ОБМЕННОЕ СМЕЩЕНИЕ В СЛОИСТОМ КОБАЛЬТИТЕ $\mathrm{GdBaCo_2O_{5.5}}$

Н. И. Солин^{*}, С. В. Наумов, С. В. Телегин, А. В. Королев

Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

Поступила в редакцию 9 августа 2017 г.

Установлено влияние содержания кислорода δ на обменное смещение в слоистом кобальтите ${\rm GdBaCo_2O_{5+\delta}}$: оно возникает в дырочном ($\delta>0.5$) кобальтите и исчезает в электронном ($\delta<0.5$) кобальтите. Определены основные параметры обменного смещения поликристалла ${\rm GdBaCo_2O_{5.52(2)}}$: полевые и температурные зависимости поля обменного смещения H_{EB} , температура блокировки T_B , энергия обменной связи интерфейса J_i антиферромагнетик (Δ M)—ферромагнетик (Δ M), размеры Δ M-кластеров и исследован присущий системам с обменным смещением эффект тренировки. Результаты объясняются обменным взаимодействием Δ M- и Δ M-фаз. Предполагается, что источником обменного смещения является существование ионов Δ M-кластеров в Δ M-матрице кобальтита.

DOI: 10.7868/S0044451017120148

1. ВВЕДЕНИЕ

Обменное смещение (exchange bias (EB)), или однонаправленную анизотропию впервые наблюдали Майклджон и Бин [1, 2] по смещению петли гистерезиса намагниченности в однодоменных ФМ-частицах Со, покрытых АФМ-оболочкой СоО. Результаты объяснялись обменным взаимодействием, возникающим на поверхности раздела однодоменной ФМ-частицы и АФМ-матрицы [1, 2]. Однонаправленность проявляется в том, что физические свойства среды зависят не только от величины, но также и от знака напряженности магнитного поля. В начальной стадии исследования обменного смещения имели познавательный характер (см. ссылки 218-251 в гл. 23 книги [3]). В последние 20 лет эффект обменного смещения начал использоваться в ряде технологических применений [4–7]. Выяснение фундаментальной роли эффекта обменного смещения в спиновом клапане и туннельных устройствах вызвало бурный рост исследований бинарных систем ферромагнетик (ФМ)-антиферромагнетик (АФМ) (см. ссылки в работах [5,7]). Можно предположить, что однонаправленная анизотропия электросопротивления в магниторезистивных материалах (манганитах, кобальтитах) обеспечивает дополнительную степень свободы для управления процессом проводимости в устройствах спинтроники.

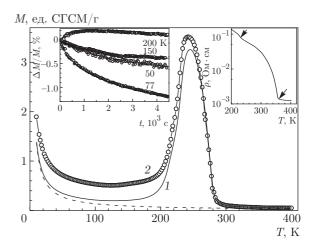
В работе [8] сообщалось об обнаружении однонаправленной анизотропии электросопротивления в EuBaCo₂O_{5.5}. Предполагалось, что метастабильное состояние и однонаправленная анизотропия EuBaCo₂O_{5.5} не случайные явления, и они могут быть присущи магниторезистивным редкоземельным (РЗ) кобальтитам с общей формулой RBaCo₂O_{5.50} [9]. Однако в приготовленных на воздухе поликристаллах $RBaCo_2O_{5+\delta}$, где R=Gd или R=Tb, эффект однонаправленной анизотропии не был обнаружен [8]. Обменное смещение возникает в гетерогенной среде, содержащей однодоменные ФМ-частицы в АФМ-матрице при охлаждении в магнитном поле от температуры выше температуры Нееля (T_N) , причем ФМ-частицы должны иметь более высокую температуру упорядочения $T_C > T_N$ [1–6]. Природа разделения фаз в $R_{1-x}Me_xCoO_3$ хорошо установлена нейтронными методами, и она связана с существованием ионов Co^{3+} и Co^{4+} [10].

