ВЫБРОС ЧАСТИЦ СО СВОБОДНЫХ ПОВЕРХНОСТЕЙ УДАРНО-НАГРУЖЕННЫХ ОБРАЗЦОВ ИЗ СВИНЦА В ВАКУУМИРОВАННУЮ И ГАЗОВУЮ СРЕДЫ

В. А. Огородников^{а,b}, А. Л. Михайлов^{а,b}, С. В. Ерунов^а, М. В. Антипов^а,

А. В. Федоров^а, М. А. Сырунин^{а,b}, Е. В. Кулаков^{а*}, О. А. Клещевников^а,

И. В. Юртов^а, А. А. Утенков^а, С. А. Финюшин^а, Е. А. Чудаков^а,

Д. А. Калашников^а, А. С. Пупков^а, А. В. Чапаев^а, А. В. Мишанов^а,

В. В. Глушихин^а, А. В. Федосеев^b, Р. Р. Тагиров^a, С. А. Костюков^a,

И. Ю. Тагирова^а, Е. В. Сапрыкина^а

^а Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики 607188, Саров, Нижегородская обл., Россия

^b Саровский физико-технический институт-филиал НИЯУ МИФИ 607188, Саров, Нижегородская обл., Россия

Поступила в редакцию 16 апреля 2017 г.

Наличие и поведение газо-металлического слоя перед свободной поверхностью лайнеров, разгоняемых ударно-волновым способом в газах различного состава и плотности, исследовано не достаточно. В связи с этим в данной работе приводятся новые сравнительные результаты по исследованию «пыления» со свободной поверхности образцов из свинца при наличии перед ней вакуума или газа в зависимости от ее шероховатости и амплитуды давления на фронте ударной волны или фазового состояния материала. Предложены способы оценки массы потока частиц при наличии перед свободной поверхностью газовой среды.

DOI: 10.7868/S004445101712001X

1. ВВЕДЕНИЕ

Явление ударно-волнового «пыления» или выброса (ejection) частиц со свободной поверхности (СП, FS) материала при падении на нее ударной волны (УВ, SW) исследовалось экспериментально достаточно давно и подробно, особенно в последнее время [1–15]. Известны также результаты моделирования процесса «пыления» на основе решения Рихтмайера – Мешкова для малых периодических возмущений синусоидальной формы на СП при падении на нее стационарной или нестационарной УВ как для жидкости, так и для упругопластического материала [12, 14]. Согласно результатам этих исследований, превалирующее влияние на механизм выброса частиц с СП образца оказывают ее шероховатость (микрорельеф) и агрегатное состояние материала (твердое или жидкое). При падении УВ на СП образца с микронеровностями, связанными, например, с токарной обработкой, происходит схлопывание стенок канавок, образовавшихся от резца. При этом формируются микроструи, которые из-за наличия градиента скорости вдоль направления движения и прочности материала, распадаются на отдельные фрагменты (частицы). Размер частиц связан с размером и геометрией микронеровности (канавки). В зависимости от агрегатного состояния материала (твердое, жидкое), скоростей частиц и параметров газовой среды более крупные частицы могут дробиться на более мелкие. Следует отметить, что в большей степени имеется информация об источнике «пыления», связанная с шероховатостью СП, структурой и дефектностью материала, его фазо-

^{*} E-mail: k.evg.v@yandex.ru

Рис. 1. Схемы нагружения исследуемых образцов: 1 — розетка с электродетонатором, 2 — линзовый генератор УВ, 3 заряд ВВ, 4 — подложка из фторопласта, 5 — стенка капсулы, 6 — образец

вым состоянием (твердое, жидкое), и в меньшей степени – с факторами, влияющими на этот процесс, в частности, наличием газа перед СП, его плотностью, ударно-волновыми свойствами и начальным давлением в нем. Наличие и поведение слоя или «подушки» из частиц перед СП в газе представляет повышенный интерес, поскольку она экранирует СП и препятствует регистрации тонкой структуры ее движения с использованием, например, доплеровских методов [16].

