжимаемости позволяет найти прилагаемое гидростатическое давление *P* как

$$P = -1/\kappa (\Delta V/V_0),$$

где
 κ — объемная сжимаемость.

Электронная структура ромбоэдрической фазы Gd₂Fe рассчитывается методами LSDA+U [7] в рамках приближения атомных сфер на базисе линеаризованных МТ-орбиталей (ТВ-LMTO-ASA v.47) [11]. Говоря более точно, только 4f-оболочка Gd была рассчитана в методе LSDA+U, так как величина кулоновского взаимодействия в гадолинии ($U_{\rm Gd}$ ~ \sim 7 эВ) заметно больше, чем в железе ($U_{\rm Fe} \approx 2$ эВ) [12,13]. Поэтому для 3*d*-оболочки Fe мы ограничиваемся LSDA-приближением, полагая, что существенная часть эффектов электронных взаимодействий уже учтена в LSDA-подходе. Дальнейшие технические детали расчетов электронной структуры ромбоэдрического Gd₂Fe при нулевом давлении (такие, как выбор радиусов атомных сфер и волновых компонент орбитальных базисов для Gd и Fe, выбор параметров прямого U и обменного J кулоновского взаимодействий для 4f-оболочки Gd) обоснованы и приведены в работе [7]. Эти же данные использованы и в настоящих расчетах при ненулевом давлении $P \neq 0.$

В табл. 1 приведены рассчитанные значения локальных магнитных моментов атомов Gd и атомов Fe в четырех неэквивалентных позициях (в магнетонах Бора), а также полного момента системы атомов Gd и Fe и результирующего магнитного момента Gd₂Fe одной элементарной ячейки для 8 значений относительных изменений параметров решетки:

$$\frac{a(P) - a_0}{a_0} = \frac{c(P) - c_0}{c_0} = 0.01, 0, -0.00125, -0.0025, -0.005, -0.01, -0.015, -0.02.$$

Заметим, что случай $(a(P) - a_0)/a_0 = 0.01$ описывает случай всестороннего расширения решетки (т. е. случай так называемого «отрицательного» давления).

Поскольку при расчете исходно задаются относительные изменения параметров *a* и *c* кристаллической решетки, этим изменениям решетки можно сопоставить соответствующие гидростатические давления, используя экспериментальные значения объемной сжимаемости κ . За неимением данных для Gd₂Fe мы используем для оценки шкалы давлений значение начальной объемной сжимаемости $\kappa =$ $= 8 \cdot 10^{-3} \Gamma \Pi a^{-1}$, полученное для Er₂Fe [14] (подобная аппроксимация ранее использовалась в работе [15] для расчетов сверхтонких полей в Gd₂Fe).

Видно, что при уменьшении параметров решетки (т. е. при увеличении давления) полный магнитный момент M_S элементарной ячейки ромбоэдрического Gd₂Fe убывает. При этом получается, что поведение магнитных моментов атомов железа и гадолиния радикально различается. Мы находим, что

$$\frac{d\ln M_S}{dP} = -1.68 \cdot 10^{-2} \ \Gamma \Pi a^{-1},$$

причем для магнитных атомов железной подрешетки следует, что

$$\frac{d\ln M_S \,(\sum {\rm Fe})}{dP} = -1.09 \cdot 10^{-2} \,\,\Gamma \Pi {\rm a}^{-1},$$

тогда как для подрешетки атомов Gd

$$\frac{d\ln|M_S(\sum \text{Gd})|}{dP} = -1.04 \cdot 10^{-3} \ \Gamma \Pi \text{a}^{-1}.$$

Таким образом, уменьшение полного магнитного момента элементарной ячейки под давлением почти полностью связано с уменьшением магнитных моментов атомов железа, тогда как изменение магнитных моментов гадолиния под давлением на порядок слабее. Эти результаты несколько меньше экспериментальных данных для Gd₂Fe [16]:

$$\frac{d\ln M_S}{dP} = -4.7 \cdot 10^{-2} \ \Gamma \Pi a^{-1},$$

 $\frac{d\ln|M_S(\sum Fe)|}{dP} = -2.9 \cdot 10^{-2} \ \Gamma \Pi a^{-1}.$

Однако надо иметь в виду, что отчасти эти расхождения могут быть связаны с неточностью информации о величине сжимаемости κ , использованной в наших расчетах (подобные расхождения расчетов *ab initio* с экспериментом отмечены также в работе [15]).