Неоднородное состояние — ФМ-кластеры в диамагнитной матрице — в РЗ-оксидах кобальта $R_{1-x}Me_xCoO_{3-\delta}$ достигается замещением трехвалентного РЗ-иона R двухвалентным щелочным металлом Me=Sr, Ca, Ba. Известно, что двойной об-

^{*} E-mail: solin@imp.uran.ru

мен между ионами Co³⁺и Co⁴⁺ ведет к образованию ФМ-кластеров и что эти случайно легированные оксиды создают пространство ФМ-областей, внедренных в магнитно-неактивную (диамагнитную) среду. Однако в перовскитах $R_{1-x}Ba_xCoO_{3-\delta}$ при x = 0.5 из-за различий ионных радиусов происходит упорядочение катионов и кислородных вакансий [11]. В $RBaCo_2O_{5+\delta}$ при $\delta = 0.5$ все ионы кобальта находятся в трехвалентном состоянии Co^{3+} [11]. Ионы Co^{4+} могут возникнуть за счет кислородных вакансий, неупорядоченностей подрешетках. Признаки наноразмерного фазового расслоения в $RBaCo_2O_{5+\delta}$ наблюдаются только при $\delta \neq 0.5$ [12, 13]. В RBaCo₂O_{5+ δ} валентное состояние кобальта легко управляется отжигом в разных атмосферах [14].

В настоящей работе в отожженных в атмосфере кислорода образцах $GdBaCo_2O_{5+\delta}$ мы обнаружили эффекты однонаправленной анизотропии, аналогичные наблюдаемым в EuBaCo₂O_{5.5} [8]. В направлении магнитного поля, при котором образец был охлажден, значение электросопротивления ρ было меньше, чем в противоположном направлении магнитного поля, и петля гистерезиса $\rho(H)$ сдвинута относительно начала координат (H = 0). Значение $\delta \approx 0.52(2)$ оценено из измерений веса образцов до и после термообработок. Полученные данные позволяют полагать, что в исследованных образцах кроме ионов Co^{3+} содержится около 3–4 % ионов Co^{4+} . Этот результат находит подтверждение в измерениях эффекта термоэдс. Однонаправленная анизотропия исчезает после отжига образцов в атмосфере аргона при $\delta < 0.5$, т. е. при появлении ионов Co^{2+} . Предполагается, что обменное смещение и фазовое расслоение могут управляться изменением содержания δ кислорода и в других слоистых кобальтитах.


В данной работе впервые определены основные особенности обменного смещения слоистого кобальтита: температурные и полевые зависимости поля H_{EB} обменного смешения, энергия обменной связи J_i АФМ-ФМ-интерфейса, температура блокировки T_B , ниже которой возникает обменное смещение, оценены размеры ФМ-кластеров. Исследован эффект тренировки, заключающийся в уменьшении поля H_{EB} , когда петли магнитного гистерезиса последовательно повторяются несколько раз. Этот эффект является важным инструментом экспериментальных доказательств наличия обменного смещения в структуре.

2. ОБРАЗЦЫ И МЕТОДИКИ ИССЛЕДОВАНИЙ

Способ приготовления поликристаллических образцов $GdBaCo_2O_{5+\delta}$ описан в работе [15]. Рентгеновский анализ показал однофазный состав образцов. Для определения абсолютного содержания кислорода использовался метод восстановления водородом и измерения веса образцов. Магнитные исследования проведены в центре коллективного пользования ИФМ УрО РАН с использованием магнитометра MPMS-5XL (QUANTUM DESIGN).

3. РЕЗУЛЬТАТЫ

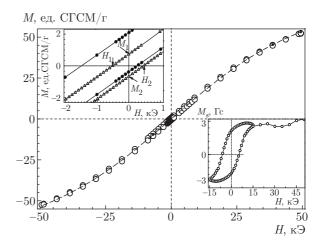
На рис. 1 приведены результаты исследования магнитных свойств. Намагниченность резко увеличивается при температуре ниже 275–280 K, достигает максимума при $T_M\approx 245$ K, далее резко убывает при уменьшении температуры ниже $T\approx 200$ K. Такое поведение M(T) характерно для GdBaCo₂O_{5.5} и объясняется возникновением ФМ-состояния при $T_C\approx 275\pm 2$ K и переходом в АФМ-состояние при понижении температуры [14,16]. Максимум на зависимости M(T) при 245 K, резкое уменьшение производной намагниченности dM/dT при 235 K, изгиб