В зависимости от интенсивности УВ, выходящей на СП, начальных значений размеров и скоростей частиц, плотности, вязкости газа и его ударноволновых свойств частицы могут тормозиться в газе, дробиться на более мелкие, будут опережать фронт УВ в газе или находиться между СП и фронтом УВ, образуя своеобразную «подушку» [15]. Если оценку размеров единичных частиц можно сравнительно просто получить по результатам измерения их скоростей при торможении в неподвижном газе [17], то нахождение распределения плотности и массы частиц в «подушке» перед СП в направлении ее движения представляет более сложную задачу. Это связано со сложным поведением частиц, выбрасываемых с СП в газ, включающим в себя последовательность таких процессов, как торможение и распад первичных частиц в неподвижном газе, если их начальная скорость больше скорости УВ в газе $(U_{PF} > U_{SW})$; торможение и распад первичных частиц в сжатом и нагретом УВ газе, если начальная скорость частиц меньше скорости УВ в газе $(U_{PF} < U_{SW})$; ускорение или торможение (в зависимости от соотношения скоростей U_{PF} , U_{SW} в момент догона) частиц газовым потоком за догоняющей их УВ. Таким образом, если использование, например, пьезоэлектрических датчиков и тонких пластин (индикаторных фольг) для определения массы частиц в «подушке» при наличии перед СП вакуума оправдано, то в присутствии газа требуется более тщательный анализ их использования с введением соответствующих поправок. Таким образом, моделирование образования и дальнейшей эволюции газо-металлической «подушки» перед СП при наличии газа представляет собой достаточно сложную задачу, требующую привлечения дополнительных экспериментальных результатов.

В данной работе представлены экспериментальные результаты исследования процесса «пыления» при выходе УВ с амплитудой на фронте от 17 до 50 ГПа на СП образцов из свинца марки С1 с шероховатостью $R_z = 13$ (амплитуда $2a_0 = 13$ мкм, длина волны $\lambda = 60$ мкм) и $R_a = 0.4$ ($2a_0 = 1.6$ мкм, $\lambda = 40$ мкм), которая граничила с разреженным воздухом (вакуумом) при давлении $P \leq 10^3 \, \Pi a$ или газовой смесью гелия и азота с плотностью $ho_0 = 0.04$ г/см³ при давлении $P = 8 \cdot 10^5$ Па. В отличие от многих работ по исследованию «пыления», в которых диаметр нагружаемого участка СП составлял около 15-20 мм в данной работе использовались специальные устройства с увеличенным диаметром площади нагружения СП образца до 90 мм. Это позволило использовать большее количество пьезоэлектрических и PDV-датчиков для определения количественных характеристик выбрасываемых потоков частиц. На рис. 1 приведены схемы нагружения образцов, позволяющие создавать

Рис. 2. Фазовая диаграмма при разгрузке свинца: 1 -ударная адиабата, 2 -линия плавления, 3, 4, 5 -изэнтропы разгрузки соответственно при P = 50 ГПа, 30 ГПа, 17 ГПа

различные давления на фронте УВ, выходящей на СП, при которых в свинце реализуются состояния: твердое (~ 17 ГПа) и расплавленное в волне разгрузки (~ 30 ГПа) или ударной волне (~ 50 ГПа), соответственно (рис. 1a, 6, 6), что иллюстрируется диаграммой фазового состояния образцов из свинца при ударно-волновом нагружении (рис. 2) [17, 18].

Результаты предварительных сравнительных рентгенографических опытов с образцами из свинца с шероховатостью СП $R_z = 13$ в вакууме и в атмосфере воздуха при нормальном давлении около 10^5 МПа свидетельствуют о вполне удовлетворительной разновременности движения пылевых потоков частиц (рис. 3).