Наконец, укажем, что, как видно из первых столбцов табл. 1, всестороннее растяжение решетки («отрицательное» давление) должно было бы привести к увеличению спонтанной намагниченности Gd₂Fe. Но поскольку в экспериментальной практике такие расширения решетки достигаются легированием в междоузлия решетки легких химических элементов H, B, N, C, привнесение в электронный спектр кристалла новых электронных состояний от внедрения атомов (химическое легирование) может существенно перекрыть эффект простого геометрического расширения [17].

3. ВЛИЯНИЕ ДАВЛЕНИЯ НА ПАРАМЕТРЫ ОБМЕННЫХ ВЗАИМОДЕЙСТВИЙ И ТЕМПЕРАТУРУ КЮРИ

Как показано в спин-флуктуационных теориях магнетизма [18–20], магнитное поведение переходных металлов с локализованными магнитными моментами может быть описано гейзенберговской моделью с обменными взаимодействиями между классическими спинами, имеющими в общем случае нецелочисленную величину. Позднее, в работе [21], был разработан метод численного расчета параметров прямого обмена между узлами решетки для гамильтониана Гейзенберга с классическими спиновыми векторами, что, в свою очередь, позволяет оценивать температуры Кюри или Нееля магнетика в приближении среднего поля с помощью рассчитанных величин параметров обмена.

В работе [7] такая схема расчета параметров обмена и соответствующих температур Кюри была реализована для ферромагнитных подрешеток железа интерметаллида Gd₂Fe в двух кристаллических фазах (ромбоэдрической и гексагональной) при нулевом давлении P = 0. При этом температура Кюри T_C получается как наибольшее собственное значение детерминанта системы однородных уравнений для термодинамических средних Z-проекций спинов $\sigma_a = \langle S_a^Z(\mathbf{r}_a) \rangle$, линеаризованных вблизи T_C (здесь индекс a характеризует сорт иона). Для ферромагнетика (или ферримагнетика) с несколькими типа-

13 ЖЭТФ, вып. 2 (8)

(a(i	$(P) - a_0)/a_0$	0.01	0	-0.005	-0.01	-0.015	-0.02	
	P, ГПа	-3.79	0	1.87	3.71	5.54	7.35	
1	<i>J</i> ₁₁ , эВ	261.8	287.5	237.2	238.9	182.4	147.8	$z_{11} = 1$
2	J_{44} , эВ	203.3	182.2	219.3	170.1	155.4	153.5	$z_{44} = 2$
3	$J_{34}(1),$ эВ	124.3	125.9	123.6	129.0	134.0	119.3	$z_{34}^{(1)} = z_{43}^{(1)} = 2$
4	<i>J</i> ₂₄ , эВ	129.6	121.0	94.1	103.5	84.6	58.2	$z_{24} = 4, \ z_{42} = 2$
5	$J_{34}(2), \mathrm{sB}$	88.2	105.7	100.8	83.1	77.2	66.9	$z_{34}^{(2)} = z_{43}^{(2)} = 2$
6	J_{14} , эВ	71.4	88.8	79.0	58.0	77.9	78.3	$z_{14} = 3, z_{41} = 1$
7	<i>J</i> ₂₃ , эВ	113.4	87.1	86.2	80.7	62.7	54.9	$z_{23} = 4, z_{32} = 2$
8	J_{12} , эВ	64.2	83.6	96.4	84.2	66.2	65.7	$z_{12} = 3, z_{21} = 2$
9	<i>J</i> ₁₃ , эВ	106.5	74.1	74.6	71.9	62.7	52.4	$z_{13} = 6, z_{31} = 2$
10	<i>J</i> ₃₃ , эВ	75.2	-36.5	14.2	1.9	41.3	60.7	$z_{33} = 2$
	T_C, \mathbf{K}	509.4	428.9	412.2	356.9	311.9	255.5	