Рис. 1. Температурные зависимости намагниченности поликристалла ${\rm GdBaCo_2O_{5.52(2)}}$ при H=1 к \ni при охлаждении без магнитного поля (ZFC) — кривая 1, в магнитном поле (FC) — кривая 2. Штриховая линия — парамагнитный вклад иона ${\rm Gd^{3+}}$. Левая вставка — временные зависимости намагниченности при разных температурах, символы — эксперимент, линии — расчет; правая вставка — температурная зависимость электросопротивления вблизи температур перехода Φ M— Φ M и металл—диэлектрик (указаны стрелками)

на температурной зависимости электросопротивления $\rho(T)$ при T=220–235 K (правая вставка на рис. 1) вызваны переходом из ФМ- в АФМ-состояние в интервале $T_N\approx 220$ –235 K. Гистерезисные явления на кривой намагниченности при нагревании и охлаждения образца без магнитного поля (ZFC) и в магнитном поле (FC) свидетельствуют о фазовом переходе первого рода. Низкотемпературное состояние GdBaCo₂O_{5.52(2)}, как и EuBaCo₂O_{5.50} [8], не является состоянием теплового равновесия: магнитные свойства зависят от времени t (девая вставка на рис. 1). Образец был охлажден в магнитном поле H=15 к Θ от 300 K до заданной температуры, и поле оставалось постоянным при измерениях.

Намагниченность

$$\frac{\Delta M}{M} \equiv \frac{M(t, H) - M(t = 0, H)}{M(t = 0, H)}$$


при T=150–50 K уменьшается, при 200 K значение намагниченности сначала увеличивается, далее медленю уменьшается со временем, что связано с ростом ФМ-вклада с повышением температуры. Временные изменения намагниченности ${\rm GdBaCo_2O_{5.52(2)}}$, так же как и ${\rm EuBaCo_2O_{5.5}}$ [8], удовлетворительно описываются двумя экспонентами:

$$\Delta M(t) \sim M_1 \left[1 - \exp\left(-\frac{t}{\tau_1}\right) \right] +$$

$$+ M_2 \left[1 - \exp\left(-\frac{t}{\tau_2}\right) \right].$$

Величина τ_1 слабо растет с понижением температуры примерно от $2 \cdot 10^3$ до $3 \cdot 10^3$ с, причем вклад второй экспоненты мал и быстро убывает, $M_2/M_1 \approx 0.1$, $au_1 = 100-300 \, \mathrm{c}$. Временные эффекты в $\mathrm{EuBaCo_2O_{5.50}}$ объяснялись особенностями, присущими магнитным стеклам при фазовом переходе первого рода [17,18]. С другой стороны, эффект обменного смещения по своей природе должен быть метастабильным, так как система может находиться в состояниях, когда магнитный момент антипараллелен намагничивающему полю. Термические процессы могут привести к изменениям в магнитных конфигурациях путем преодоления энергетических барьеров [4]. Об этом свидетельствуют исследования временных эффектов в структурах ФМ-АФМ, проявляющих эффект обменного смещения [7].

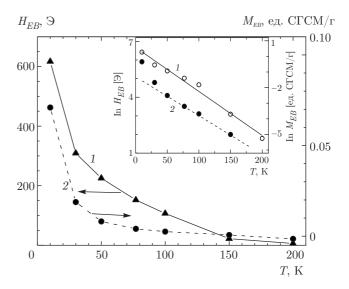
В области низких температур (T < 100 K) виден рост M(T) при понижении температуры (см. рис. 1), который обычно объясняется вкладом ионов Gd^{3+} с парамагнитной температурой $\Theta = 0$ [14, 16, 19]. На

