КИНЕТИКА ФОРМИРОВАНИЯ НЕУПОРЯДОЧЕННОЙ СТРУКТУРЫ КРИСТАЛЛА ПРИ ВЫСОКОСКОРОСТНОМ ЗАТВЕРДЕВАНИИ

П. К. Галенко^{а,b}, И. Г. Низовцева^{а,b*}, К. Ройтер^{а**}, М. Реттенмайр^{а**}

^a Friedrich–Schiller–Universität Jena D-07743, Jena, Germany

^b Уральский федеральный университет им. первого Президента России Б. Н. Ельцина 620000, Екатеринбург, Россия

Поступила в редакцию 20 февраля 2018 г.

Дано фазово-полевое описание кинетического перехода в структуре бинарного упорядочивающегося кристалла, растущего из переохлажденной жидкости. Интерпретация результатов выполнена на основе решения уравнений динамики фазового поля и релаксации параметра дальнего порядка в диффузной границе кристалл-жидкость и в объеме кристалла. Определены критические температуры изменения скорости и параметра дальнего порядка растущего кристалла $A_{50}B_{50}$. Найдено качественное отличие и определены аналогии в процессах неравновесного захвата примеси и образования неупорядоченной структуры быстро растущих кристаллов. Результаты работы анализируются в сопоставлении с теорией кинетического фазового перехода [А. А. Чернов, ЖЭТФ **53**, 2090 (1967)] и экспериментальными данными по высокоскоростному затвердеванию конгруэнтно плавящихся образцов [Н. Hartmann et al., Europhys. Lett. **87**, 40007 (2009)].

DOI: 10.1134/S0044451018070106

1. ВВЕДЕНИЕ

Переход от структуры дальнего атомного порядка к неупорядоченной структуре с увеличением скорости роста кристалла — известное явление в процессах кристаллизации [1]. Этот переход изучался (i) экспериментально при росте кристаллов из бинарных конгруэнтно плавящихся расплавов [2–4], (ii) теоретически в рамках континуальных феноменологических моделей [5, 6], а также с использованием континуальной атомистической модели роста [7]. В этих исследованиях формирование неупорядоченной решетки кристалла при высокой скорости его роста интерпретируется как «захват беспорядка из жидкости» [5], что терминологически аналогично «захвату вакансий» [8] и «неравновесному захвату примеси» высокоскоростным фронтом [9–12].

Захват беспорядка количественно оценивается параметром дальнего порядка η , который при увеличении движущей силы превращения может резко изменяться с резким изменением скорости роста, что было описано Черновым [13, 14]. Используя метод кооперативных явлений, он показал, что при увеличении отклонения от состояния равновесия существует критическая точка, в которой параметр дальнего порядка резко уменьшается вплоть до нуля, а изменение скорости роста кристалла резко увеличивается. Такой резкий переход, зависящий от параметра неравновесности (от пересыщения/переохлаждения или скорости охлаждения/нагрева), был назван Черновым «кинетическим фазовым переходом». Этот переход обусловлен ограниченной скоростью диффузионного обмена атомов на узлах кристаллической решетки [15].

Кинетический переход является аналогом термодинамического фазового перехода второго рода и может соответствовать аналогам переходов первого рода из устойчивых в метастабильные кристаллические модификации, что подтверждалось результатами моделирования упорядочения на поверхности кристалла [13]. Расширенный анализ кинетики упорядочения, происходящий как на поверхности, так и в объеме кристалла, был выполнен Бренером

^{*} E-mail: nizovtseva.irina@gmail.com

^{**} K. Reuther, M. Rettenmayr

и Темкиным [16, 17]. В их модели предполагалось, что кристаллизация происходит без изменения состава, а упорядочение — переход второго или первого рода. Решение уравнений Бренера и Темкина позволило определить зависимость скорости роста от температуры на фронте кристаллизации и распределение параметра дальнего порядка относительно движущейся границы раздела фаз в диффузной области упорядрочения, распространяющейся от поверхности в объем кристалла. Во всех рассмотренных случаях теория [16,17] предсказала существование критической точки перехода к росту полностью неупорядоченного кристалла. При этом в зависимости от соотношения термодинамических и кинетических параметров кристалла его скорость роста может иметь излом в критической точке или изменяться гладко в окрестности этой точки.

Рост кристалла с упорядочением на фронте и в объеме рассмотрен Бренером и Темкиным непосредственно вблизи точки кинетического перехода [16, 17] при пренебрежимо малой ширине границы кристалл-жидкость по сравнению с протяженностью зоны упорядочения. Анализ начала формирования неупорядочной структуры, когда протяженность зоны упорядочения и ширина диффузной границы кристалл-жидкость имеют сопоставимую величину, по мнению авторов, на настоящее время в литературе отсутствует. В этой связи целью настоящей работы является получение результатов в полном диапазоне скорости диффузной фазовой границы: от малой скорости с формированием суперрешетки упорядоченного кристалла до наивысшей скорости роста с образованием полностью неупорядоченной решетки.

Для решения задачи о росте упорядочивающегося кристалла с двумя диффузными областями в настоящей работе используется теория фазового поля [18, 19], которая позволяет анализировать поведение двух и более параметров порядка, имеющих различную корреляционную длину [20–23]. Для анализа роста кристалла вблизи и вдали от термодинамического равновесия использована модель высокоскоростных фазовых превращений [24].