Таблица 2. Параметры обмена J_{ab} между различными парами атомов железа ($a, b = {
m Fe1}, {
m Fe2}, {
m Fe3}, {
m Fe4}$) на расстояниях ближайших соседей z_{ab} для 6 вариантов изменений параметров решетки при всестороннем сжатии и соответствующие параметры Кюри T_C

ми магнитных ионов эта система линейных однородных уравнений имеет вид [7]

$$k_B T_C \sigma_a = \frac{S_a^2}{3} \sum_b \sum_{r_{ab}} J_{ab}(|\mathbf{r}_{ab}|) z_{ab}(|\mathbf{r}_{ab}|) \sigma_b.$$
(1)

Здесь S_a — величина классического спинового вектора, связанного с рассчитанным магнитным моментом m_a иона a соотношением $m_a = g\mu_B S_a$; $J_{ab}(|\mathbf{r}_{ab}|)$ — параметр прямого обменного взаимодействия между ионами a и b, находящимися друг от друга на расстоянии $\mathbf{r}_{ab} = \mathbf{r}_a - \mathbf{r}_b$, и $z_{ab}(\mathbf{r}_{ab})$ — число магнитных соседей типа b для иона a на заданном расстоянии $|\mathbf{r}_{ab}|$.

В табл. 2 приведены значения рассчитанных обменных параметров J_{ab} между различными парами атомов железа Fe_a и Fe_b на расстояниях ближайших соседей как при нулевом давлении P = 0, так и для нескольких величин всестороннего относительного сжатия/расширения решетки:

$$\frac{a(P) - a_0}{a_0} = \frac{c(P) - c_0}{c_0} = 0.01, 0, -0.005, -0.01, -0.015, -0.02.$$

Для иллюстрации они пересчитаны на соответствующие изменения гидростатического давления с использованием величины объемной сжимаемости $\kappa = 8 \cdot 10^{-3} \Gamma \Pi a^{-1}$ [14]. Заметим, что в кристаллогра-

фически сложных решетках число ближайших соседей z_{ab} атомов сорта b около выделенного атома сорта a в общем случае не совпадает с числом z_{ba} атомов сорта a около выделенного атома сорта b (эти данные, существенные для расчета T_C из уравнений (1), приведены в последней колонке табл. 2). Значения обменных параметров J_{ab} при нулевом давлении P = 0 были получены ранее [6].

Обращает на себя внимание тот факт, что наибольшее по величине ферромагнитное обменное взаимодействие J₁₁ в гантельной паре атомов 6с достигает максимума 287.5 К при нулевом давлении и уменьшается как при всестороннем растяжении решетки, так и при ее сжатии, но не достигает отрицательных антиферромагнитных значений даже при давлении около 7 ГПа. Более того, как правило, все другие парные обменные взаимодействия J_{ab} в рассмотренных интервалах изменений параметров решетки сохраняют тот же положительный знак обменного взаимодействия, который они имели и при нулевом давлении P = 0. Таким образом, в интервале умеренных давлений $P \leq 7$ ГПа все обменные взаимодействия ближайших атомов железа Fe в элементарной ячейке ромбоэдрического Gd₂Fe являются ферромагнитными (за исключением антиферромагнитного обмена J₃₃ < 0 между ближайшими атомами Fe3 в позициях 18f при P = 0).

В то же время характер изменения параметров обмена J_{ab} у разных пар атомов Fe при сжатии в общем неоднозначен и порой немонотонен: у большинства пар атомов при первоначальном сжатии параметр обмена уменьшается, тогда как, например, параметр обмена J₄₄ между атомами железа в позициях 18h внутри гофрированной атомной плоскости, содержащей гексагоны атомов Fe4, при небольшом сжатии сначала возрастает и только при дальнейшем увеличении сжатия начинает уменьшаться. Тем не менее, если подставить в систему уравнений (1) для определения температуры Кюри T_C все необходимые рассчитанные для различных давлений величины (см. табл. 2), то оказывается, что температура Кюри T_C ромбоэдрического Gd_2Fe достаточно монотонно убывает при сжатии решетки и растет при небольшом всестороннем растяжении.