Рис. 2. Полевые зависимости намагниченности ${
m GdBaCo_2O_{5.52(2)}}$ при T=10 К в режиме ZFC. Штриховая линия — парамагнитный вклад иона ${
m Gd}^{3+}$. Верхняя вставка — низкополевая часть кривой M(H) в режимах ZFC (треугольники) и FC (кружки) при T=10 К; нижняя вставка — полевая зависимость намагниченности при T=150 К в режиме FC при вычете АФМ-вклада ${
m Co}^{3+}$ и парамагнетизма иона ${
m Gd}^{3+}$, $H_{cool}=15$ к ${
m 9}$

рис. 2 приведено нелинейное поведение кривой намагничивания при 10 К после охлаждения от 300 К при H = 0 (символы), характерное для парамагнетика при низкой температуре и высоких магнитных полях [3]. Вклад идеального парамагнетика ($\Theta = 0$) со спином S = 7/2 в значения намагниченности, вычисленные при $T=10~{\rm K}$ и $H=50~{\rm k}$ Э из функции Бриллюэна, оказывается выше экспериментальных значений намагниченности образца. Исследуемый образец GdBaCo₂O_{5,52(2)} содержит примерно 3-4% ионов Со⁴⁺ в матрице с основной массой трехвалентных ионов кобальта. Предполагается, что магнитное состояние GdBaCo₂O_{5.5} при низких температурах связано с изменением спинового состояния Co^{3+} от высокоспинового (S=2) на промежуточное (S=1) состояние вблизи температуры перехода металл–диэлектрик $T_{MI} \approx 360 \; \mathrm{K}$ (правая вставка на рис. 1) [14, 16, 19].

Температурные исследования намагниченности показывают, что АФМ-вклад ионов кобальта в экспериментальную наблюдаемую намагниченность составляет около 1–2 % при 50 К и уменьшается при понижении температуры ниже T_N , что характерно для АФМ-поликристаллов [3]. В GdBaCo₂O_{5.50} при T>1.7–2.0 К упорядочение ионов Gd³⁺ не обнаружено [14,16]. Можно ожидать, что в GdBaCo₂O_{5.50}, как и в нелегированном GdCoO₃ [20], происходит АФМ-упорядочение ионов Gd³⁺ при $T\lesssim 1.7$ К.

Нелинейное поведение намагниченности ${\rm GdBaCo_2O_{5.52(2)}}$ при $10~{\rm K}$ можно описать функцией Бриллюэна с S=7/2 и парамагнитной температурой $\Theta = -1.4 \text{ K}$ (штриховая линия на рис. 2) с учетом возможного 2-процентного АФМ-вклада ионов кобальта. Весьма значительный вклад ионов Gd³⁺ сохраняется и при высоких температурах (штриховая линия на рис. 1). Двойной обмен между ионами Co^{3+} и Co^{4+} ведет к образованию ФМ-кластеров. На нижней вставке к рис. 2 показан вклад ферромагнитной компоненты при 150 К при охлаждении в магнитном поле. Намагниченность насыщения ФМ-кластеров составляет величину $M_s \approx 2.8$ Гс при 150 К.


Для исследования эффекта обменного смещения были измерены петли магнитного гистерезиса M(H) после охлаждения образца от $T=300~{\rm K}>T_N$ в нулевом и в ненулевом магнитных полях H_{cool} . На верхней вставке к рис. 2 показана низкополевая часть петель гистерезиса (от $+50~{\rm дo}-50~{\rm K}$ Э) при $10~{\rm K}$ в увеличенном масштабе после охлаждения без магнитного поля (ZFC) и в магнитном поле $H_{cool}=50~{\rm K}$ Э (FC). Обменное смещение характеризуется полем обменного смещения $H_{EB}=(H_1-H_2)/2$ и коэрцитивной силой $H_c=(H_1+H_2)/2$, где H_1 и H_2 соответствуют значениям магнитного поля, при которых намагниченность петли гистерезиса меняет знак при уменьшении и увеличении напряженности магнитного поля [4,5].

