МИКТОМАГНИТНОЕ СОСТОЯНИЕ В МОНОКРИСТАЛЛЕ $EuBaCo_{2-x}O_{5.5-\delta}$

Т. И. Арбузова, С. В. Наумов^{*}, С. В. Телегин, А. В. Королев

Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

Поступила в редакцию 24 ноября 2017 г.

Исследованы магнитные свойства монокристалла ${
m EuBaCo_{1.9}O_{5.36}}$ в температурной области $T=2 ext{-}300$ K и в магнитных полях $H \leq 90$ кЭ. Этот монокристалл двойного слоистого кобальтита имеет вакансии в подрешетках кобальта и кислорода в отличие от стехиометрического состава EuBaCo₂O_{5.5}. Все ионы кобальта в EuBaCo_{1.9}O_{5.36} находятся в трехвалентном состоянии. Монокристалл имеет орторомбическую структуру пространственной группы Pmmm с параметрами элементарной ячейки a=3.883 Å, b=7.833 Å, c=7.551 Å. Полевые и температурные зависимости намагниченности монокристалла показали, что ниже $T_C=242~{
m K}$ он является ферримагнетиком. В области $T<300~{
m K}$ присутствуют все три спиновых состояния ионов ${
m Co}^{3+}$. Взаимодействия между ближайшими соседями дают АФМ- и ФМ-вклады в обменную энергию. Из-за изменения спинового состояния ионов ${\rm Co}^{3+}$ при понижении температуры соотношение АФМ- и ФМ-вкладов изменяется. При низких температурах и в сильных магнитных полях монокристалл проявляет признаки миктомагнетизма. При T=2 К и H=90 к \Im наблюдается большое различие значений намагниченности в поле и без поля из-за однонаправленной магнитной анизотропии, которая стремится установить намагниченность по всему объему в направлении приложенного при охлаждении магнитного поля. При этом возникает сложная ферримагнитная структура с неколлинеарным направлением спинов Co³⁺. В монокристалле EuBaCo_{1.9}O_{5.36} наблюдаются и другие явления, характерные для миктомагнетиков: сдвиг петли гистерезиса намагниченности при понижении температуры, сохранение гистерезисных явлений и отсутствие насыщения намагниченности в сильных магнитных полях, ориентационный переход. Показано, что миктомагнитное состояние в EuBaCo_{1.9}O_{5.36} вызвано структурными искажениями за счет вакансий в подрешетках кобальта и кислорода и фрустрацией обменных АФМ- и ФМ-взаимодействий.

DOI: 10.7868/S0044451018050127

1. ВВЕДЕНИЕ

Соединения LnBaCo₂O_{5.5 $\pm \delta$} (где Ln — редкоземельный элемент) имеют слоистую кристаллическую структуру и относятся к классу магнитных полупроводников, для которых характерна сильная взаимосвязь между решеточной, магнитной и электронной подсистемами [1–6]. Интерес к слоистым кобальтитам связан с тем, что они обладают необычными магнитными свойствами и являются перспективными магериалами для практического применения, в частности, как материал для катодов твердотопливных элементов.

Магнитными ионами в стехиометрическом составе $LnBaCo_2O_{5.5}$ являются ионы Co^{3+} и редкоземель-

ные ионы. Система LnBaCo₂O_{5.5± δ} ($\delta = 0.5$) имеет непрерывный ряд твердых растворов. При изменении содержания кислорода появляются ионы Co²⁺ или Co⁴⁺.

Среди 3*d*-элементов ионы кобальта занимают особое место. В зависимости от типа кристаллической решетки и температуры ионы Co^{3+} и Co^{2+} могут иметь как высокоспиновое (HS) хундовское состояние (соответственно S = 2 и S = 3/2), так и промежуточное (IS) состояние (S = 1 и S = 1/2) или являться немагнитными ионами (S = 0 для низкоспинового (LS) состояния Co^{3+}). Ионы Co^{4+} всегда имеют спин S = 5/2 [7]. Эта особенность ионов кобальта может проявляться в магнитных свойствах $LnBaCo_{2-x}O_{5.5-\delta}$, так как при понижении температуры изменяется спиновое состояние ионов Co^{3+} [7–9]. Магнитный порядок в $LnBaCo_2O_{5.5}$, в котором присутствуют только ионы Co^{3+} , могут

^E-mail: naumov@imp.uran.ru

обеспечить сверхобменные взаимодействия Гуденафа ${\rm Co}^{3+}-{\rm O}-{\rm Co}^{3+},$ так как при T < 360 К этот состав имеет полупроводниковый характер проводимости [1, 10]. Ферромагнитное (ФМ) упорядочение может возникнуть при взаимодействиях между ближайшими соседями Co³⁺(HS)–O–Co³⁺(IS), а антиферромагнитные (АФМ) взаимодействия — между $Co^{3+}(HS)-O-Co^{3+}(HS)$ и $Co^{3+}(IS)-O-Co^{3+}(IS)$. Данные по дифракции рентгеновских лучей и по ядерному магнитному резонансу (ЯМР) подтверждают присутствие всех трех состояний ионов Со³⁺ при $T \leq 300 \text{ K} [11, 12]$. Согласно симметрийному рассмотрению конкуренция между АФМ- и ФМ-обменными взаимодействиями слоистых кобальтитов может привести к ферримагнитной структуре [5]. Не исключена также неколлинеарная магнитная структура [13–16].