2. КИНЕТИЧЕСКИЕ УСЛОВИЯ ФОРМИРОВАНИЯ НЕУПОРЯДОЧЕННОЙ СТРУКТУРЫ

При медленном перемещении диффузной границы раздела жидкость-кристалл атомы успевают найти энергетически выгодное положение в узлах кристаллической решетки, которую будем называть суперрешеткой, состоящей из двух подрешеток α и β . Если присоединяющийся к кристаллу атом не успевает найти термодинамически равновесное положение на узлах решетки, то наблюдается явление, называемое захватом беспорядка. Это происходит при высокой скорости роста кристалла, так что атом замуровывается в нарушенной решетке с формированием метастабильной кристаллической фазы. Критерием начала захвата беспорядка является условие, при котором скорость диффузной границы V_{φ} превышает характерную скорость упорядочения $V_{DT} \propto D_{\eta}/\delta_{\eta}$, где D_{η} — коэффициент диффузии, обеспечивающий поиск равновесного положения атомов на решетке в зоне упорядочения шириной δ_{η} . Действительно, если

$$V_{\varphi} > V_{DT},$$

то характерное время $\delta_{\varphi}/V_{\varphi}$ для фазового превращения на участке протяженностью диффузной границы δ_{φ} становится меньше времени δ_{η}^2/D_{η} , необходимого для полного упорядочения, поэтому захват беспорядка происходит при скорости

$$V > D_{\eta} / \delta_{\eta}$$

на интервалах времени

$$\delta_{\varphi}/V_{\varphi} < \delta_{\eta}^2/D_{\eta} = \delta_{\eta}/V_{DT}.$$

Из этих условий следует, что критическая скорость для захвата беспорядка V_{DT} уменьшается, если увеличивается отношение ширины зоны упорядочения δ_{η} и протяженности диффузной границы между фазами δ_{φ} , т. е. при

$$V_{DT} < \frac{\delta_{\eta}}{\delta_{\varphi}} V_{\varphi}.$$
 (1)

Из неравенства (1) следует, что

(а) захват беспорядка происходит интенсивнее при увеличении скорости диффузной границы V_{φ} и при уменьшении протяженности диффузной границы δ_{φ} ;

(б) уменьшение ширины зоны упорядочения приводит к повышению критической скорости для начала захвата беспорядка. Условия формирования упорядоченной решетки и ее разупорядочения за счет захвата беспорядка показаны на рис. 1.

3. ОПРЕДЕЛЕНИЯ

3.1. Основные функции

Рассмотрим бинарную смесь, состоящую из атомов A и B. Для заданной температуры T основные функции модели определяются как

Рис. 1. Относительное положение профиля фазового поля φ и профиля параметра дальнего порядка η : a — полностью упорядоченный кристалл при медленном движении границы раздела жидкость-кристалл. Область упорядочения короче, чем протяженность размытой фазовой границы, $\delta_{\eta} < \delta_{\varphi}$; δ — начало формирования области разупорядочения в кристалле, $\delta_{\eta} > \delta_{\varphi}$; e — зона беспорядка распространяется в глубь кристалла при высокой скорости границы раздела жидкость-кристалл, $\delta_{\eta} \gg \delta_{\varphi}$; e — полный захват беспорядка из жидкости при высокоскоростном росте кристалла, $\delta_{\eta} \to \infty$

— фазовое поле φ для нахождения фазового состояния: $\varphi = 1$ относится к твердой S-фазе и $\varphi = 0$ принадлежит жидкой L-фазе;

— непрерывная во всем объеме концентрация *B*-атомов x_B , которая в *S*-фазе вычисляется как $x_i^j =$ $= n_i^j/(n_A^j + n_B^j)$, где n_i^j — число молей атомов i(i = A, B) на подрешетке j $(j = \alpha, \beta)$;

— параметр дальнего порядка η , который определяется через концентрацию $x_i^j = (x_A^{\alpha}, x_A^{\beta}, x_B^{\alpha}, x_B^{\beta})$ на α - и β -подрешетках как

$$\eta = x_A^\alpha - x_A^\beta = x_B^\beta - x_B^\alpha. \tag{2}$$

Здесь полный порядок на подрешетке соответствует $\eta = 1$, а полный беспорядок определяется как $\eta = 0$. В результате формирования полностью упорядоченных α - и β -подрешеток образуется суперрешетка бинарного кристалла. Концентрации атомов A и B в твердой фазе S на подрешетках есть

$$x_A^{\alpha} = 1 - x_B - \frac{\eta}{2}, \quad x_B^{\alpha} = x_B - \frac{\eta}{2},$$
 (3)

$$x_A^{\beta} = 1 - x_B + \frac{\eta}{2}, \quad x_B^{\beta} = x_B + \frac{\eta}{2}.$$
 (4)

3.2. Свободная энергия Гиббса

3.2.1. Полная система

Свободная энергия Гиббса для полной термодинамической системы записывается в виде

$$G(\varphi, \nabla\varphi, \eta, \nabla\eta, x_B) = G_S(x_B, \eta)p(\varphi) + G_L(x_B)p(1-\varphi) + \frac{\varepsilon_{\varphi}}{2}(\nabla\varphi)^2 + \frac{\varepsilon_{\eta}}{2}(\nabla\eta)^2 + W_{\varphi}g_{\varphi}(\varphi) + W_{\eta}g_{\eta}(\eta).$$
(5)