Смещение петли гистерезиса в режиме FC сопровождается смещением (асимметрией) остаточной намагниченности, которое характеризуется аналогичными выражениями [4,5]

$$M_{EB} = (M_1 - M_2)/2, \quad M_c = (M_1 + M_2)/2.$$

Эти величины показаны на верхней вставке к рис. 2. Намагниченность в режиме ZFC имеет нормальную петлю гистерезиса с центром в нулевом поле. Сдвиги по осям магнитного поля и намагниченности отчетливо видны при режиме FC, но отсутствуют при режиме ZFC, что явно указывает на появление обменного смещения. Отметим, что в большинстве известных соединений сдвиг петли происходит в сторону уменьшения H, т. е. $H_{EB} < 0$ (обычно приводят без указания знака), а коэрцитивная сила увеличивается, как видно из вставки к рис. 2: $H_{EB} = -610$ Э, $H_c = 880$ Э. Большая величина H_c образца показывает сохранение ФМ-компоненты ниже $T_N \approx 220-230$ К.

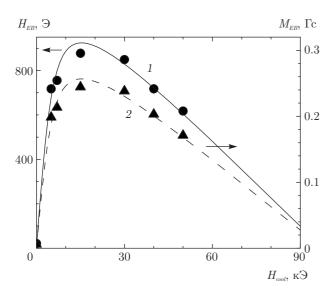

Для получения информации об основных свойствах обменного смешения проведены его температурные и полевые исследования. На рис. 3 показа-

Рис. 3. Температурные зависимости H_{EB} (1) и M_{EB} (2) для ${\rm GdBaCo_2O_{5.52(2)}}$ при $H_{cool}=50$ к ${\rm J.}$ Вставка — температурные зависимости H_{EB} и M_{EB} в логарифмическом масштабе, линии — расчет с помощью выражения (1)

ны температурные изменения обменных параметров H_{EB} и M_{EB} при $H_{cool} = 50$ к Θ . Образец охлаждался от 300 K > T_N при 50 кЭ до каждой температуры, и из измерений намагниченности от 50 до -50 кЭ определялись параметры H_{EB} и M_{EB} . Петли гистерезиса намагниченности были практически симметричными при $T>200~{
m K},$ ниже этой температуры величина H_{EB} резко росла, а ниже 100 K становилась весьма заметной. Температура блокировки (при которой эффект однонаправленной анизотропии исчезает, т. е. $H_{EB}=0$) равна $T_{B}\approx 200~{\rm K}$ и меньше T_N . Зависимость $M_{EB}(T)$ имеет похожий на функцию $H_{EB}(T)$ вид, но резкое увеличение значений $M_{EB}(T)$ начинается ниже 50 К. В высококачественных тонкопленочных системах с толстыми ${\rm A}\Phi{
m M}$ -слоями обычно $T_B pprox T_N$, тогда как в поликристаллических структурах $T_B < T_N$ [4–7]. Увеличение H_{EB} при понижении температуры характерно для систем с обменным смещением. Величина H_{EB} определяется конкуренцией между энергией обменного взаимодействия в интерфейсе ФМ-АФМ и тепловой энергией. Низкая температура способствует замерзанию намагниченности в интерфейсе Φ М-А Φ М и росту H_{EB} [4-7].

Температурные изменения поля обменного смещения $H_{EB}(T)$ и асимметрии остаточной намагниченности $M_{EB}(T)$ хорошо аппроксимируются экспоненциальным поведением, наблюдаемым в электронных манганитах и спиновых стеклах с фрустрированными взаимодействиями [7, 21, 22]:

Рис. 4. Полевые зависимости H_{EB} (1) и M_{EB} (2) для ${
m GdBaCo_2O_{5.52(2)}}$ при T=10 К: символы — эксперимент, линии — расчет

$$H_{EB} = H_{EB}(0) \exp(-T/T_1),$$

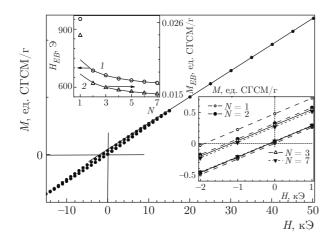
 $M_{EB} = M_{EB}(0) \exp(-T/T_2).$ (1)