Важные результаты, стимулирующие интенсивное изучение магнитных свойств двойных слоистых кобальтитов, были представлены в работе [15]. Авторы показали, что в монокристалле GdBaCo₂O_{5.5} наблюдается сильная анизотропия намагниченности в магнитном поле H = 100 Э для направлений магнитного поля Н вдоль осей а, b, c. При учете вклада парамагнитных ионов Gd^{3+} (S = 7/2) намагниченность этого монокристалла имеет малую величину и слабо изменяется при повышении температуры до 180 К, что может быть связано с АФМ-упорядочением ионов Co^{3+} . В области T = 200-300 К для осей a и b наблюдается резкое увеличение намагниченности с максимумом зависимости M(T) вблизи 264 К. Большинство авторов объясняет резкое увеличение намагниченности присутствием ФМ-кластеров, внедренных в АФМ-матрицу, или скошенным антиферромагнетизмом. Предполагается, что упорядочение спинов в Φ М-кластерах и $A\Phi$ М-матрице ниже T_C является коллинеарным. При таком рассмотрении магнитной системы слоистых кобальтитов не ясны причины появления петли гистерезиса намагниченности при понижении температуры и ее уширения в сильных магнитных полях в области T = 2–10 K [1, 4, 16, 17].

В данной работе поставлена задача выяснить состояние магнитной системы в монокристалле EuBaCo_{1.9}O_{5.36}, в котором все ионы кобальта находятся в трехвалентном состоянии. Это позволяет исключить влияние обменных взаимодействий ионов Co³⁺ с ионами Co²⁺ и Co⁴⁺. Ионы Eu³⁺ при T = 0 K не имеют магнитного момента. Однако при повышении температуры он возникает за счет ван-флековских возбуждений и при T = 300 K магнитный момент иона Eu³⁺ достигает значения $\mu_{eff} = 3.54 \mu_B$, что необходимо учитывать при исследовании магнитных свойств [18].

В работе представлены температурные и полевые зависимости намагниченности монокристалла EuBaCo_{1.9}O_{5.36} при температурах T < 300 K и в магнитных полях $H \leq 90$ кЭ. Отметим, что такие данные для монокристаллов двойных слоистых кобальтитов практически отсутствуют. Ранее мы изучали парамагнитные свойства поликристаллов EuBaCo_{2-x}O_{5.5- δ} и монокристалла EuBaCo_{1.9}O_{5.36} [19, 20]. Было показано, что они являются ферримагнетиками. При T > 400 K присутствуют IS- и HS-состояния ионов Co³⁺.

2. ОБРАЗЦЫ И МЕТОДИКИ ЭКСПЕРИМЕНТА

Выращивание монокристалла EuBaCo_{1.90}O_{5.36} проводили на установке бестигельной зонной плавки УРН-2-3П с оптическим нагревом. Рост кристалла осуществлялся в потоке воздуха со скоростью 5 мм/ч. Методика выращивания монокристаллов $EuBaCo_{2-x}O_{6-\delta}$ и их детальные физико-химические характеристики опубликованы нами ранее [21]. Кристаллическая структура монокристалла EuBaCo_{1.90}O_{5.36} орторомбическая, пространственная группа Рттт, параметры элементарной ячейки a = 3.883(3) Å, b = 7.833(2) Å, c = 7.551(4) Å. Кристаллы двойных перовскитов EuBaCo_{2-x}O_{6-δ} растут вдоль направления [120]. Элементный состав исследуемых образцов был определен на сканирующем электронном микроскопе Inspect F (FEI) с энергодисперсионным спектрометром EDAX. Определение содержания кислорода проводилось путем восстановления образцов в атмосфере водорода. Магнитные исследования проведены в центре коллективного пользования ИФМ УрО РАН на магнитометре MPMS-5XL (QUANTUM DESIGN). При магнитных измерениях монокристалл был ориентирован таким образом, что магнитное поле было направлено вдоль оси [120]. Дифференциальная восприимчивость измерялась в температурном интервале 2-300 К с частотой переменного магнитного поля f = 80 Гц и амплитудным значением $H = 4 \ \Im$.

3. ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ НАМАГНИЧЕННОСТИ

Температура магнитного упорядочения $T_C = 242$ К охлажденного в нулевом магнитном поле монокристалла EuBaCo_{1.9}O_{5.36} определялась по

Рис. 1. Температурные зависимости действительной χ' (кривая 1) и мнимой χ'' (2) частей магнитной восприимчивости монокристалла EuBaCo_{1.9}O_{5.36} в поле H = 4 Э

максимумам действительной $\chi'(T)$ и мнимой $\chi''(T)$ частей дифференциальной восприимчивости в переменном поле H = 4 Э [22, 23]. На рис. 1 видно, что в области T = 180-260 К присутствует ФМ-составляющая. При понижении температуры от 175 К значения χ' и χ'' довольно малы и слабо изменяются. По-видимому, в переменном магнитном поле при низких температурах реализуется АФМили парамагнитное состояние, которое имеет существенно меньшие значения восприимчивости ($\chi = 10^{-6}-10^{-4}$ ед. СГСМ/г) по сравнению с ФМ-фазой ($\chi = 10^{-4}-10^{-2}$ ед. СГСМ/г).

Спиновое состояние ионов Со³⁺ зависит от температуры и кристаллической структуры [8,9]. На рис. 2а представлены температурные зависимости намагниченности при нагреве от 25 до 280 К предварительно охлажденного в полях $H = 5, 10, 15 \text{ к} \Im$ монокристалла EuBaCo_{1.9}O_{5.36}. Максимум намагниченности в области T = 240–265 K, который в двойных слоистых кобальтитах связывают с присутствием ферромагнитной фазы, сдвигается слабо с увеличением поля в сторону больших температур. В области T = 120–220 К появляются два дополнительных максимума намагниченности, которые при Н ≥ 10 кЭ сливаются в один широкий. Более низкие значения намагниченности при увеличении поля могут быть обусловлены изменением спинового состояния ионов Со³⁺ в магнитном поле и нелинейной зависимостью M(H) ФМ-составляющей намагниченности. При дальнейшем увеличении магнитного поля, $H \ge 30{-}50$ кЭ, величина максимума на зависимости M(T) вблизи T = 150 К возрастает, становится равной или больше величины намагниченности при T = 250 K (рис. 26). Это указывает на сохранение обменных ФМ-взаимодействий в магнитном поле вплоть до 25 K.

Сильное магнитное поле приводит к изменению вида зависимости M(T). На рис. 3 представлены температурные зависимости намагниченности для монокристалла EuBaCo_{1.9}O_{5.36}, предварительно охлажденного в нулевом магнитном поле (ZFC) и в магнитном поле H = 90 кЭ (FC). Видно, что максимум намагниченности вблизи 240 К отсутствует. При понижении температуры намагниченность продолжает возрастать и достигает максимума при T = 120 К. Выше этих температур разница значений M(ZFC) и M(FC) отсутствует. Можно предположить, что в поле H = 90 кЭ намагниченность ФМ-подрешеток достигает насыщения при этой температуре. При понижении температуры от 120 К наблюдается разница значений M(ZFC) и M(FC), которая достигает максимума при 2 К. Представленные данные по температурной зависимости намагниченности монокристалла EuBaCo_{1.9}O_{5.36} дают основание полагать, что сильное магнитное поле влияет на магнитный порядок спинов в ФМи АФМ-подрешетках слоистых кобальтитов. Не исключена вероятность изменения спинового состояния ионов Со³⁺ под действием магнитного поля.

4. ПОЛЕВЫЕ ЗАВИСИМОСТИ НАМАГНИЧЕННОСТИ

Полевые зависимости намагниченности $M(H = +90 \text{ к} \ni \div -90 \text{ к} \ni)$ для монокристалла EuBaCo_{1.9}O_{5.36} в области магнитного упорядочения представлены на рис. 4. При 210 К петля гистерезиса является узкой и симметричной (рис. 4*a*). Она имеет типичный вид для ферро- и ферримагнетиков с небольшими значениями коэрцитивной силы и поля насыщения. При 100 К в полях $H \le 40$ кЭ петля гистерезиса остается симметричной с коэрцитивной силой $H \approx 4$ кЭ. В более высоких полях наблюдается несимметричное поведение зависимости M(H). При этом намагниченность не достигает насыщения даже при H = 90 кЭ. Отметим особенности петли гистерезиса при T = 100 К. Для цикла изменения поля $+H \rightarrow 0 \rightarrow -H \rightarrow 0 \rightarrow +H$ значения намагниченности при H = 90 кЭ различаются. Ширина петли гистерезиса при H > 50 кЭ больше, чем в полях H = 30-40 кЭ (рис. 46). Такая же тенденция изменения петли гистерезиса M(H) наблюдалась при T = 30 К (рис. 4*в*). Петля гистерезиса M(H)шире по сравнению с петлей при 100 К и несим-