В уравнении (5) функции «двойной стенки» g_{φ} для фазового поля φ и g_{η} для параметра дальнего порядка η разделяют два состояния (жидкость и кристалл, порядок и беспорядок) соответственно через барьеры W_{φ} и W_{η} . Они имеют вид

$$g_{\varphi}(\varphi) = \varphi^2 (1-\varphi)^2, \quad g_{\eta}(\eta) = \eta^2 (1-\eta)^2.$$
 (6)

Свободная энергия Гиббса интерполируется между фазами *S* и *L* при помощи функции

$$p(\varphi) = \varphi^2 (3 - 2\varphi). \tag{7}$$

3.2.2. Энергии фаз

Свободная энергия жидкой L-фазы

$$G_L(T, x_B) = (1 - x_B)G_L^A(T) + x_B G_L^B(T), \quad (8)$$

$$G_L^A(T, x_B) = G_L^{0A}(T) + RT \ln(1 - x_B) + x_B \Omega_L, \quad (9)$$

$$G_L^B(T, x_B) = G_L^{0B}(T) + RT \ln(x_B) + (1 - x_B)\Omega_L, \quad (10)$$

определяется вкладами от компонентов i = A, B при их идеальном смешении $RT \ln x_i$ с дополнительной энергией смешения $x_i\Omega_L$. В твердой S-фазе свободная энергия Гиббса имеет дополнительный вклад, относящийся к параметру дальнего порядка:

$$G_{S}(T, x_{B}, \eta) = G_{S}^{ref}(T, x_{B}) + G_{S}^{id}(T, x_{B}, \eta) + G_{S}^{ex}(x_{B}, \eta).$$
(11)

В настоящей работе примем, что L-фаза преобразуется в объемно-центрированную кубическую решетку S-фазы. Тогда свободная энергия Гиббса (11) определяется

вкладом от химических элементов А и В

$$G_{S}^{ref}(T, x_{B}) = (1 - x_{B})G_{A}^{bcc}(T) + x_{B}G_{B}^{bcc}(T); \quad (12)$$

вкладом от идеального смешения А и В

$$G_S^{id}(T, x_B, \eta) = \frac{1}{2} RT \left(\left(x_B - \frac{\eta}{2} \right) \ln \left(x_B - \frac{\eta}{2} \right) + \left(x_B + \frac{\eta}{2} \right) \ln \left(x_B + \frac{\eta}{2} \right) + \left(1 - x_B - \frac{\eta}{2} \right) \times \\ \times \ln \left(1 - x_B - \frac{\eta}{2} \right) + \left(1 - x_B + \frac{\eta}{2} \right) \times \\ \times \ln \left(1 - x_B + \frac{\eta}{2} \right) \right)$$
(13)

и вкладом от дополнительной энергии смешения (в результате взаимодействия *A* и *B*)

$$G_{S}^{ex}(x_{B},\eta) = \Omega_{2} \left(x_{B}(1-x_{B}) + \frac{\eta^{2}}{4} \right) + \Omega_{3}\eta^{3} + \Omega_{4}\eta^{4}.$$
 (14)

4. УРАВНЕНИЯ ДВИЖЕНИЯ

Используя модель высокоскоростных фазовых превращений [24], запишем постановку задачи в ви-

де системы гиперболических уравнений для выбранных полевых функций φ , x_B и η . Уравнения получены при условии не уменьшающейся во времени энтропии, что эквивалентно условию неувеличения свободной энергии во времени для изотермического фазового превращения [25]. Принимая свободную энергию Гиббса из разд. 3.2, запишем релаксационные уравнения в виде

$$\tau_{\varphi}\frac{\partial^2\varphi}{\partial t^2} + \frac{\partial\varphi}{\partial t} = -M_{\varphi}\frac{\delta G}{\delta\varphi} \tag{15}$$

— фазовое поле

$$\tau_{\eta} \frac{\partial^2 \eta}{\partial t^2} + \frac{\partial \eta}{\partial t} = -M_{\eta} \frac{\delta G}{\delta \eta} \tag{16}$$

параметр дальнего порядка

$$\tau_D \frac{\partial^2 x_B}{\partial t^2} + \frac{\partial x_B}{\partial t} = \nabla \cdot (M_x \nabla \mu_B), \quad \mu_B = \frac{\delta G}{\delta x_B} \quad (17)$$

— концентрация и химический потенциал.

Гиперболические уравнения (15)-(17) являются уравнениями затухающих волн и обобщают известное параболическое уравнение Мандельштама и Леонтовича [26, 27] (также известное как зависящее от времени уравнение Гинзбурга-Ландау [27, 28] или уравнение Аллена-Кана [29]). Уравнения гиперболического типа (15)-(17) применялись для анализа немонотонной релаксации параметра порядка в жидкости [30, 31] и фазового распада [32] и проанализированы в контексте высокоскоростной динамики переходов из метастабильных и неустойчивых состояний [33]. Область применения моделей с уравнениями гиперболического типа (15)–(17) определена сравнением с экспериментальными данными [34] при атомистическом моделировании неравновесного захвата примеси [35], а также при выводе уравнений фазового поля методом грубозеренного усреднения [36].