Выражение (1) хорошо описывает экспериментальные данные $H_{EB}(T)$ в интервале 10–200 К при $H_{EB}(0)=910\pm40$ Э и $T_1=42\pm1$ К (сплошная линия на вставке к рис. 3). Оно хорошо описывает зависимости $M_{EB}(T)$ при $T_2=41\pm1$ К только до 50 К (пунктирная линия на вставке к рис. 3). Известно, что пропорциональность между M_{EB} и H_{EB} выполняется при $\mu H/kT < 1$, где μ — магнитный момент ФМ-кластера [23], k — постоянная Больцмана. Из оценок размера ФМ-кластеров следует (см. ниже), что при T<50 К условие $\mu H/kT<1$ не выполняется. Отметим, что экспоненциальная зависимость $H_{EB}(T)$ не характерна для типичных соединений с обменным смещением. Теория предсказывает близкую к линейной зависимость

$$H_{EB}(T) \propto (1 - T/T_N)^n$$
,

где $n \ge 1$ [4,7].

На рис. 4 приведены полевые зависимости H_{EB} и M_{EB} при T=10 К. Образец охлаждался от 300 К в магнитном поле $H_{cool}=0$ –50 кЭ. Значения H_{EB} и M_{EB} определялись из измерений кривой намагничивания от $+H_{cool}$ до $-H_{cool}$. Величины H_{EB} и M_{EB} ведут себя примерно одинаково: они резко возрастают при $H_{cool}\leq 10$ кЭ, достигают максимальных значений при $H_{cool}\approx 15$ кЭ и уменьшаются примерно в 1.5 раза при 50 кЭ. В работе [23] предложена упрощенная модель описания эффекта обменного


смещения и оценки основных параметров, определяющих этот эффект в фазово-расслоенных средах. Для однодоменных суперпарамагнитных кластеров с магнитным моментом μ , связанных обменным вза-имодействием с АФМ-матрицей, при $\mu H/kT < 1$ параметры обменного смещения H_{EB} и M_{EB} определяются соотношением

$$-H_{EB} \sim M_{EB} \sim J_i \left[\frac{J_i \mu_0}{(g\mu_B)^2} L(x) + H_{cool} \right],$$
 (2)

где L(x) — функция Ланжевена, $x = \mu H_{cool}/kT_f$, T_f — температура замерзания, μ_0 — магнитный момент иона Co^{3+} , $\mu = N_v \mu_0$, N_v — число ионов Coв ФМ-кластере, μ_B — магнетон Бора, g=2 гиромагнитный фактор. Поле обменного смещения H_{EB} определяется балансом между энергией Зеемана ФМ-частиц и энергией обменного взаимодействия $(J_i < 0)$ в интерфейсе ФМ-АФМ. При малых полях величина H_{EB} определяется первым членом в выражении (2) и растет с увеличением H_{cool} . При достаточно больших значениях H_{cool} начнет превалировать второй член, и H_{EB} может даже сменить знак. Авторы работы [23] считают, что температура замерзания T_f гораздо ниже T_B . Полагая $T_f =$ = 100-200 K, результаты $H_{EB}(H_{cool})$ при 10 K можно удовлетворительно описать выражением (2) при $\mu \approx (1\text{--}2) \cdot 10^3 \mu_B$ и $J_i \approx -0.6$ мэВ, что соответствует размеру ФМ-кластеров d=3-4 нм для $\mu_0=$ $=2\mu_B$ иона Co³⁺ в промежуточном (S = 1) состоянии (сплошные линии на рис. 4).

Если модель верна, то в поле порядка 100 к \ni однонаправленная анизотропия должна полностью подавляться. В электронных манганитах значения $H_{EB}(H_{cool})$ слабо меняются (т. е. обменное смещение не подавляется) до 75 к \ni при гелиевой температуре [21–23]. Различие в поведении объясняется тем, что в исследованном образце GdBaCo₂O_{5.52(2)} размер Φ M-кластеров до 3–4 раз больше, чем в манганитах. Согласно модели обменной анизотропии, величина H_{EB} обратно пропорциональна размеру (толщине) Φ M-слоя, t_{FM} : $H_{EB} \propto 1/t_{FM}$ [4–6].