Рис. 2. Температурные зависимости намагниченности монокристалла $EuBaCo_{1.9}O_{5.36}$ в разных магнитных полях: $a - H = 5 \ \kappa \exists (1), 10 \ \kappa \exists (2), 15 \ \kappa \exists (3); 6 - 20 \ \kappa \exists (4), 30 \ \kappa \exists (5), 50 \ \kappa \exists (6)$

Рис. 3. Температурные зависимости намагниченности монокристалла ${
m EuBaCo_{1.9}O_{5.36}}$ в магнитном поле H=90 кЭ: $1-{
m ZFC}$; $2-{
m FC}$

метрична с коэрцитивными силами $H_c = +9$ кЭ и $H_c = -12$ кЭ, когда намагниченность равна нулю (M = 0). При этой температуре наблюдается смещение петли гистерезиса. Значения намагниченности в начале цикла при H = 90 кЭ и в его конце заметно различаются.

Наиболее ярко влияние исходного состояния на намагниченность монокристалла EuBaCo_{1.9}O_{5.36} проявляется при T = 2 K. На рис. 5 представлены петли гистерезиса намагниченности монокристалла при 2 K для разных режимов: исходное состояние при H = 0 (ZFC) и H = 90 кЭ (FC). Наибольшая ширина петли намагниченности M(H) наблюдается

Рис. 4. Полевые зависимости намагниченности монокристалла $\rm EuBaCo_{1.9}O_{5.36}$ при разных температурах: a-210 К; 6-30 К

Рис. 5. Петли гистерезиса намагниченности монокристалла $EuBaCo_{1.9}O_{5.36}$ при T=2 K: 1- ZFC; 2- FC; стрелками показано изменение магнитного поля

в области полей H > 45 кЭ. Для исходного состояния (ZFC) петля гистерезиса намагниченности имеет необычный вид. В полях H > 45 к
Э значения M(H) на основной кривой намагничивания меньше соответствующих значений в обратном режиме изменения поля, -90 кЭ \rightarrow 0 \rightarrow +90 кЭ. Такой вид петли не может быть связан только с обычными процессами намагничивания, вызванными смещением доменных границ и поворотом вектора намагниченности ферромагнитных подрешеток. Одной из возможных причин такого поведения M(H) могут оказаться спиновые переходы LS \rightarrow IS или IS \rightarrow HS под воздействием магнитного поля. В режиме FC петля гистерезиса является более широкой и смещенной относительно H = 0. Скачки намагниченности происходят в более низких полях. Значения намагниченности M(FC) при $H = 90 \text{ к} \Im$ выше соответствующей величины M(ZFC) при H = 0. При этом намагниченности исходного состояния FC в начале и в конце измерений различаются. Следовательно, магнитная система монокристалла EuBaCo_{1.9}O_{5.36} является неустойчивой и под действием внешнего магнитного поля не возвращается в исходное состояние. Качественно подобные петли гистерезиса намагниченности при 2 К наблюдали в поликристаллах EuBaCo_{1.92}Cu_{0.08}O_{5.40} и $EuBaCo_{1.92}Zn_{0.08}O_{5.45}$, в которых также присутствуют структурные искажения [24].

Во многих работах по слоистым кобальтитам необычное поведение полевых зависимостей намагниченности при низких температурах объясняют состоянием кластерного магнитного стекла, а именно, замерзанием во внешнем поле ФМ-кластеров в АФМ-матрице случайным образом. Это состояние отличается от спинового стекла тем, что замерзают ФМ-кластеры в непроводящей матрице, а не отдельные спины [25]. Полевые зависимости намагниченности, снятые по протоколу CHUF (cooling and heating in unequal fields), указывают на метастабильное магнитное состояние [26–30]. Аналогичные зависимости M(H) при низких температурах T < 50 К в полях H = 30 кЭ и H = 40 кЭ наблюдали также в манганитах, например в $Pr_{0.5}Ca_{0.5}Mn_{0.975}Al_{0.025}O_3$ [10,31].

5. ОБСУЖДЕНИЕ

В большинстве работ по двойным слоистым кобальтитам LnBaCo₂O_{5.5±δ} магнитные свойства при T < T_C объясняют присутствием нескольких магнитных фаз. Рассматривая магнитную систему слоистых кобальтитов, состоящую из АФМ-матрицы и внедренных в нее ФМ-кластеров и суперпарамагнитных капель, трудно объяснить изменение петель гистерезиса намагниченности в EuBaCo_{1.9}O_{5.36} в сильных магнитных полях при понижении температуры, когда число магнитоактивных ионов Co³⁺ уменьшается из-за спинового перехода IS \rightarrow LS или HS \rightarrow IS [9]. В работе [32] показано, что в монокристалле EuBaCo_{1.9}O_{5.36} присутствуют делокализованные носители заряда в области температур $T \approx 80-295$ K, т.е. ниже температуры перехода диэлектрик–метал
л $T_{I/M}\,\approx\,360$ К. При этом в плоскости ab они исчезают при 80 K, а в перпендикулярном направлении — при более низких температурах. Присутствие делокализованных носителей заряда может способствовать дополнительному к сверхобмену механизму обмена типа РККИ (Рудермана-Киттеля-Касуя-Иосиды). Это взаимодействие может проявляться в максимумах намагниченности в областях T = 150 К и T = 210 К (см. рис. 2). Присутствие делокализованных носителей заряда в плоскостях (001) и (120) указывает на трехмерный характер магнитного упорядочения [8].