Интересно понять, какие именно факторы влияют на изменение величины обменной энергии $J_{ab}S_aS_b$ при изменении параметров решетки. Предварительно заметим, что авторы работ [7, 21] по расчету параметров прямого обмена рассматривают взаимодействие в рамках гейзенберговской модели с классическими спинами как обменное взаимодействие между спиновыми векторами $\mathbf{e}(\mathbf{i})$ и $\mathbf{e}(\mathbf{j})$ единичной длины ($|\mathbf{e}(\mathbf{i})| = |\mathbf{e}(\mathbf{j})| = 1$). Тогда обменная энергия E_{ij}^{ex} парного взаимодействия таких спиновых векторов имеет вид

$$E_{ij}^{ex} = -\tilde{J}_{ex}(\mathbf{i}, \mathbf{j})\mathbf{e}(\mathbf{i}) \cdot \mathbf{e}(\mathbf{j}) = -\tilde{J}_{ex}(\mathbf{i}, \mathbf{j})\cos\theta_{ij}, \quad (2)$$

где $\tilde{J}_{ex}(\mathbf{ij})$ — эффективный параметр прямого обмена и θ_{ij} — угол между направлениями этих единичных векторов, расположенных в узлах решетки **i** и **j**.

Поскольку полная обменная энергия основного состояния E_{main} является суммой обменных энергий E_{ij}^{ex} таких парных взаимодействий по всем магнитным узлам решетки, вторая производная энергии спинового состояния E_{main} по углу отклонения одного из спинов от параллельного выстраивания других дает величину

$$\left. \frac{\partial^2 E_{main}}{\partial \theta_{ij}^2} \right|_{\theta_{ij} \to 0} = \tilde{J}(\mathbf{i}, \mathbf{j}), \tag{3}$$

т. е. непосредственно дает параметр прямого обмена $\tilde{J}(\mathbf{i}, \mathbf{j})$ между спинами единичной длины $|\mathbf{e}(\mathbf{i})| = 1$ и $|\mathbf{e}(\mathbf{j})| = 1$.

С другой стороны, в рамках метода LSDA+U авторами работ [7,21] разработан метод прямого расчета этой же второй производной по углу отклонения магнитного момента от энергии основного состояния E_{main} , что позволило авторам записать равенство (см. формулы (47)–(49) в работе [7])

$$\tilde{J}(\mathbf{i}, \mathbf{j}) = \sum_{\{m\}} I^{i}_{mm'} \chi^{ij}_{mm'm'm''} I^{j}_{m''m'''}, \qquad (4)$$

где $I_{m,m'}^i$ — спин-зависящий потенциал (*m* нумерует орбитали), а эффективная восприимчивость $\chi_{mm'm''m'''}^{ij}$ выражена через собственные Ψ -приближения LSDA+U:

$$\chi_{mm'm''m'''}^{ij} = \sum_{knn'} \frac{n_{nk\uparrow} - n'_{n'k\downarrow}}{\epsilon_{nk\uparrow} - \epsilon_{n'k\downarrow}} \times \\ \times \Psi_{nk\uparrow}^{ilm*} \Psi_{nk\uparrow}^{jlm''} \Psi_{n'k\downarrow}^{ilm'} \Psi_{n'k\downarrow}^{jlm''*}, \quad (5)$$

n — зонный индекс.

Это предположение также непригодно для описания поведения ферромагнетиков с локализованными моментами под давлением, поскольку эксперименты указывают на изменение величины магнитных моментов при изменении параметров решетки, что означает также изменение величин спиновых векторов, пропорциональных этим моментам.

Поэтому в общем случае обменного взаимодействия между магнитными атомами a и b разной природы энергию парного обмена в классической гейзенберговской модели следует выражать как энергию обмена между двумя магнитными атомами со спиновыми векторами $\mathbf{S}_a(\mathbf{i})$ и $\mathbf{S}_b(\mathbf{j})$ произвольной длины (здесь a и b — индексы сортов атомов, \mathbf{i} и \mathbf{j} — их координаты) в виде

$$E_{ai,bj}^{ex} = -J_{ab}(\mathbf{i}, \mathbf{j}) \mathbf{S}_a(\mathbf{i}) \cdot \mathbf{S}_b(\mathbf{j}) =$$
$$= -J_{ab}(\mathbf{i}, \mathbf{j}) S_a S_b \cos \theta_{ij}. \quad (6)$$