Одной из интересных характеристик в системах с обменным смещением является тренировочный эффект, который проявляется в уменьшении H_{EB} и установлении своего равновесного значения H_{EB}^{eq} при бесконечном циклическом изменении магнитного поля [4–6]. На рис. 5 приведены результаты исследований обменного смещения и тренировочного эффекта при 77 К посредством циклических (N=7) изменений магнитного поля $H_{cool}=\pm 15$ кЭ. Величины H_{EB} и M_{EB} уменьшаются при циклическом изменении магнитного поля. На нижней встав-

Рис. 5. Зависимость намагниченности при циклическом изменении магнитного поля при $T=77~{\rm K}$: верхняя вставка — зависимости H_{EB} (1) и M_{EB} (2) от номера цикла N, символы — эксперимент, сплошная линия — расчет, $H_{EB}, M_{EB} \propto 1/N^{1/2}$; нижняя вставка — низкополевая часть намагниченности в увеличенном масштабе

ке к рис. 5 в увеличенном масштабе показан типичный для систем с обменным смещением эффект тренировки для N=7 циклов намагничивания. Нижняя ветвь M(H), исключая 1-й цикл, идет практически по одной линии, а уменьшение H_{EB} происходит за счет верхней ветви M(H). Наиболее резкое уменьшение H_{EB} происходит после 1-го цикла, далее монотонно уменьшается (верхняя вставка к рис. 5), что также типично для эффекта тренировки. Природа этого эффекта в настоящее время не совсем ясна. Чисто экспериментально обнаружено, что связь между H_{EB} и N задается простым степенным законом при N>1 [4–6]:

$$H_{EB}(N) = H_{EB}^{eq} + \frac{K_H}{\sqrt{N}},$$

$$M_{EB}(N) = M_{EB}^{eq} + \frac{K_M}{\sqrt{N}},$$
(3)

где H_{EB}^{eq} и M_{EB}^{eq} — равновесные значения H_{EB} и M_{EB} при бесконечном цикле намагничивания, K_H и K_M — некоторые постоянные величины. Полученные результаты удовлетворительно описываются при $H_{EB}^{eq}=510$ Э и $K_H=193$ Э. Аналогичные результаты получены и для $M_{EB}(N)$ (нижняя вставка к рис. 5). Равновесное значение H_{EB}^{eq} почти в 2 раза меньше своего начального значения.

Далее оценена плотность ФМ-кластеров в образце. Линейная зависимость намагниченности до 50 к Θ (см. рис. 5), полученная после N=7 циклов намагничивания, объясняется вкладами парамагнетизма ионов Gd^{3+} и $\mathrm{A}\Phi\mathrm{M}$ -ионов Co^{3+} . Экс-

траполяцией зависимости M(H) можно грубо оценить (линия на рис. 5) намагниченность насыщения ФМ-кластеров. Вычитая вклад в намагниченность от парамагнетизма ионов Gd^{3+} и АФМ-вклад от ионов Co^{3+} из значений M(H), можно оценить намагниченности насыщения ФМ-кластеров $M_s(T)$: величина M_s убывает с понижением температуры ($M_s \approx 2.8~\mathrm{\Gamma c}$ при 150 K, см. нижнюю вставку к рис. 2) и остается приблизительно постоянной, $M_s \approx 1.7-1.4~\mathrm{\Gamma c}$, при низких температурах. Следуя рекомендациям работы [23], из соотношения

$$M_s = n\mu \tag{4}$$

можно оценить плотность n ФМ-кластеров. Полагая $\mu=10^3\mu_B$ и $M_s\approx 1.7$ Гс, мы оценили величину $n\sim 10^{-7}\,\rm \mathring{A}^{-3}$. Такая плотность n соответствует расстоянию между ФМ-кластерами порядка 20 нм. Величина n в электронных манганитах $R_{1-x}{\rm Mn}_x{\rm O}_3$ уменьшается от $10^{-5}\,\rm \mathring{A}^{-3}$ до $2\cdot 10^{-7}\,\rm \mathring{A}^{-3}$ при уменьшении x от 33 до $7\,\%$ [22,23], что согласуется с полученными значениями n для 3–4 % Co⁴⁺ в нашей работе.