Наблюдаемые особенности магнитных свойств монокристалла можно объяснить реализацией состояния миктомагнетизма (микто — смешанный). Этот термин был введен Беком для магнетиков с различными видами (ФМ и АФМ) обменных взаимодействий [33,34]. Миктомагнетики представляют собой систему взаимодействующих магнитных кластеров и отдельных спинов [25,35,36]. Их существенным отличием от спиновых стекол является присутствие магнитных кластеров. В спиновых стеклах

Рис. 6. Полевые зависимости изменения ширины петли гистерезиса намагниченности (FC) при разных температурах: 1 - 210 K; 2 - 100 K; 3 - 30 K; 4 - 2 K

ориентация спинов ниже определенной температуры T_f (температура замерзания) является случайной и неизменной из-за фрустрации обменных связей [36, 37]. В миктомагнетиках и кластерных стеклах T_f отсутствует, так как направление магнитных моментов в зависимости от Т и Н может изменяться. При высоких температурах магнитная анизотропия мала и монокристалл EuBaCo_{1.9}O_{5.36} обладает свойствами обычного ферримагнетика. При низких температурах анизотропия АФМ-части образца возрастает, поэтому для перемагничивания микрообластей необходимы очень высокие магнитные поля. В миктомагнетиках и кластерных стеклах в сильных магнитных полях возникает сложная магнитная структура с замороженными направлениями спинов. При низких температурах и больших значениях Н устанавливается дальний магнитный порядок.

Влияние внешних воздействий (T и H) на магнитный порядок в монокристалле EuBaCo_{1.9}O_{5.36} хорошо видно из рис. 6, на котором представлены полевые зависимости изменения ширины петли гистерезиса намагниченности при понижении температуры в области $T < T_C$. При T = 210 К петля гистерезиса является симметричной. Максимум $\Delta M = M(+H) - M(-H)$ наблюдается в полях H < 10 кЭ. Такое поведение ширины петли характерно для ФМ-упорядочения магнитных моментов ионов Co³⁺, что подтверждают температурные зависимости обратной восприимчивости $1/\chi$ в парамагнитной области выше температуры Кюри $T_C = 242$ К [20]. Малая величина намагниченности указывает на небольшой вклад в полную обменную

энергию ФМ-взаимодействий между ближайшими соседями ${\rm Co}^{3+}({\rm IS})\text{-}{\rm O}\text{-}{\rm Co}^{3+}({\rm HS}).$

При T = 100 К наблюдается максимум ΔM в небольших полях $H \leq 20$ кЭ, однако при H = 0 ширина петли несколько меньше, чем при T = 210 K. Это может быть связано со спиновыми переходами при понижении температуры и изменением числа обменных ФМ- и АФМ-связей. Увеличение магнитного поля приводит к несимметричной относительно H = 0 зависимости $\Delta M(H)$. Появление размытого максимума $\Delta M(H)$ в полях H = 6-9 кЭ при перемагничивании может быть связано с поворотом направления магнитных моментов ионов Со³⁺ под действием сильного магнитного поля. При дальнейшем понижении температуры особенности изменения петель гистерезиса намагниченности проявляются более ярко. Для T = 30 К ширина петли ΔM в полях $H \leq 20$ кЭ изменяется слабо. Увеличение магнитного поля приводит к дополнительному максимуму ΔM в той же области полей H = 60-90 кЭ, как и при T = 100 К. Однако интенсивность этого максимума значительно больше по сравнению с намагниченностью при H = 0. Отметим, что максимум остаточной намагниченности при H = 0 в области поле
й $H<20~{\rm k} \Im$ имеет почти одинаковую величину для T = 30 К и T = 100 К. Это указывает на то, что малые магнитные поля слабо влияют на магнитный порядок в монокристалле в отличие от сильных полей H > 60 кЭ.

