# ПЕРЕНОС ПРИМЕСИ ВО ФРАКТАЛЬНЫХ СРЕДАХ В ПРИСУТСТВИИ ДЕГРАДИРУЮЩЕГО ДИФФУЗИОННОГО БАРЬЕРА

# П. С. Кондратенко, К. В. Леонов\*

Институт проблем безопасного развития атомной энергетики Российской академии наук 115191, Москва, Россия

Московский физико-технический институт (государственный университет) 141701, Долгопрудный, Московская обл., Россия

Поступила в редакцию 28 февраля 2017 г.

Проанализированы режимы переноса и асимптотики концентрации примеси в случайно-неоднородной фрактальной среде в случае, когда источник примеси окружен слабопроницаемым барьером, испытывающим процесс деградации. Систематика режимов переноса зависит от соотношения между временем выхода примеси из барьера,  $t_0$ , и временем начала разрушения,  $t_*$ . При  $t_0 < t_*$  процессы разрушения не играют роли. В обратном случае, когда  $t_0 > t_*$ , на временах  $t < t_*$  результаты формально сводятся к задаче со стационарным барьером. Характеристики режимов при  $t_* < t < t_0$  зависят от сценария, по которому происходит разрушение барьера. При экспоненциально быстром сценарии интервал  $t_* < t < t_0$  оказывается очень узким, и тогда режим переноса, идущий на временах  $t < t_*$ , практически скачкообразно переходит в режим задачи без барьера. При медленном степенном сценарии в продолжительном интервале времени  $t_* < t < t_0$  перенос идет в новом режиме, который по сравнению с задачей со стационарным барьером является более быстрым, но медленным по отношению к задаче без барьера. Асимптотика концентрации на больших расстояниях от источника на временах  $t < t_0$  является двухступенчатой, а при  $t > t_0$  — одноступенчатой. Более далекая ступень при  $t < t_0$  и единственная при  $t > t_0$  совпадают с асимптотикой в задаче без барьера.

**DOI:** 10.7868/S0044451017080168

#### 1. ВВЕДЕНИЕ

Уже давно известно, что в сильнонеоднородных средах процессы переноса примеси не всегда описываются классическими закономерностями [1,2]. В сравнении с классической диффузией могут наблюдаться режимы более быстрые (супердиффузия) и более медленные (субдиффузия). В неклассических моделях источник примеси обычно либо занимает усредненное по неоднородностям среды положение, либо локализован в сильнопроницаемой подсистеме [3].

Интерес, в том числе и с точки зрения практических приложений, представляют ситуации, когда источник отделен от основной среды диффузионным (слабопроницаемым) барьером, который имеет тенденцию к деградации со временем. Применительно к задаче захоронения отработавшего ядерного топлива известно, что времена полураспада некоторых изотопов могут составлять десятки тысяч лет и более. Однако сам барьер начнет разрушаться раныше, что может привести к выходу примеси в геологическую среду. Поэтому процесс деградации барьера необходимо учитывать при оценке захоронения радиоактивных отходов.

В работе [4] рассмотрены режимы переноса и асимптотики концентрации примеси в случайно-неоднородной фрактальной среде в условиях, когда источник примеси окружен слабопроницаемым диффузионным барьером с постоянным коэффициентом диффузии.

В настоящей работе рассмотрена более общая, «динамическая», задача с учетом зависимости коэффициента диффузии барьера от времени. Основная среда, в которой локализован барьер, представляет собой нерегулярную (случайную) систему трещин,

<sup>\*</sup> E-mail: lk333@list.ru, konstantin.leonov@phystech.edu

обладающую фрактальными свойствами. Механизмом переноса в ней является адвекция.

Статья построена следующим образом. В разд. 2 описана постановка задачи и представлены основные соотношения. Раздел 3 посвящен выводу эффективной мощности источника и ее поведению в зависимости от времени. В разд. 4 получены выражения для основных характеристик распределения концентрации примеси в основной области ее локализации. Раздел 5 посвящен анализу режимов переноса с учетом скорости деградации барьера. В разд. 6 изложен вывод асимптотических профилей концентрации на далеких расстояниях от источника. В разд. 7 подведены итоги.

## 2. ПОСТАНОВКА ЗАДАЧИ. ОСНОВНЫЕ СООТНОШЕНИЯ

На рис. 1 схематически изображена пространственная область, по которой происходит перенос примеси.

Источник примеси S задан начальным распределением концентрации

$$c(\mathbf{r},t)|_{t=0} = N_0 \delta(\mathbf{r}),\tag{1}$$

где  $N_0$  — число частиц примеси при t = 0. Источник *S* окружен ближней зоной *N* (диффузионным барьером), которая заполнена слабопроницаемой средой. Перенос в ней происходит в режиме классической диффузии с коэффициентом D = D(t), зависимость которого от времени учитывает деграда-



Рис. 1. Геометрия задачи: S — источник примеси; N — ближняя зона (барьер); F — дальняя зона