4.1. Фазовое поле

Релаксация фазового поля по уравнению (15) с учетом энергетических вкладов (5)–(14) описывается как

$$\frac{\tau_{\varphi}}{M_{\varphi}} \frac{\partial^2 \varphi}{\partial t^2} + \frac{1}{M_{\varphi}} \frac{\partial \varphi}{\partial t} = \varepsilon_{\varphi} \nabla^2 \varphi - W_{\varphi} \frac{dg_{\varphi}(\varphi)}{d\varphi} - \\ - \left[(1 - x_B) G_A^{bcc} + x G_B^{bcc} + \frac{RT}{2} \left(\left(x_B - \frac{\eta}{2} \right) \times \right) \right] \\ \times \ln \left(x_B - \frac{\eta}{2} \right) + \left(x_B + \frac{\eta}{2} \right) \ln \left(x_B + \frac{\eta}{2} \right) + \\ + \left(1 - x_B - \frac{\eta}{2} \right) \ln \left(1 - x_B - \frac{\eta}{2} \right) + \left(1 - x_B + \frac{\eta}{2} \right) \\ \times \ln \left(1 - x_B + \frac{\eta}{2} \right) \right) + \Omega_2 \left(x_B (1 - x_B) + \frac{1}{4} \eta^2 \right) + \\ + \Omega_3 \eta^3 + \Omega_4 \eta^4 \frac{dp(\varphi)}{d\varphi} - \\ - \left((1 - x_B) \left(G_L^{0A} + RT \ln(1 - x_B) + x_B \Omega_L \right) + \\ + x_B \left(G_L^{0B} + RT \ln(x_B) + (1 - x_B) \Omega_L \right) \right) \frac{dp(\varphi)}{d\varphi}.$$
(18)

При отсутствии процесса упорядочения, т.е. при $\eta = 0$, уравнение (18) преобразуется к виду, полученному в работах [24, 25].

4.2. Параметр дальнего упорядочения

Атомный порядок на α - и β -подрешетках определяется функцией η (параметром дальнего порядка) и описывается уравнением (16) совместно со свободной энергией (5)–(14):

$$\frac{\tau_{\eta}}{M_{\eta}} \frac{\partial^2 \eta}{\partial t^2} + \frac{1}{M_{\eta}} \frac{\partial \eta}{\partial t} = \varepsilon_{\eta} \nabla^2 \eta - W_{\eta} \frac{dg_{\eta}(\eta)}{d\eta} - \left[\frac{RT}{2} \left(-\frac{1}{2} \ln\left(x_B - \frac{\eta}{2}\right) + \frac{1}{2} \ln\left(x_B + \frac{\eta}{2}\right) - \frac{1}{2} \ln\left(1 - x_B - \frac{\eta}{2}\right) + \frac{1}{2} \ln\left(1 - x_B + \frac{\eta}{2}\right)\right) + \frac{1}{2} \Omega_2 \eta + 3\Omega_3 \eta^2 + 4\Omega_4 \eta^3 \right] p(\varphi).$$
(19)

Как следует из уравнения (19), процесс атомного упорядочения имеет связь с фазовым полем через интерполяционную функцию $p(\varphi)$.

4.3. Диффузия атомов

Химический потенциал из уравнения (17) определяется вариационной производной

$$\mu_{B} = \frac{\delta G}{\delta x_{B}} = \left[G_{B}^{bcc} - G_{A}^{bcc} + \frac{RT}{2} \left(\ln \left(x_{B} - \frac{\eta}{2} \right) + \ln \left(x_{B} + \frac{\eta}{2} \right) - \ln \left(1 - x_{B} - \frac{\eta}{2} \right) - \ln \left(1 - x_{B} + \frac{\eta}{2} \right) \right) + \Omega_{2} (1 - 2x_{B}) \right] p(\varphi) + \left[G_{L}^{0B} - G_{L}^{0A} + RT \{ \ln(x_{B}) - \ln(1 - x_{B}) \} + 2(1 - 2x_{B}) \Omega_{L} \right] p(1 - \varphi). \quad (20)$$

Мобильность M_x в уравнении диффузии (17) интерполируется мобильностью в жидкости M_L и в твердой фазе M_S как

$$M_x = M_L (1 - p(\varphi)) + M_S(\eta) p(\varphi),$$

$$M_S(\eta) = M_S^{disorder} (1 - \eta) + M_S^{order} \eta.$$
(21)

В результате из уравнения (21) следует, что мобильность $M_S(\eta)$ в твердой фазе зависит от мобильности атомов M_S^{order} и $M_S^{disorder}$ соответственно в упорядоченном и неупорядоченном состояниях.

5. ПАРАМЕТРЫ МАТЕРИАЛА И РЕШЕНИЕ УРАВНЕНИЙ МОДЕЛИ

Пространственное распределение упорядоченного и неупорядоченного состояний определялось численным решением уравнений диффузии (17), (20) и (21), динамики фазового поля (18) и параметра дальнего упорядочения (19). Термодинамические и кинетические свойства выбирались для конгруэнтно плавящегося сплава $A_{50}B_{50}$ и они приведены в таблице. Стандартные функции Гиббса $G_L^{0A}(T)$, $G_L^{0A}(T)$, $G_A^{bcc}(T)$ и $G_B^{bcc}(T)$ в уравнениях (8)–(10) и (12) выбраны из термодинамической базы данных элементов (CALPHAD) для сплава $Ni_{50}Al_{50}$ [37,38].