Основные эксперименты проводились на модернизированном комплексе «ПЫЛЕНИЕ» [14] с увеличенным количеством датчиков в приемнике: восемь пьезоэлектрических (четыре кварцевых и четыре пезокерамических (ЦТС-21)) и двенадцать PDV-датчиков методики гетеродин — интерферометр (шесть датчиков для регистрации СП, два датчика для регистрации движения индикаторных фольг из алюминия толщиной 12 и 200 мкм, по два датчика для регистрации движения пластин из кварцевого стекла и тантала толщиной 210 мкм). Образцы и приемники с установленными датчиками помещались в капсулы (рис. 4a), которые вакуумировались или заполнялись газом. При этом вплоть до проведения эксперимента осуществлялся контроль величин разрежения (рис. 46) или давления в капсуле (рис. 4*в*).

На рис. 5 приведены типичные профили давления, регистрируемые с помощью пьезоэлектрических датчиков в опытах с вакуумом (рис. 5a) и газом (рис. 5b) перед СП; профили скорости движения пылевого потока, СП и индикаторной фольги, регистрируемые PDV-датчиками в вакууме (рис. 5d); x-t-диаграммы (рис. 5 δ , z, e) исследуемых процессов, где T_0 — время выхода УВ на СП образца, T_1 — время прихода к ПД пылевого потока в вакууме или УВ в газе, T'_1 — время подлета пылевого потока к индикаторной фольге, T_2 — время подлета к ПД поверхности образца, T'_2 — время доразца по индикаторной фольге, T_3 — время подлета к ПД фронта потока частиц в газе.

Время T_1 определялось по моменту превышения сигналом пьезодатчика уровня приборного шума на наиболее чувствительном канале осциллографа. Время T_2 определялось по моменту, в который скорость нарастания давления на рассматриваемый датчик резко увеличивалась. Время T_3 определялось по началу повторного плавного нарастания давления на профиле P(t). Эти моменты времени сверялись по x-t-диаграммам, построенным с учетом измерений, проведенных с использованием как пьезоэлектрических, так и PDV-датчиков.

На рис. 6 приведены типичные графики распределения массы частиц в потоке в направлении их движения, полученные формально с использованием соотношений, используемых в методе пьезодатчиков [19]:

$$p(t) = \frac{1}{d_{ps}S} \int_{T_1}^{t} \frac{V(t)}{R} dt,$$
 (1)

$$\rho(t) = \frac{t^2}{d_{ps}Sh^2} \int_{T_1}^t \frac{V(t)}{R} dt,$$
 (2)

$$m(t) = h \int_{T_1}^{t} \frac{\rho(t)}{t} dt, \qquad (3)$$

$$u(t) = h/t, (4)$$

где d_{ps} — пьезомодуль чувствительного элемента пьезодатчика; S — площадь чувствительного элемента пьезодатчика; V(t) — напряжение, регистрируемое на осциллографах; R — согласующее сопротивление; h — база пролета, соответствующая расстоянию от свободной поверхности исследуемого образца до поверхности пьезодатчика.

Удельные массы $m(T_2)$, вычисленные с использованием формул (1)–(4), при интегрировании на интервале от T_1 до T_2 для опытов с вакуумом, соответствуют массам потока частиц. Однако для опытов с газом на измерения масс $m(T_2)$ может оказать вли-

Рис. 3. Начальная шероховатость и форма СП образцов из свинца в предварительных опытах

Рис. 4. Вид капсулы с установленным приемником и образцом (*a*), графики контроля разрежения (*б*) и давления газа (*в*) в полости: 1 — образец с нагружающим устройством, 2 — приемник с установленными датчиками

Рис. 5. Типичные профили давления, регистрируемые с помощью пьезоэлектрических датчиков в опытах с вакуумом (*a*) и с газом (*b*) перед СП, профили скоростей СП и индикаторных фольг, регистрируемые PDV-датчиками в вакууме (*d*), а также *x*-*t*-диаграммы исследуемых процессов: *б*) 1 — фронт пыли, 2 — СП образца; *c*) 1 — фронт УВ по газу, 2 — СП образца, 3 — фронт потока частиц; *e*) 1 — фронт потока частиц, 2 — СП образца, 3 — движение фольги

Рис. 6. Типичные зависимости распределения массы потока частиц, полученные по формулам (1)–(3) при использовании профилей давления в вакууме (*a*) и в газе (б) для керамики (сплошные линии) и кварца (штриховые)

яние наличие газа. Для определения удельных масс собственно потока частиц использовались два способа: в первом способе эта масса определялась путем обработки сигналов только на интервале от T_3 до T_2 по формулам (1)–(4), а во втором — из полученной массы $m(T_2)$ на интервале от T_1 до T_2 вычиталась поправка δm , учитывающая влияние газа на измерения.