При этом вторая производная энергии основного состояния по углу отклонения спинового вектора равна

$$\frac{\partial^2 E_{main}}{\partial \theta_{ij}^2} \bigg|_{\theta_{ij} \to 0} = J_{ab}(\mathbf{i}, \mathbf{j}) S_a S_b.$$
(7)

Соответственно этому результату при переходе к общему случаю произвольной длины спиновых векторов S_a и S_b равенство (5) должно быть заменено на равенство

$$J_{ab}(\mathbf{i}, \mathbf{j}) S_a S_b = \sum_{\{m\}} I^{ai}_{mm'} \chi^{ai,bj}_{mm'm''m'''} I^{bj}_{m''m'''} \equiv \\ \equiv \Gamma_{ab}(\mathbf{i}, \mathbf{j}) \quad (8)$$

(здесь $\Gamma_{ab}({\bf i},{\bf j})$ — краткое обозначение суммы $\sum_{\{m\}})$ и эффективная восприимчивость $\chi^{ij}_{mm'm''m'''}$ примет вид

$$\chi_{mm'm''m'''}^{ai,bj} = \sum_{knn'} \frac{n_{nk\uparrow} - n'_{n'k\downarrow}}{\epsilon_{nk\uparrow} - \epsilon_{n'k\downarrow}} \times \\ \times \Psi_{nk\uparrow}^{ailm*} \Psi_{nk\uparrow}^{bjlm''} \Psi_{n'k\downarrow}^{ailm'} \Psi_{n'k\downarrow}^{bjlm''*}.$$
(9)

 13^{*}

Вид обменных связей	Γ_{ab}, \mathbf{K} при $P = 0$	Γ_{ab} , К при $(c - c_0)/c_0 =$ = -0.005	$\delta\Gamma_{ab},$ K	$\delta \Gamma^{(1)}_{ab}, \\ \mathbf{K}$	$\delta \Gamma^{(2)}_{ab}, \\ \mathbf{K}$	$\delta \Gamma^{(3)}_{ab}, \\ \mathbf{K}$	$\sum_{\substack{l=1,2,3\\\mathbf{K}}} \delta \Gamma_{ab}^{(l)},$
Fe1–Fe1	344.8	279.3	-65.5	-8.0	-3.8	-59.9	-71.0
Fe4–Fe4	243.0	282.5	39.5	-7.7	-1.3	52.5	43.5
Fe3-Fe4(1)	157.8	148.8	-9.0	-5.5	0.3	-3.8	-9.0
Fe2–Fe4	158.0	117.5	-40.5	-6.5	3.0	-38.0	-41.5
Fe3-Fe4(2)	132.5	121.3	-11.2	-4.5	0.5	-7.5	-11.5
Fe1–Fe4	112.2	97.2	-15.0	-3.0	-2.3	-9.2	-14.5
Fe2–Fe3	106.8	100.5	-6.3	-4.7	3.2	-4.7	-6.2
Fe1–Fe2	103.5	115	11.5	-4.0	1.1	15.0	12.1
Fe1–Fe3	88.0	85.7	-2.3	-2.8	-0.7	1.2	-2.3
Fe3–Fe3	-43.0	16.0	59.0	1.8	-0.3	61.0	62.5

Таблица 3. Расчет вкладов от изменения отдельных физических факторов $\delta\Gamma_{ab}^{(l)}(l = 1, 2, 3)$ в общее изменение энергии обмена (эВ) при $\delta\Gamma_{ab} = \delta(J_{ab}S_aS_B)$ под давлением

Из выражения (8) следует, что параметр прямого обмена $J_{ab}(\mathbf{i}, \mathbf{j})$ между узлами решетки со спинами $S_a(\mathbf{i})$ и $S_b(\mathbf{j})$ равен

$$J_{ab}(\mathbf{i}, \mathbf{j}) = \Gamma_{ab}(\mathbf{i}, \mathbf{j}) / S_a(\mathbf{i}) S_b(\mathbf{j}).$$
(10)