Для решения системы уравнений (17)-(21) была выбрана конечно-разностная численная схема, включающая аппроксимацию второго порядка малости для производных по времени и пространству на основе явного метода. Исходное распределение концентрации выбиралось однородным, $x_B = 0.5$, а фазовое поле φ и параметр дальнего порядка η принимались единицами в твердой фазе и нулями в жидкой фазе, связанными непрерывным переходом через диффузную границу шириной 11 узлов вычислительной сетки между фазами. Граничные условия были следующими: «типа Дирихле» на границе расчетной области, от которой двигалась диффузная граница раздела фаз, и «типа фон Неймана» (условие нулевого потока) на границе области, к которой граница фаз перемещалась.

Параметр	Величина	Источник	
Концентрация $A(B), x_B$	0.5 мол. доли	Настоящая работа	
η -показатель релаксации времени, τ_η	$4 \cdot 10^{-8} c$	Настоящая работа	
φ -показатель релаксации времени, τ_{φ}	$4 \cdot 10^{-11} c$	Настоящая работа	
x_B -показатель релаксации времени, τ_D	$4 \cdot 10^{-10} c$	Настоящая работа	
Мобильность η -поля, M_{η}	$8 \cdot 10^4$ моль·Дж ⁻¹ ·c ⁻¹	Настоящая работа	
Мобильность φ -поля, M_{φ}	$4 \cdot 10^5$ моль·Дж ⁻¹ ·c ⁻¹	Настоящая работа	
Мобильность B -атомов в L -фазе, M_L	$2 \cdot 10^{-8}$ моль·м ² · Дж ⁻¹ ·с ⁻¹	Настоящая работа	
Мобильность <i>B</i> -атомов в неупорядоченном состоянии, $M_S^{disorder}$	$7 \cdot 10^{-11}$ моль·м ² · Дж ⁻¹ ·с ⁻¹	Настоящая работа	
Мобильность <i>В</i> -атомов в упорядоченном состоянии, <i>M</i> ^{order}	$9 \cdot 10^{-12}$ моль·м ² · Дж ⁻¹ ·с ⁻¹	Настоящая работа	
Градиентный множитель для η -поля, ε_η	$1.4 \cdot 10^{-13}$ Дж·м ² ·моль ⁻¹	Настоящая работа	
Градиентный множитель для φ -поля, ε_{φ}	$5.5 \cdot 10^{-12}$ Дж·м ² ·моль ⁻¹	Настоящая работа	
Энергетический барьер между состояниями в <i>η</i> -поле, W _η	$2.5 \cdot 10^3$ Дж·моль ⁻¹	Настоящая работа	
Энергетический барьер между состояниями в <i>φ</i> -поле, <i>W</i> _φ	$4.5 \cdot 10^3$ Дж·моль ⁻¹	Настоящая работа	
1-й термодинамический параметр, Ω_2	$-2 \cdot 10^3 R$ Дж·моль ⁻¹	[5]	
2-й термодинамический параметр, Ω_3	$-1.225 \cdot 10^6 R \ Дж \cdot моль^{-1}$	Настоящая работа	
3-й термодинамический параметр, Ω_4	$-5.662 \cdot 10^2 R$ Дж·моль ⁻¹	[5]	
4-й термодинамический параметр, Ω_L	$-1.72 \cdot 10^4$ Дж·моль ⁻¹	[5]	

Таблица.	Физические па	араметры	сплава A_{50} Е	\mathbf{S}_{50} , использован	ные при вы	ычислениях в	модели	фазового	поля
----------	---------------	----------	-------------------	---------------------------------	------------	--------------	--------	----------	------

Численное решение уравнений (17)–(21) выполнено в одномерном пространстве. При достижении квазистационарного (автомодельного) режима высокоскоростного затвердевания выполнялись усреднения для скорости фазового поля V_{φ} и параметра дальнего порядка η . За положение z_f межфазной границы жидкость–кристалл обычно принимают координату при $\varphi(z_f) = 0.5$. В настоящей работе примем, что координата

$$z_f = \int_{-\infty}^{\infty} \varphi(z') \, dz'$$

определяет положение резкой границы внутри симметричного профиля фазового поля диффузной границы, что позволяет найти скорость границы квазистационарного профиля. Для этого суммируются положения границы z_f^n на временных интервалах t^n после некоторого фиксированного количества временных шагов, которое в настоящей работе принималось равным n=2000,а скорость V_{φ} находилась как

$$V_{\varphi}^{n} = \frac{z_{f}^{n} - z_{f}^{n-1}}{t^{n} - t^{n-1}}.$$

После достижения устойчивого квазистационарного режима скорость границы $V_{\varphi}^{(avg)}$ окончательно рассчитывалась усреднением последних десяти значений скорости V_{φ}^{n} . Среднее значение параметра дальнего порядка $\eta^{(avg)}$ в твердой фазе непосредственно за координатой z_{f} границы раздела определялось как среднее значение по 11 узлам вычислительной сетки (т. е. на интервале протяженностью 10 пространственных интервалов).