Первый способ основан на предположении о том, что сигналы от пьезодатчиков в интервале времени от Т₃ до Т₂ связаны, главным образом, с воздействием потока частиц. Проведенные с использованием комплекса программ ЛЭГАК [20] двумерные расчеты показывают, что возрастание давления в моменты T_3 (рис. 5*в*) нельзя связать с влиянием газа, поэтому данное нарастание давления может быть связано только с воздействием потока частиц в газе. Поскольку известно [19], что пьезодатчики генерируют сигналы только при изменении давления, то сигналы, связанные с влиянием газа, возникают в момент прихода ударной волны в газе T_1 , а к моменту T_3 , когда давление газа на датчики становится постоянным, сигналы под действием газа не генерируются. Можно предположить, что и газ, находящийся между частицами в газо-металлической «подушке», продолжает оказывать на датчики постоянное давление, как это наблюдалось и до момента T_3 . В этом случае, проводя процедуры по обработке сигналов с использованием формул (1)–(4) в интервале от T_3 до T_2 , можно оценить массу только потока частиц. Такой способ является в определенной степени оценочным, поскольку неизвестна степень влияния газа, находящегося между частицами, на измерения. с использованием измеренных зависимостей давления от времени, основан на определении величины завышения измеряемой с помощью пьезодатчиков массы $m(T_2)$ из-за наличия над ним газа. Зная завышение измеряемой массы при наличии газа на величину δm можно определить количество пыли, намешанной в газ, путем вычитания из общей, оцененной по соотношению (3) удельной массы $m(T_2)$ при интегрировании от T_1 до T_2 , значения величины δm . Величина δm может быть определена по известным профилям давления, регистрируемым пьезодатчиками при отсутствии пыления, например, в опытах с образцами, имеющими высокую чистоту обработки поверхности (рис. 36), или из двумерных численных расчетов, моделирующих обтекание газом пьезодатчика при отсутствии «пыления», с учетом реальной геометрии.

Другой способ определения массы пыли в газе —

Так, при давлениях около 30 и 50 ГПа величина δm_1 была определена из опыта с образцом, у которого чистота обработки поверхности была высокой ($R_a = 0.4$) и поэтому наличием пыли в потоке можно пренебречь. Тогда для этих опытов можно принять, что оцененная по методике пьезоэлектрических датчиков масса равна величине завышения, связанного с влиянием газа: $m(T_2) = \delta m_1 =$ $= 10.3 \text{ мг/см}^2$.

Для опыта со свинцом при давлении 17 ГПа измеренные зависимости профиля давления от времени на интервале (T_1, T_3) согласуются с рассчитанным для этого опыта профилем давления газа на торец пьезодатчика (без учета эффекта «пыления») (рис. 7). Это позволяет использовать расчетную за-

Рис. 7. Профили давления газа на пьезодатчик, рассчитанные по программе ЛЭГАК в 2D-постановке (1) и измеренные пьезодатчиком в опыте без «пыления» ($R_a = 0.4$) (2)

Рис. 8. Процесс обтекания УВ в газе пьезодатчика по результатам расчета по программе ЛЭГАК

висимость для определения поправки δm_2 . Расчет величины δm_2 дает значение 15.9 мг/см².

Общая картина обтекания пьезодатчика УВ в газе по результатам двумерного расчета, выполненного по методике ЛЭГАК, приведена на рис. 8 (приведено распределение давления).