Поскольку расчет методом LSDA+U при заданных параметрах кристаллической решетки дает значение обменной энергии $\Gamma_{ab} = J_{ab}S_aS_b$ (которая, по существу, равняется энергии обменного взаимодействия между парой атомов в состоянии ферромагнитного выстраивания спинов, взятой с противоположным знаком), при изменении межатомных расстояний под давлением будут меняться как обменный параметр J_{ab} , так и величины классических спиновых векторов S_a и S_b. Из соотношений (9) и (10) следует, что такие изменения могут быть связаны как с изменением спин-зависящего потенциала $I^{ai}_{mm'}$, так и с изменением перекрытия волновых функций Ψ и со сдвигом положения собственных энергетических уровней ϵ_{nk} . Поэтому попробуем выяснить, изменения каких факторов наиболее сильно влияют на изменение величины энергии $J_{ab}S_aS_b$.

Для этого учтем, что любая физическая величина $\Phi({\bf r})$ для текущих координат ${\bf r}$ может быть тождественно представлена как

$$\Phi({\mathbf{r}}) = \Phi({\mathbf{r_0}}) + [\Phi({\mathbf{r}}) - \Phi({\mathbf{r_0}})] \equiv \equiv \Phi({\mathbf{r_0}}) + \delta\Phi({\mathbf{r}}), \quad (11)$$

где $\Phi(\{\mathbf{r}_0\})$ — значение этой же физической величины при немного отличающемся исходном наборе координат $\Phi(\{\mathbf{r}\})$, а $\delta\Phi(\{\mathbf{r}_0\}) = \Phi(\{\mathbf{r}\}) - \Phi(\{\mathbf{r}_0\})$ — изменение (конечная разность) величины Φ при изменении исходного набора параметров $\{\mathbf{r}_0\}$ на $\{\mathbf{r}\}$. Тогда изменение под давлением величины $\delta\Gamma_{ab}(\mathbf{i},\mathbf{j}) \equiv$ $\equiv \delta\{J_{ab}(\mathbf{i},\mathbf{j})S_a(\mathbf{i})S_b(\mathbf{j})\}$ в линейном приближении по изменениям факторов, входящих в выражения (9) и (10), может быть представлено как

$$\delta\Gamma_{ab}(\mathbf{i},\mathbf{j}) \approx \delta\Gamma_{ab}^{(1)}(\mathbf{i},\mathbf{j}) + \delta\Gamma_{ab}^{(2)}(\mathbf{i},\mathbf{j}) + \delta\Gamma_{ab}^{(3)}(\mathbf{i},\mathbf{j}), \quad (12)$$

где

$$\delta\Gamma_{ab}^{(1)}(\mathbf{i},\mathbf{j}) = \sum_{\{m\}} [\delta I_{mm'}^{ai} \chi_{mm'm''m'''}^{ai_0,bj_0} I_{m''m'''}^{bj_0} + I_{mm'}^{ai_0} \chi_{mm'm''m'''}^{ai_0,bj_0} \delta I_{m''m'''}^{bj}], \quad (13)$$

$$\delta\Gamma_{ab}^{(2)}(\mathbf{i},\mathbf{j}) = \sum_{\{m\}} I_{mm'}^{ai_0} \sum_{knn'} \left(\frac{n_{nk\uparrow} - n'_{n'k\downarrow}}{\epsilon_{nk\uparrow} - \epsilon_{n'k\downarrow}} \right) \times \\ \times \delta \left\{ \Psi_{nk\uparrow}^{ailm*} \Psi_{nk\uparrow}^{bjlm''} \Psi_{n'k\downarrow}^{ailm'} \Psi_{n'k\downarrow}^{bjlm''*} \right\} I_{m''m'''}^{bj_0}, \quad (14)$$

$$\delta\Gamma_{ab}^{(3)}(\mathbf{i},\mathbf{j}) = \sum_{\{m\}} I_{mm'}^{ai_0} \sum_{knn'} \delta\left(\frac{n_{nk\uparrow} - n'_{n'k\downarrow}}{\epsilon_{nk\uparrow} - \epsilon_{n'k\downarrow}}\right) \times \\ \times \Psi_{nk\uparrow}^{ai_0lm*} \Psi_{nk\uparrow}^{bj_0lm''} \Psi_{n'k\downarrow}^{ai_0lm'} \Psi_{n'k\downarrow}^{bj_0lm''*} I_{m''m'''}^{bj_0}.$$
(15)