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Захват беспорядка высокоскоростным фронтом и нарушение суперрешетки кристаллической фазы количественно оценивается как $\eta < 1$. Рисунок 2 показывает зависимость параметра дальнего поряд-

9 ЖЭТФ, вып. 1 (7)

Рис. 2. Скорость роста кристалла V и параметр дальнего порядка η как функции температуры T, отсчитываемой от равновесной температуры сосуществования кристалла и жидкости V = 0. Область 1 характеризует «плавление». Область 2 относится к «медленному росту полностью упорядоченного кристалла». Область 3 описывает «рост неупорядоченного кристалла». Область 4 характеризует «рост с полным захватом беспорядка». Переход к полностью неупорядоченному росту с понижением температуры указан стрелкой как «кинетический фазовый переход» в структуре кристалла

ка η и скорости диффузной границы раздела фаз V от температуры T при квазистационарном росте кристалла. Данная зависимость в полном температурном интервале роста упорядоченного и неупорядоченного кристаллов может быть разделена на четыре участка различного поведения функций $\eta(T)$ и V(T).

6.1. Рост упорядочивающегося кристалла

Область 1 (рис. 2) относится к плавлению и характеризуется отрицательной скоростью кристалла, $V(T \ge 703.5 \text{ K}) < 0$, при сохранении полного упорядоченного состояния на поверхности и в объеме плавящегося кристалла, $\eta(T \ge 703.5 \text{ K}) = 1$. При температуре T = 703.5 K жидкость и кристалл находятся в состоянии равновесия. В области 2 (рис. 2) происходит рост упорядоченного кристалла, V(698 K < T < 703.5 K) > 0 и $\eta(698 \text{ K} < T \le$ $\leq 703.5 \text{ K}) = 1$, из-за того, что процесс упорядочения происходит быстрее, чем диффузная граница фаз проходит зону упорядочения δ_{η} (рис. 1*a*). В этом случае для диффузионных перескоков атомов на узлах кристаллической решетки имеется достаточно времени для нахождения атомами энергетически выгодного положения и формирования суперрешетки благодаря малой скорости роста кристалла.

6.2. Рост неупорядоченного кристалла

С понижением температуры в интервале 695 К < $< T \le 698$ К происходит переход из области роста упорядоченного кристалла в область 3 (рис. 2) интенсивного захвата беспорядка. Время кристаллизации зоны упорядочения становится меньше, чем время самого упорядочения, а область упорядочения имеет теперь протяженность большую, чем протяженность диффузной границы раздела фаз, $\delta_{\eta} > \delta\varphi$ (рис. 16). Происходит захват беспорядка из жидкости, $0 < \eta < 1$, с увеличением интенсивности кинетики роста кристалла. Это происходит из-за формирования кристаллической решетки без полного упорядочения, т. е. затраты энергии, которые необходимы для построения суперрешетки, уменьшаются.

6.3. Кинетический переход

Увеличение захвата беспорядка (рис. 16) происходит вплоть до критической температуры T == 695 К, при которой параметр дальнего порядка резко убывает вплоть до нуля, а скорость роста кристалла имеет излом, проиллюстрированный переходом из области 3 в область 4 (рис. 2). Согласно определению [13–17], переход, происходящий при критическом отклонении от состояния равновесия (т. е. при фиксированном переохлаждении или пересыщении), называется «кинетическим переходом». В настоящих расчетах этот переход происходит при переохлаждении $\Delta T(K) = 703.5 \text{ K} - 695 \text{ K} = 8.5 \text{ K}.$ Таким образом, несмотря на аналогию с термодинамическим переходом при критической температуре (например, с переходом при температуре Кюри), кинетический переход происходит резко и при критическом значении неравновесного параметра — отклонения от равновесной температуры сосуществования фаз. На рис. 2 показано, что кинетический переход происходит от интенсивного образования беспорядочной структуры в интервале 695 К < T \leq \leq 698 К к полному захвату беспорядка при T== 698 К с резким увеличением скорости межфазной границы. Такое поведение впервые описано Черновым [13] в рамках атомистической модели бинарного кристалла и далее развито Бренером и Темкиным в рамках модели Гинзбурга-Ландау для описания упорядочения и модели резкой границы для росто-

Рис. 3. Изменение параметра дальнего порядка в интервале температуры $694~{\rm K} \le T \le 695~{\rm K},$ что соответствует выделенной области на рис. 2

вой кинетики [16, 17]. В заключение этого раздела специально отметим, что из-за выбора резкой границы жидкость-кристалл в моделях Чернова, Бренера и Темкина [9,10] кинетический фазовый переход происходит при строго определенной фиксированной температуре. В настоящей работе ввиду описания роста с диффузной границей кинетический переход наблюдается в узком интервале температур 1.0–1.5 K (рис. 3).