Таким образом, для опытов со свинцом в газе использовались поправки $\delta m_2 = 15.9 \text{ мг/см}^2$ (при давлении в УВ около 17 ГПа) и $\delta m_1 = 10.3 \text{ мг/см}^2$ (при давлении в УВ около 30 и 50 ГПа).

Основные кинематические характеристики и значения масс пыли в вакуумированных капсулах и в газе, оцененные описанными выше способами, приведены соответственно в табл. 1 и 2, где приняты следующие обозначения: U₁ — скорость движения фронта пылевого потока в вакууме или УВ в газе; U₂ — скорость движения поверхности образца; U₃ — скорость потока частиц в газе, регистрируемая пьезодатчиками в момент времени T_3 ; $m(T_2)$ и $m(T_3, T_2)$ — удельные массы потока частиц, вычисленные с использованием соотношений (1)–(4) для интервалов времени соответственно (T_1, T_2) и (T₃, T₂); оценка массы частиц в газе сделана в предположении, что завышение измеренной массы $m(T_2)$ равно удельной массе газа, измеренной в опыте без «пыления» (δm_1) , либо полученной с использованием расчетной поправки на влияние газа (δm_2) .

Анализ результатов опытов (табл. 1 и 2) в вакууме и газе свидетельствует о том, что скорости фронтов потоков и скорости образцов, измеренные с использованием пьезоэлектрических и PDV-датчиков, хорошо согласуются.

В опытах в вакууме, как по пьезоэлектрической методике, так и по методике индикаторных фольг, получены близкие значения удельных масс. В этих опытах при давлениях в УВ равных примерно 30 и 50 ГПа, при которых свинец плавится в волне разгрузки или в УВ, измеренные удельные массы потоков частиц примерно в два раза больше, чем в опыте с давлением около 17 ГПа, при котором плавление образца не реализуется, что не противоречит известным экспериментальным данным [4]. При фиксированном давлении в УВ, равном 50 ГПа, измеренная масса потока частиц оказалась в 2.5 раза меньше для опыта с образцом, имеющим меньшую шероховатость. Отмеченные закономерности имели место также при расчетном моделировании опытов с использованием программного комплекса ЛЭГАК [20], как по скоростям образцов и фронтов потоков частиц, так и по удельным массам потоков частиц.

В опытах с газом значения подлетных скоростей пыли, измеренные датчиками PDV, оказались близки к скоростям пылевых потоков, регистрируемых

$P_{SW},$ ГПа	P_G , атм	$U_1, { m Km/c}$			$U_2, { m Km/c}$			U_3 , км/с
		Пьезо	PDV	Расчет	Пьезо	PDV	Расчет	
15	0.1	1.9	2.0	1.7	1.1	1.1	1.2	_
30		3.0	3.4	2.7	1.8	1.8	1.7	_
50		3.6	4.1	3.4	2.4	2.3	2.3	_
		3.1	3.4	3.4	2.4	2.3	2.3	_
15	8	1.6	1.5	_	1.1	1.1	1.2	1.2
30		2.2	2.3	_	1.8	_	1.7	1.8
50		2.9	2.8	—	2.4	—	2.3	2.5
		2.8	2.8	_	2.4	2.3	2.3	2.4

Таблица 1. Результаты измерений и оценок основных кинематических характеристик процесса выброса частиц

Таблица 2. Результаты измерений и оценок массы потоков частиц

	P_G , атм	$m,{ m mf/cm}^2$								
$P_{SW},$ ГПа										
		$m(T_2),$	$m(T_3, T_2),$	$m,~{ m mg}/{ m cm}^2$	$\overline{m},~{ m mr}/{ m cm}^2$	PDV	Расчет			
		${ m mr}/{ m cm}^2$	${ m Mr}/{ m cm}^2$	(оценка)	(среднее)					
15		4.8	_	_	4.8 ± 0.5	2.9 ± 0.1	3.9			
30	0.1	10.2	—	—	10.2 ± 1	11.6 ± 2.0	8.4			
50	0.1	7.4	_	—	7.4 ± 0.7	8.0 ± 1.0	5.9			
		3.0	—	—	3.0 ± 0.3	3.7 ± 1.8	—			
15		16.2	2.2	0.3	1.3 ± 1.0	_	—			
30	8	10.7	1.6	0.4	1.0 ± 0.6	-	—			
50		11.4	0.9	1.1	1.0 ± 0.2	_	_			
		10.3	0.4	0	0.2 ± 0.2	_	_			