Здесь $\{\mathbf{r}_0\}, i_0, j_0$ — координаты атомов при нулевом давлении P = 0, а $\{\mathbf{r}\}, i, j$ — позиции атомов при конечном давлении $P \neq 0$. Видно, что величины $\delta\Gamma_{ab}^{(1)}(\mathbf{i}, \mathbf{j})$ в (13) учитывают только вклад от изменения спин-зависящих потенциалов $\delta I_{mm'}^{ai}$, второй член суммы в (14) учитывает только эффект от изменения перекрытия волновых функций Ψ при включении давления и, наконец, третий вклад в (15) связан только с изменением расположения ветвей энергетического спектра и их сдвигом относительно уровня Ферми. При этом мы пренебрегаем вкладами, пропорциональными перекрестным членам от произведений второго и третьего порядков по изменениям рассматриваемых факторов.

В табл. 3 для всех парных взаимодействий между атомами Fea и Feb в ромбоэдрическом Gd₂Fe (на расстояниях ближайших соседей) приведены результаты точного расчета энергии пары $\Gamma_{ab} = J_{ab}S_aS_b$ для исходных позиций атомов при нулевом давлении P = 0 и для измененных позиций при уменьшении параметров решетки в одном случае на относительную величину $(c - c_0)/c_0 =$ $= (a - a_0)/a_0 = -0.005$ при $P \neq 0$ (что примерно отвечает давлению $P = 1.87 \ \Gamma \Pi a$). Это позволяет вычислить изменение энергии $\delta\Gamma_{ab}$ при таком сжатии решетки и увидеть, что для большинства пар взаимодействующих атомов величина $\delta\Gamma_{ab}$ уменьшается ($\delta \Gamma_{ab} < 0$), хотя у некоторых пар (Fe4–Fe4, Fe1-Fe2 и Fe3-Fe3) она увеличивается. Кроме того, представлены по отдельности вычисления в линейном приближении вкладов в $\delta \Gamma_{ab}$ от изменений спин-зависящих потенциалов $(\delta \Gamma_{ab}^{(1)})$, от изменения перекрытия волновых функций $(\delta \Gamma^{(2)}_{ab})$ и от изменения положения ветвей энергетического спектра $(\delta\Gamma_{ab}^{(3)})$, а также подсчитаны суммы этих трех вкладов $\sum_{l=1,2,3} \delta \Gamma^{(l)}_{ab}$. Видно, что результаты приближенного расчета $\delta\Gamma_{ab}\approx\sum_{l=1,2,3}\delta\Gamma^{(l)}_{ab}$ (последний столбец в табл. 3) и точного расчета $\delta \Gamma_{ab}$ (четвертый столбец в табл. 3) в общем различаются незначительно.

Сравнивая между собой величины вкладов $\delta\Gamma_{ab}^{(l)}$, можно сделать вывод, что, как правило, вклад, $\delta\Gamma_{ab}^{(2)}$, от изменения степени перекрытия волновых функций в общее изменение обменной энергии $\delta\Gamma_{ab}$ пары незначителен и что основной эффект изменения $\delta\Gamma_{ab}$ (т.е. изменения параметра обмена J_{ab} и длин спинов S_a , S_b) связан с изменением положения ветвей энергетического спектра друг относительно друга и относительно уровня Ферми, $\delta\Gamma_{ab}^{(3)}$. Что касается вклада $\delta\Gamma_{ab}^{(1)}$, связанного с изменением спин-зависящих потенциалов I^a и I^b , то для отдельных типов обменных связей (Fe3–Fe4(1), Fe3–Fe4(2), Fe2–Fe3, Fe1–Fe3) он может играть существенную роль, сравнимую с ролью изменения ветвей энергетического спектра $\delta\Gamma_{ab}^{(3)}$.