При охлаждении образца до 2 K в поле H == 90 кЭ зависимость $\Delta M(H)$ остается несимметричной, однако ее вид существенно изменяется (см. рис. 5 и 6). В полях $H \le 50$ кЭ наблюдается резкое уширение петли с широким максимумом ΔM , что указывает на увеличение ФМ-составляющей в обменном взаимодействии ферримагнетика. Отметим, что при $H \leq 30$ кЭ ширина петли гистерезиса ΔM практически не изменяется, что может быть связано с сохранением направления магнитных моментов ионов Со³⁺. Дальнейшее увеличение поля приводит к уменьшению ширины ΔM , следовательно, магнитные поля $H \ge 30$ к Э влияют на направление спинов кобальтовых ионов. Отметим, что при T = 2 К и T = 30 К в полях $H \ge 70$ кЭ ширины петель одинаковы и продолжают уменьшаться. Экстраполяция ширины петли на полевую ось дает значение $H\approx 132$ к
Э, при котором гистерезис петли намагниченности должен отсутствовать. На основании полученных данных можно заключить, что в монокристалле EuBaCo_{1.9}O_{5.36} свойства миктомагнетизма проявляются в температурной области $T \leq$ ≤ 30 K.

Одной из особенностей миктомагнетизма является быстрое уменьшение намагниченности M(ZFC)в сильных магнитных полях в области низких температур при охлаждении образца без магнитного поля (см. рис. 3). Возможными причинами такого поведения намагниченности являются усиление АФМ-взаимодействий по сравнению с ФМ-вкладом из-за спиновых переходов ионов Со³⁺ и опрокидывания направления вектора намагниченности в подрешетках. В режиме FC резкое уменьшение намагниченности не наблюдается. Для миктомагнитного состояния и кластерного стекла, в отличие от спинового стекла, характерен также сдвиг петель гистерезиса при низких температурах, который мы наблюдали при T = 2 К и T = 30 К в полях $H = \pm 90$ кЭ (см. рис. 4 и 5). Гистерезис намагниченности не исчезает в самых сильных полях из-за сильной обменной анизотропии. Происходит поворот направления спиновых АФМ- и ФМ-упорядочений. Этот процесс имеет необратимый характер. Одним из признаков состояния миктомагнетизма является однонаправленная обменная анизотропия, которая приводит к спиновой переориентации. Однонаправленная магнитная анизотропия наблюдалась в малых частицах (размером около 200 Å) ферромагнитного кобальта с антиферромагнитной оболочкой СоО [38]. Измерения крутящего момента указывают на то, что намагниченность следует за полем и участвует во взаимодействиях с АФМ-упорядоченными спинами, фиксированными в пространстве независимо от поля. В монокристалле EuBaCo_{1.9}O_{5.36} однонаправленную анизотропию электросопротивления объясняли в модели магнитной анизотропии [39]. Признаком сильной обменной анизотропии является также сохранение гистерезиса намагниченности в сильных полях из-за поворота направления АФМи ФМ-упорядоченных спинов. Магнитная анизотропия приводит к спиновой переориентации магнитных моментов ионов $\operatorname{Co}^{3+}[25]$.

В стехиометрическом поликристалле EuBaCo₂O_{5.5}, когда все кристаллографические позиции заполнены, в области низких температур T == 2-10 К зависимости M(H) в полях $H \leq 40$ кЭ имеют линейный вид, что указывает на АФМ-упорядочение [15, 16]. Изменения состава, приводящие к структурным искажениям в слоистых кобальтитах, влияют на магнитный порядок, а именно, появляется ФМ-составляющая намагниченности ниже T_C . Широкую петлю гистерезиса на кривой M(H)наблюдали в EuBaCo₂O_{5.33} и в легированных соединениях Eu_{1-x}Ca_xBaCo₂O_{5.5± δ} (x = 0.2) [16, 40]. В работе [16] показано, что при увеличении концен-

трации никеля в EuBaCo_{2-x}Ni_xO_{5.5} петля гистерезиса расширяется. Увеличивается ФМ-компонента и уменьшается АФМ-вклад. Следовательно, структурные искажения приводят к изменению соотношения между АФМ- и ФМ-вкладами намагниченности. Следует отметить резкие скачки намагниченности на петлях гистерезиса в EuBaCo_{1.85}Ni_{0.15}O_{5.57} и $EuBaCo_{1.92}A_{0.08}O_{5.5+\delta}$ (A = Zn, Cu) в полях Н = 3-7 кЭ, которые связывают с пиннингом ФМ-доменных стенок при низких температурах T < 5 K на дефектах. Наш монокристалл также имеет структурные дефекты, и в нем наблюдаются аналогичные резкие изменения намагниченности в полях H = 30-50 кЭ. В работе [41] показано, что в ЕиВаСо_{2-*x*}О_{5.5-*δ*} две вакансии кобальта приводят к образованию трех дополнительных вакансий кислорода. При этом одна вакансия кобальта в октаэдрах оказывает существенное влияние на ближайшее окружение. Как отмечалось выше, наблюдаемые в слоистых кобальтитах магнитные свойства при $T < 300 {\rm K}$ обычно объясняются присутствием двух коллинеарных фаз — ФМ-кластеров, внедренных в АФМ-матрицу. В этом случае процессы намагничивания должны иметь обратимый характер. Однако комплекс температурных и полевых зависимостей намагниченности в монокристалле EuBaCo_{1.9}O_{5.36}, в частности при низких температурах в сильных магнитных полях, нельзя объяснить присутствием двух фаз с неизменным направлением магнитных моментов. В легированных кобальтитах, используя протокол CHUF при охлаждении и нагревании образцов в поле и без поля, также наблюдали необратимые изменения намагниченности, аналогичные представленным на рис. 5. Такое поведение M(H)объяснялось состоянием кластерного стекла, при котором замораживается направление не отдельных спинов, а ФМ-кластеров.