пьезоэлектрической методикой на фоне газа (фиксируемых в моменты T_3 , рис. $5\mathfrak{e}$). Это подтверждает правильность интерпретации регистрируемого нарастания давления после моментов T_3 как следствие воздействия пылевых потоков в газе.

Сравнение скоростей фронтов потоков частиц в вакууме с подлетными скоростями частиц в газе по обеим используемым методикам показывает их уменьшение примерно в 1.6 раза в использованной газовой смеси, а оцененные значения удельных масс пыли в опытах с газом оказались почти на порядок меньше, чем в опытах без газа, и не превышают 1.3 мг/см². Можно отметить, что учет влияния газа обоими способами оценки дает близкие значения величин массы частиц в потоке. По нашему мнению начальное количество материала (частиц), выбрасываемого со свободной поверхности за счет микрокумуляции в вакууме и газовой смеси близко, однако измеренная меньшая масса частиц в газовой смеси свидетельствует о том, что основная часть частиц прижимается к свободной поверхности. В результате получается более плотная и тонкая газо-металлическая «подушка», воспринимаемая пьезодатчиком как удар СП.

По измерениям с помощью PDV-датчиков траекторий торможения частиц в газе сделана оценка их размеров, которые составили от 1 до 3 мкм.

Таким образом, по результатам опытов с образцами из свинца можно утверждать, что наличие газовой смеси гелия и азота с плотностью $\rho_0 =$ = 0.04 г/см³ при давлении $P_G = 8 \cdot 10^5$ Па перед СП приводит к тому, что поток частиц прижимается к образцу в виде газо-металлического слоя («подушки») толщиной около 1 мм, а регистрируемая пьезодатчиками удельная на единицу поверхности масса частиц в потоке газа, намного меньше изначально выброшенной.

ЛИТЕРАТУРА

- W. S. Vogan, W. W. Anderson, M. Grover, J. E. Hammerberg, N. S. P. King, S. K. Lamoreaux, G. Macrum, K. B. Morley, P. A. Rigg, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, J. Appl. Phys. 98, 113508 (2005).
- Н. Д. Семкин, К. Е. Воронов, Л. С. Новиков, Н. Г. Богоявленский, ПТЭ № 2, 123 (2005).
- T. Resseguier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, J. Appl. Phys. **101**, 013506 (2007).
- 4. M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, J. Appl. Phys. **102**, 013522 (2007).
- T. C. Germann, J. E. Hammerber, and G. Dimonte, 7th Biannual Int. Conf. New Models and Hydrocodes for Shock Wave Processes in Condensed Matter, Portugal, May (2008), pp. 18–23.
- В. А. Огородников, А. Л. Михайлов, В. В. Бурцев, С. А. Лобастов, С. В. Ерунов, А. В. Романов, А. В. Руднев, Е. В. Кулаков, Ю. Б. Базаров, В. В. Глушихин, И. А. Калашник, В. А. Цыганов, Б. И. Ткаченко, ЖЭТФ 136, 6 (2009).
- Н. В. Невмержицкий, А. Л. Михайлов, В. А. Раевский, В. С. Сасик, Ю. М. Макаров, Е. А. Сотсков, С. А. Абакумов, А. В. Руднев, В. В. Бурцев, С. А. Лобастов, А. А. Никулин, Е. Д. Сеньковский, О. Л. Кривонос, А. А. Половников, О. Н. Апрелков, ВАНТ, Сер. Теоретическая и прикладная физика, № 3, 3 (2010).
- G. Dimonte, G. Terrones, and F. Cherne, Phys. Rev. Lett. 107, 264502 (2011).
- Yongtao Chen, Haibo Hu, Tiegang Tang, Guowu Ren, and Qingzhong Li, J. Appl. Phys. 111, 053509 (2012).
- 10. D. M. Oró, J. E. Hammerberg, W. T. Buttler, F. G. Mariam, C. Morris, C. Rousculp, and J. B. Stone, AIP Conf. Proc. 1426, 1351 (2012).