Таким образом, причиной обменного смещения в слоистом кобальтите $GdBaCo_2O_{5+\delta}$ является существование ФМ-кластеров в АФМ-матрице, вызванное избытком кислорода ($\delta>0.5$) и, соответственно, существованием определенного количества (около 3-4%) ионов Co^{4+} в матрице с основной массой трехвалентных ионов кобальта. Предполагается, что фазовое расслоение и обменное смещение могут быть достигнуты за счет изменения стехиометрии и содержания кислорода и в других слоистых кобальтитах. В работе впервые определены основные параметры обменного смещения слоистых кобальтитов: температура блокировки, полевые и температурные зависимости поля обменного смещения, эффекты тренировки, оценены размеры ФМ-кластеров и их плотность. Полученные результаты свойственны классическим соединениям с обменной анизотропией в модели Майклджона и Бина [1, 2]. Обменное смещение может быть инструментом исследования фазового расслоения.

Работа выполнена в рамках государственного задания ФАНО России (тема «Спин», № 01201463330) и проектов УрО РАН (№№ 15-9-2-4, 18-10-2-3).

ЛИТЕРАТУРА

 W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).

- W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957).
- 3. С. В. Вонсовский, Магнетизм, Москва (1971).
- 4. R. L. Stamps, J. Phys. D 33, R247 (2000).
- 5. J. Nogués, J. Sort, V. Langlais et al., Phys. Rep. 422, 65 (2005).
- F. Radu and H. Zabel, Springer Tracts Mod. Phys. 227, 97 (2008).
- S. K. Giri and T. K. Nath, J. Nanosci. Nanotechnol. 14, 1209 (2014).
- **8**. Н. И. Солин, С. В. Наумов, С. В. Телегин и др., Письма в ЖЭТФ **104**, 44 (2016).
- C. Martin, A. Maignan, D. Pelloquin et al., Appl. Phys. Lett. 71, 1421 (1997).
- J. Wu, J. W. Lynn, C. J. Glinka et al., Phys. Rev. Lett. 94, 037201 (2005).
- A. Maignan, C. Martin, D. Pelloquin et al., J. Sol. St. Chem. 142, 247 (1999).
- 12. F. Fauth, E. Suard, V. Caignaert et al., Phys. Rev. B 66, 184421 (2002).

- **13**. H. Luetkens, M. Stingaciu, Yu. G. Pashkevich et al., Phys. Rev. Lett. **101**, 017601 (2008).
- A. A. Taskin, A. N. Lavrov, and Yoichi Ando, Phys. Rev. B 71, 134414 (2005).
- **15**. С. В. Наумов, С. В. Телегин, Д. С. Цветков и др., Изв. РАН, сер. физ. **77**, 1513 (2013).
- M. Respaud, C. Frontera, J. L. García-Muñoz et al., Phys. Rev. 64, 214401 (2001).
- **17**. P. Chaddah, Kranti Kumar, and A. Banerjee, Phys. Rev. B **77**, 100402(R) (2008).
- Tapati Sarkar, V. Pralong, and B. Raveau, Phys. Rev. B 83, 214428 (2011).
- C. Frontera, J. L. García-Muñoz, A. Llobet et al., Phys. Rev. B 65, 180405(R) (2002).
- **20**. В. А. Дудников, Д. А. Великанов, Н. В. Казак и др., ФТТ **54**, 74 (2012).
- 21. S. Karmakar, S. Taran, E. Bose et al., Phys. Rev. B 71, 144409 (2008).
- **22**. V. Markovich, I. Fita, A. Wisniewski et al., J. Appl. Phys. **116**, 093903 (2014).
- 23. D. Niebieskikwiat and M. B. Salamon, Phys. Rev. B 72, 174422 (2005).