В кластерном стекле коллинеарные ФМ-кластеры не взаимодействуют друг с другом и с АФМ-матрицей. В миктомагнетиках наведенная магнитная анизотропия приводит к АФМ-взаимодействию спинов в ФМ-подрешетках. При охлаждении ФМ-кластеры перестраиваются под действием поля. В результате этого создается неколлинеарная магнитная структура. Состояния кластерного стекла и миктомагнетизма имеют ряд общих свойств. Существенными отличительными чертами миктомагнетизма являются поведение намагнитных полях и наличие одноосной анизотропии. Такие данные для легированных слоистых кобальтитов в литературе отсутствуют. Монокристалл EuBaCo_{1.9}O_{5.36} и легиро

ванные слоистые кобальтиты имеют структурные дефекты, которые влияют на сверхобменное взаимодействие между ближайшими магнитными ионами и, соответственно, на магнитный порядок. При этом в EuBaCo_{1.9}O_{5.36} магнитный момент имеют только ионы Co³⁺. В легированных кобальтитах могут присутствовать другие 3*d*-ионы, взаимодействия с которыми дают дополнительный вклад в обменную энергию и влияют на магнитное состояние этих соединений.

6. ВЫВОДЫ

На основании температурных и полевых зависимостей намагниченности в области $T < 300 \ {\rm K}$ можно заключить, что в монокристалле EuBaCo_{1.9}O_{5.36} реализуется ферримагнитная структура, которая при низких температурах T < 30 К и в сильных магнитных полях имеет свойства миктомагнитного состояния. В слабых магнитных полях и при высоких температурах он ведет себя как обычный ферримагнетик. Наличие АФМ- и ФМ-взаимодействий связано с разной симметрией окружения ионов Со³⁺ в перовскитоподобной структуре и с изменением спинового состояния ионов кобальта при понижении температуры. Переход из магнитоупорядоченного в парамагнитное состояние возможен только из состояния коллинеарного упорядочения [42]. В монокристалле EuBaCo_{1.9}O_{5.36} температура Нееля $T_N = 418$ К выше значения $T_C = 242$ К [20], поэтому мы полагаем, что в переходной температурной области спины в АФМ-подрешетках упорядочены коллинеарно.

В сильных магнитных полях при понижении температуры происходят изменения направления спинов и монокристалл проявляет все признаки миктомагнетизма [25, 36, 37]. При T = 2 К наблюдается большое различие значений намагниченности M(ZFC) и M(FC) из-за однонаправленной магнитной анизотропии, которая стремится установить намагниченность по всему объему в направлении приложенного при охлаждении магнитного поля. Подрешетки перестраиваются, чтобы уменьшить псевдодипольное взаимодействие. Характерными признаками миктомагнитного состояния являются также сдвиг петли гистерезиса, сохранение гистерезисных явлений M(H) и отсутствие насыщения намагниченности в сильных магнитных полях. При низких температурах под воздействием сильных магнитных полей происходит спиновый ориентационный переход [35]. Изменение направлений легких осей спинов приводит к ориентационному переходу от одной ферримагнитной структуры к другому неколлинеарному упорядочению. Сравнение магнитных свойств монокристалла EuBaCo_{1.9}O_{5.36} и легированных слоистых кобальтитов показало, что причиной реализации состояния миктомагнетизма при низких температурах являются дефекты, приводящие к фрустрации обменных взаимодействий между ближайшими магнитными моментами, и изменение спиновых состояний ионов Co³⁺.

Авторы признательны Н. Г. Бебенину за полезные обсуждения.

Работа выполнена в рамках государственного задания ФАНО России (тема «Спин», № 01201463330) и при частичной поддержке РФФИ (грант № 16-02-00577).