4. ЗАКЛЮЧЕНИЕ

Для ромбоэдрического ферромагнетика Gd₂Fe методом LSDA+U рассчитано поведение атомных магнитных моментов и параметров обмена в подрешетках атомов железа как при нулевом давлении P = 0, так и при умеренных всесторонних сжатии и расширении кристаллической решетки. Это позволило оценить поведение точки Кюри T_C под давлением для этого соединения в приближении среднего поля.

Оказалось, что, вопреки бытующей гипотезе о конкуренции ферромагнитных и антиферромагнитных взаимодействий между ближайшими атомами Fe в соединениях R₂Fe [2], все обменные взаимодействия между ближайшими атомами Fe, даже в гантельных позициях на кратчайшем межатомном расстоянии, имеют ферромагнитный характер в рассматриваемом диапазоне давлений. При этом выяснилось, что как магнитный момент формульной единицы Gd₂Fe, так и рассчитываемая температура Кюри Т_С уменьшаются при сжатии решетки в соответствии с известным экспериментальным трендом. Наоборот, если бы удалось реализовать гипотетическую возможность всестороннего расширения решетки Gd₂Fe (без привнесения эффектов химического легирования от внедряемых легких элементов), то умеренное, чисто геометрическое расширение решетки дало бы некоторое повышение T_C и увеличение суммарного магнитного момента Gd₂Fe. Таким образом, описание магнитного поведения соединения Gd₂Fe с помощью рассчитанных ферромагнитных обменных параметров, без использования гипотезы о конкуренции обменных связей между ближайшими соседями, дает вполне адекватную картину, не противоречащую эксперименту.

Работа выполнена в рамках темы государственного задания № 0389-2015-0024 и при частичной поддержке проекта РФФИ № 18-02-00281.

ЛИТЕРАТУРА

 X. C. Kou, F. R. de Boer, R. Grossinger, G. Wiesinger, H. Suzuki, H. Kitazawa, T. Takamasu, and G. Kido, J. Magn. Magn. Mater. 177-181, 1002 (1998).

- D. Givord and R. Lemaire, IEEE Trans. Mag. MAG-10(2), 109 (1974).
- H. Sun, J. M. D. Coey, Y. Otani, and D. P. F. Hurley, J. Phys: Condens. Matter 2, 6465 (1990).
- D. Givord, R. Lemaire, J. M. Moreau, and E. Roudaut, J. Less Comm. Met. 29, 361 (1972).
- K. H. J. Buschow, Handbook of the Magnetic Material, Elsevier, Amsterdam (1991), v. 10, p. 463.
- A. V. Lukoyanov, E. E. Kokorina, M. V. Medvedev, and I. A. Nekrasov, Phys. Rev. B 80, 104409 (2009).
- V. I. Anisimov, F. Aryasentiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
- 8. Н. В. Мушников, частное сообщение.
- 9. K. H. J. Buschow, Rep. Progr. Phys. 40, 1179 (1977).
- P. Alvarez-Alonso, P. Gorria, J. A. Blanco, J. Sanchez-Marcos, G. J. Guello, I. Puente-Orench, J. A. Rodriguez-Velamazan, G. Garbarino, I. de Pedro, J. Rodriguez Fernandes, and J. L. Sanchez Llamazares, Phys. Rev. B 86, 184411 (2012).

- 11. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
- V. I. Anisimov and O. Gunnarson, Phys. Rev. B 43, 7570 (1971).
- A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev. Lett. 87, 067205 (2001).
- 14. M. Brouha, K. H. J. Buschew, and A. R. Miedema, IEEE Trans. Mag. MAG-10(2), 182 (1974).
- T. Beuerle and M. Fahnle, J. Magn. Magn. Mater. 159, L318 (1996).
- J. Kamarad, Z. Arnold, and O. Mikulim, High Pres. Res. 22, 171 (2002).
- E. E. Kokorina, M. V. Medvedev, and I. A. Nekrasov, *Ж*ЭТФ **149**, 423 (2016).
- 18. J. Hubbard, Phys. Rev. B 19, 4691 (1979).
- 19. C. S. Wang, R. E. Prange, and V. Korenman, Phys. Rev. B 25, 5766 (1982).
- 20. J. Mathon, Phys. Rev. B 27, 1916 (1983).
- 21. A. I. Lichtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).