6.4. Полный захват беспорядка

Область 4 соответствует полному захвату беспорядка при T < 695 К (рис. 1*г*). Эта область характеризуется увеличением интенсивности роста кристалла. Сравнивая начало интенсивного захвата при T = 698 K и начало полного захвата беспорядка из жидкости при T = 695 К (вертикальная штриховая линия, разделяющая области 3 и 4 на рис. 2), заметим, что (*i*) переход от полного упорядочения к неупорядоченной структуре кристалла, так же как и (*ii*) переход от интенсивного захвата беспорядка к формированию полностью неупорядоченной структуры кристалла, приводит к увеличению скорости роста. Это увеличение происходит из-за уменьшения энергии, затрачиваемой на построение структуры суперрешетки (в случае (i)), и при отсутствии затрат энергии на построение суперрешетки, т.е. на формирование упорядоченной кристаллической структуры (в случае (*ii*)).

6.5. Сравнение с предыдущими выводами теории и экспериментальными данными

Полученные результаты решения уравнений фазового поля (15)–(17) (которые с учетом энергетических вкладов (5)–(14) имеют вид (18)–(20)) подтверждают ранее найденное Черновым [13], а также Бренером и Темкиным [16, 17], появление излома в скорости роста при фиксированном отклонении от равновесной температуры перехода и увеличение изменения скорости ниже этой критической точки.

Специально отметим, что в настоящей работе приводятся данные моделирования с параметрами конгруэнтно плавящегося сплава А₅₀В₅₀ и стандартными функциями Гиббса $G_L^{0A}(T),\,G_L^{0A}(T),\,G_A^{bcc}(T)$ и $G_B^{bcc}(T)$, выбранными для сплава Ni₅₀Al₅₀ (см. таблицу и разд. 5). Это позволяет сравнить начало и окончание процесса захвата беспорядка с результатами других работ только качественно. Действительно, скачкообразные изменения параметра дальнего порядка происходят в интервале температур 690 К $\lesssim T(K) \lesssim$ 700 К, в котором скорость контролируемых диффузией процессов очень мала для сплава Ni₅₀Al₅₀. Таким образом, для количественного сравнения результатов настоящего моделирования с данными экспериментов по превращениям в конкретных сплавах должен быть сделан специальный выбор термодинамических и кинетических параметров, а также учтена неизотермичность процесса, как это было сделано, например, при описании дендритной кристаллизации с захватом беспорядка или захватом примеси на основе теории роста с резкой границей [3, 39, 40].

В дополнение к этому сравним кинетику роста кристаллов при неравновесном захвате примесного компонента [9,10] и, как обсуждается в настоящей работе, при захвате беспорядка из жидкости. В начале интенсивного захвата примеси с формированием химически метастабильной структуры кристалла резко увеличивается скорость затвердевания [11]. Начало интенсивного образования разупорядоченной структуры при T = 695 К также характеризуется увеличением скорости (рис. 2), в чем можно, действительно, обнаружить аналогию с кинетикой роста в начале интенсивного захвата беспорядка. Однако окончание неравновесного захвата примеси с переходом к бездиффузионному росту и кинетический переход при росте различны при окончании действия этих эффектов. Как следует из результатов экспериментов и теоретических расчетов [41], начало полного захвата примеси характеризуется уменьшением скорости роста кристаллов. Это происходит из-за уменьшения до нуля концентрационного переохлаждения в общем балансе переохлаждений [39], что и приводит к уменьшению движущей силы скорости роста кристаллов. В противоположность этому, скорость роста в точке кинетического перехода резко увеличивается из-за прекращения энергетических затрат на построение суперрешетки. Очевидно, процесс упорядочения требует определенных временных и энергетических затрат и потому замедляет рост кристалла и, если для упорядочения недостаточно времени из-за высокой скорости роста, изменение скорости роста увеличивается (сравните сплошную и пунктирную линии при температуре ниже критической в области 4 на рис. 2). В этом состоит отличие процесса захвата примесных атомов от процесса захвата беспорядка, хотя оба этих неравновесных процесса приводят в результате к образованию метастабильных фаз в объеме кристаллов [7,40].

7. ВЫВОДЫ

1. С помощью модели фазового поля для высокоскоростных фазовых превращений [24] выполнены расчеты и анализ интенсивного роста бинарного упорядочивающегося кристалла типа A₅₀B₅₀. Уравнения модели и их численные решения использованы для описания динамики фазового поля и кинетики изменения параметра дальнего порядка в диффузной границе жидкость-кристалл и в объеме кристалла.

2. Сформулированы качественные условия и аналитические критерии образования упорядоченной суперрешетки при низкоскоростном росте и неупорядоченной решетки кристалла при высокоскоростном росте кристалла с диффузной границей между фазами.

3. Обнаружено два резких изменения в кинетике роста упорядочивающегося кристалла. Первое изменение происходит, когда параметр дальнего порядка в диффузной границе раздела фаз и в объеме кристалла становится меньше единицы, $0 < \eta < 1$, т. е. при температуре начала неравновесного захвата беспорядка из жидкости. В этом случае скорость роста кристалла изменяется интенсивнее с понижением температуры, чем в области температур, соответствующих низкоскоростному росту кристалла с формированием суперрешетки. Это первое изменение в кинетике роста кристалла обусловлено началом уменьшения энергетических затрат на построение суперрешетки. Второе изменение ростовой кинетики происходит при критической температуре, соответствующей началу полного захвата беспорядка из жидкости. В этой критической точке происходит «кинетический переход» [13] к росту полностью неупорядоченной структуры кристалла, $\eta = 0$, с резким увеличением его скорости. Это второе изменение обусловлено прекращением энергетических затрат на построение суперрешетки.