ЛИТЕРАТУРА

- A. Maignan, C. Martin, D. Pelloquin et al., J. Sol. St. Chem. 142, 247 (1999).
- A. A. Taskin, A. N. Lavrov, and Y. Ando, Phys. Rev. B 71, 134414 (2005).
- Y. Moritomo, T. Akimoto, M. Takeo et al., Phys. Rev. B 61, R 13325 (2000).
- C. Frontera, J. L. Garcĭa-Muňoz, A. Llobet et al., Phys. Rev. B 65, 180405 (2002).
- 5. D. D. Khalyavin, Phys. Rev. B 72, 134408 (2005).
- Н. Б. Иванова, С. Г. Овчинников, М. М. Коршунов, И. М. Еремин, Н. В. Казак, УФН 179, 837 (2009).
- Д. Б. Гуденаф, Магнетизм и химическая связь, Металлургия, Москва (1966).
- 8. Р. Карлинг, Магнетохимия, Мир, Москва (1989).
- M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev et al., Phys. Rev. B 54, 5309 (1996).
- A. K. Kundu, V. Pralong, B. Raveau et al., J. Mater. Sci. 46, 681 (2011).
- Yu. P. Chernenkov, V. P. Plakhty, V. I. Fedorov et al., Phys. Rev. B 71, 184105 (2005).
- H. Kubo, K. Zenmyo, M. Itoh et al., J. Magn. Magn. Mater. 272–276, 581 (2004).
- M. Soda, Y. Yasui, T. Fujita et al., J. Phys. Soc. Jpn. 72, 1729 (2003).
- 14. M. Soda, Y. Yasui, Y. Kobayashi et al., J. Phys. Soc. Jpn. 75, 104708 (2006).

- A. A. Taskin, A. N. Lavrov, and Y. Ando, Phys. Rev. Lett. 90, 227201 (2003).
- B. Raveau, M. D. M. Seikh, V. Pralong et al., Bull. Mater. Sci. 32, 305 (2009).
- 17. S. Roy, M. Khan, Y. Q. Guo et al., Phys. Rev. B 65, 064437 (2002).
- J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford Univ. Press (1952).
- Т. И. Арбузова, С. В. Наумов, С. В. Телегин, ФТТ 59, 517 (2017).
- 20. Т. И. Арбузова, С. В. Наумов, С. В. Телегин, ФТТ
 60, 80 (2018).
- 21. S. V. Telegin, A. Yu. Zuev, S. V. Naumov et al., J. Chem. 2017, ID 3057873 (2017).
- **22**. С. В. Вонсовский, Я. С. Шур, *Ферромагнетизм*, Гостехиздат, Москва–Ленинград (1948).
- **23**. С. Крупичка, Физика ферритов и родственных им магнитных окислов, Мир, Москва (1976).
- 24. B. Raveau, Ch. Simon, and V. Pralong, Sol. St. Comm. 139, 301 (2006).
- 25. С. Тикадзуми, Физика ферромагнетизма. Магнитные свойства вещества, Мир, Москва (1983).
- 26. E. P. Amaladass, N. Thirumurugan, A. T. Satya et al., J. Phys.: Condens. Mater. 25, 436001 (2013).
- 27. N. Thirumurugan, A. Bharathi, and A. Arulraj, Mat. Res. Bull. 47, 941 (2012).
- 28. T. Sarkar, V. Pralong, and B. Raveau, Phys. Rev. B 83, 214428 (2011).

- 29. M. Baran, V. I. Gatalskaya, R. Szymczak et al., J. Phys.: Condens. Matter 15, 8853 (2003).
- 30. Md. M. Seikh, A. K. Kundu, V. Caignaert et al., J. Appl. Phys. 109, 093916 (2011).
- 31. A. Banerjee, K. Kumar, and P. Chaddah, J. Phys.: Condens. Matter 21, 026002 (2009).
- **32**. Е. В. Мостовщикова, С. В. Наумов, Н. И. Солин и др., Письма в ЖЭТФ **104**, 235 (2016).
- 33. P. A. Beck, J. Less Comm. Met. 28, 193 (1972).
- 34. P. A. Beck, Met. Mat. Trans. B 2, 2015 (1971).
- 35. С. Тикадзуми, Физика ферромагнетизма. Магнитные характеристики и практические применения, Мир, Москва (1987).
- 36. Л. И. Королева, Магнитные полупроводники, Изд-во физич. ф-та МГУ, Москва (2003).
- 37. K. H. Fischer, Phys. Stat. Sol. (b) 130, 13 (1985).
- 38. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957).
- 39. Н. И. Солин, С. В. Наумов, С. В. Телегин и др., Письма в ЖЭТФ 104, 44 (2016).
- 40. Md. Motin Seikh, Asish K. Kundu, V. Caignaert et al., J. Appl. Phys. 109, 093916 (2011).
- 41. С. В. Телегин, С. В. Наумов, О. Г. Резницких и др., ФТТ 57, 2222 (2015).
- 42. Я. Смит, Х. Вейн, Ферриты, Изд-во иностр. лит., Москва (1962).