- D. S. Sorenson, R. M. Malone, G. A. Capelle, P. Pazuchanics, R. P. Johnson, M. L. Kaufman, A. Tibbitts, T. Tunnell, D. Marks, M. Grover, B. Marshall, G. D. Stevens, W. D. Turley, and B. LaLone, *Proc. NEDPC 2013*, Livermore, California, US, LA-UR-14-23036 (2013).
- 12. М. В. Антипов, А. Б. Георгиевская, В. В. Игонин, В. Н. Князев, А. И. Лебедев, М. О. Лебедева, К. Н. Панов, В. А. Раевский, В. Д. Садунов, А. А. Утенков, И. В. Юртов, Труды XV международной конференции Харитоновские научно-тематические чтения, Саров (2013), с. 666.
- S. K. Monfared, D. M. Oró, M. Grover, J. E. Hammerberg, B. M. LaLone, C. L. Pack, M. M. Schauer, G. D. Stevens, J. B. Stone, W. D. Turley, and W. T. Buttler, J. Appl. Phys. **116**, 063504 (2014).
- А. Л. Михайлов, В. А. Огородников, В. С. Сасик, В. А. Раевский, А. И. Лебедев, Д. Е. Зотов, С. В. Ерунов, М. А. Сырунин, В. Д. Садунов, Н. В. Невмержицкий, С. А. Лобастов, В. В. Бурцев, А. В. Мишанов, Е. В. Кулаков, А. В. Сатарова, А. Б. Георгиевская, В. Н. Князев, О. А. Клещевников, М. В. Антипов, В. В. Глушихин, И. В. Юртов, А. А. Утенков, Е. Д. Сеньковский, С. А. Абакумов, Д. В. Пресняков, И. А. Калашник, К. Н. Панов, В. А. Аринин, Б. И. Ткаченко, В. Н. Филяев, А. В. Чапаев, А. В. Андраманов, М. О. Лебедева, В. В. Игонин, ЖЭТФ 145, 5 (2014).
- 15. В. А. Огородников, А. Л. Михайлов, В. С. Сасик, С. В. Ерунов, М. А. Сырунин, А. В. Федоров, Н. В. Невмержицкий, Е. В. Кулаков, О. А. Клещевников, М. В. Антипов, И. В. Юртов, А. В. Руднев, А. В. Чапаев, А. С. Пупков, Е. Д. Сеньковский, Е. А. Сотсков, В. В. Глушихин, И. А. Калашник, С. А. Финюшин, Е. А. Чудаков, Д. А. Калашников, ЖЭТФ 149, 6 (2016).
- 16. J. R. Asay and L. M. Barker, J. Appl. Phys. 45, 2540 (1974).
- 17. А. В. Федоров, А. Л. Михайлов, С. А. Финюшин, Д. В. Назаров, Е. А. Чудаков, Д. А. Калашников, Е. И. Бутусов, Труды XV международной конференции Харитоновские научно-тематические чтения, Саров (2013), с. 274.
- 18. В. П. Копышев, А. Б. Медведев, Термодинамическая модель сжимаемого ковалюма, Препринт, РФЯЦ-ВНИИЭФ, Саров (1995), с. 121.
- W. S. Vogan, W. W. Anderson et al., J. Appl. Phys. 98, 113508 (2005).
- 20. П. А. Авдеев, М. В. Артамонов, С. М. Бахрах, Вопросы атомной науки и техники, Сер. Математическое моделирование физических процессов, вып. 3, 14 (2001).