4. Полученные результаты и выводы настоящей работы согласуются с теорией кинетического фазового перехода Чернова [13], моделью Бренера–Темкина [16, 17] и экспериментальными данными Хартманн с соавторами [3] по неравновесному росту упорядочивающихся кристаллов.

Работа выполнена при финансовой поддержке РНФ (проект № 16-11-10095).

ЛИТЕРАТУРА

- А. А. Чернов, Современная кристаллография, том 3. Образование кристаллов, Наука, Москва (1980).
- M. Barth, B. Wei, and D. M. Herlach, Phys. Rev. B 51, 3422 (1995).
- H. Hartmann, D. Holland-Moritz, P. K. Galenko, and D. M. Herlach, Europhys. Lett. 87, 40007 (2009).
- 4. C. Yang and J. Gao, J. Cryst. Growth 394, 24 (2014).
- W. J. Boettinger and M. J. Aziz, Acta Metall. 37, 3379 (1989).
- 6. H. Assadi, Acta Mater. 55, 5225 (2007).
- X. Q. Zhang, Y. Yang, Y. F. Gao, J. J. Hoyt, M. Asta, and D. J. Sun, Phys. Rev. B 85, 041601 (2012).
- V. V. Voronkov and R. Falster, J. Electrochem. Soc. 149(3), G167 (2002).
- В. В. Воронков, А. А. Чернов, Кристаллография 12(2), 222 (1967).
- 10. M. Aziz and T. Kaplan, Acta Metall. 36, 2335 (1988).
- K. Eckler, R. F. Cochrane, D. M. Herlach, B. Feuerbacher, and M. Jurisch, Phys. Rev. B 45, 5019 (1992).
- 12. P. Galenko, Phys. Rev. E 76, 031606 (2007).
- **13**. А. А. Чернов, ЖЭТФ **53**, 2090 (1967).
- 14. А. А. Чернов, УФН 100, 277 (1968).
- 15. Д. Е. Темкин, Кристаллография 15, 884 (1970).

- Е. А. Бренер, Д. Е. Темкин, Кристаллография 28, 18 (1983).
- Е. А. Бренер, Д. Е. Темкин, Кристаллография 28, 244 (1983).
- 18. W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma, Ann. Rev. Mater. Res. 43, 89 (2002).
- I. Singer-Loginova and H. M. Singer, Rep. Progr. Phys. 71, 106501 (2008).
- 20. N. Moelans, B. Blanpain, and P. Wollants, Phys. Rev. B 78, 024113 (2008).
- A. Choudhury, M. Plapp, and B. Nestler, Phys. Rev. E 83, 051608 (2011).
- 22. I. Steinbach, Ann. Rev. Mater. Res. 43, 89 (2013).
- 23. L. Gránásy, L. Ratkai, A. Szallas, B. Korbuly, G. I. Tóth, L. Kornyei, and T. Pusztai, Metal. Mater. Trans. A 45, 1694 (2014).
- 24. P. Galenko and D. Jou, Phys. Rev. E 71, 046125 (2005).
- 25. V. Lebedev, A. Sysoeva, and P. Galenko, Phys. Rev. E 83, 026705 (2011).
- 26. Л. И. Мандельштам, М. А. Леонтович, ЖЭТФ 7, 438 (1937).
- 27. А. З. Паташинский, В. Л. Покровский, Флуктуационная теория фазовых переходов, Наука, Москва (1982).
- 28. Е. М. Лифшиц, Л. П. Питаевский, Физическая кинетика, Наука, Москва (1979).

- 29. S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).
- 30. V. I. Lad'yanov, M. G. Vasin, S. V. Logunov, and V. P. Bovin, Phys. Rev. B 62, 12107 (2000).
- 31. M. G. Vasin and V. I. Ladianov, Phys. Rev. E 68, 051202 (2003).
- 32. П. К. Галенко, В. Г. Лебедев, Письма в ЖЭТФ 86(7), 525 (2008).
- 33. P. Galenko, D. Danilov, and V. Lebedev, Phys. Rev. E 79, 051110 (2009).
- 34. P. K. Galenko and D. M. Herlach, Phys. Rev. Lett. 96, 150602 (2006).
- 35. Y. Yang, H. Humadi, D. Buta, B. B. Laird, D. Sun, J. J. Hoyt, and M. Asta, Phys. Rev. Lett. 107, 025505 (2011).
- 36. D. Jou and P. Galenko, Phys. Rev. E 88, 042151 (2013).
- 37. A. T. Dinsdale, CALPHAD 15(4), 317 (1991).
- M. H. Rand, I. Ansara, and A. T. Dinsdale, Thermochemical Database for Light Metal Alloys, European Report EUR 18499en, COST 507, Vol. 2 (1998).
- 39. P. K. Galenko and D. A. Danilov, Phys. Lett. A 235, 271 (1997).
- 40. H. Hartmann, P. K. Galenko, D. Holland-Moritz, M. Kolbe, D. M. Herlach, and O. Shuleshova, J. Appl. Phys. 103, 0735091 (2008).
- D. M. Herlach, P. K. Galenko, and D. Holland-Moritz, Metastable Solids from Undercooled Melts, Elsevier, Amsterdam (2007).