цию барьера. Соответственно, концентрация примеси внутри барьера удовлетворяет уравнению

$$\frac{\partial c}{\partial t} = D(t)\Delta c. \tag{2}$$

Распространение примеси в дальней зоне F происходит за счет адвекции по неупорядоченной системе трещин с фрактальной геометрией. Считаем, что граница между зонами соответствует сфере радиуса R. Поскольку механизм переноса в дальней зоне существенно более быстрый по сравнению с ближней зоной, при решении задачи (2) воспользуемся нулевым граничным условием:

$$c(\mathbf{r},t)|_{r=R} = 0. \tag{3}$$

Концентрация  $c(\mathbf{r}, t)$  частиц в дальней зоне удовлетворяет уравнению

$$\frac{\partial c}{\partial t} + \operatorname{div}(\mathbf{v}c) = Q(t)\delta(\mathbf{r}).$$
(4)

Здесь Q(t) — эффективная мощность источника,  $\mathbf{v}(\mathbf{r})$  — скорость адвекции, являющаяся случайной функцией координат, с нулевым средним значением  $\langle \mathbf{v}(\mathbf{r}) \rangle = 0$ . Символ  $\langle \ldots \rangle$  обозначает усреднение по ансамблю реализаций. Поле скоростей удовлетворяет условию несжимаемости

$$\operatorname{div} \mathbf{v} = 0. \tag{5}$$

Поскольку система трещин фрактальная, корреляции скорости являются дальнодействующими, поэтому парная корреляционная функция имеет вид

$$K_{ij}^{(2)}(\mathbf{r}) \equiv \langle v_i(\mathbf{r}_1)v_j(\mathbf{r}_2)\rangle \sim V^2 (a/|\mathbf{r}|)^{2h}, \qquad |\mathbf{r}| \gg a,$$
(6)

где  $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$ , a — нижняя граница фрактальности,  $V^2$  — характерное значение функции  $K_{ij}^{(2)}(\mathbf{r})$ при  $|\mathbf{r}| \leq a, h > 0$  — масштабная размерность скорости  $\mathbf{v}(\mathbf{r})$ . Функция (6) масштабно-инвариантна и удовлетворяет соотношению

$$K_{ij}^{(2)}(\lambda \mathbf{r}) = \lambda^{-2h} K_{ij}^{(2)}(\mathbf{r}), \qquad (7)$$

где  $\lambda$  — любое безразмерное положительное число. Аналогичными свойствами обладают и корреляционные функции высших порядков.

С учетом линейности уравнения (4) среднюю по ансамблю реализаций концентрацию примеси можно представить в виде

$$\langle c(\mathbf{r},t)\rangle = \int_{0}^{t} dt' Q(t-t') G(\mathbf{r},t'), \qquad (8)$$

$$\int d^3r \, G(\mathbf{r}, t) = 1. \tag{9}$$

Функция Грина на далеких расстояниях имеет следующую асимптотику:

$$G(\mathbf{r},t) \propto \exp\left[-\Phi_*(r,t)\right], \quad r \gg R_*(t), \quad (10)$$

$$\Phi_*(r,t) \simeq \left(\frac{r}{R_*(t)}\right)^{1/(1-\gamma)}.$$
(11)

Здесь  $R_*(t)$  с точностью до коэффициента порядка единицы соответствует размеру основной области локализации примеси,  $R_*(t)$ , определяемому вторым моментом функции Грина:

$$\int d^3 r \, G(\mathbf{r}, t) \mathbf{r}^2 = R_*^2(t),$$

$$R_*(t) \sim \left(a^{(1-\gamma)/\gamma} V t\right)^{\gamma}.$$
(12)

Показатель степени  $\gamma$  в выражении для  $R_*(t)$  определяет режим переноса в задаче без барьера. Этот показатель связан с масштабной размерностью скорости адвекции таким образом, что  $\gamma = (1 + h)^{-1} > 1/2$  при h < 1 и реализуется режим супердиффузии, а при h > 1 имеем  $\gamma = 1/2$  и перенос идет в режиме классической диффузии.

В качестве характеристик режимов переноса задачи с барьером удобно выбрать полное число частиц примеси в дальней зоне (активных частиц),

$$N(t) = \int d^3r \langle c(\mathbf{r}, t) \rangle, \qquad (13)$$

и размер R(t) основной области локализации,

$$R^{2}(t) = N^{-1}(t) \int d^{3}r \langle c(\mathbf{r}, t) \rangle \mathbf{r}^{2}.$$
 (14)

Еще одной важной характеристикой является асимптотика концентрации на далеких расстояниях от источника:

$$\langle c(\mathbf{r},t) \rangle \propto \exp\left[-\Phi(r,t)\right], \quad r \gg R(t).$$
 (15)

Задача данной работы состоит в определении всех трех характеристик переноса примеси в присутствии деградирующего барьера.

### ЖЭТФ, том **152**, вып. 2 (8), 2017

## 3. ЭФФЕКТИВНАЯ МОЩНОСТЬ ИСТОЧНИКА

Поток частиц через границу диффузионного барьера в систему трещин определяет эффективную мощность источника для задачи о переносе примеси по основной области. Эта величина в соответствии с законом Фика определяется выражением

$$Q(t) = -4\pi R^2 D(t) \left. \frac{\partial c(r,t)}{\partial r} \right|_{r=R}.$$
 (16)

Вместо времени введем безразмерную переменную

$$u(t) = 4R^{-2} \int_{0}^{t} D(\tau) \, d\tau.$$
 (17)

Тогда задача о диффузии внутри барьера принимает форму

$$\left(\frac{\partial}{\partial u} - \frac{R^2}{4}\Delta\right)c = 0;$$

$$c|_{u=0} = N_0\delta(\mathbf{r}), \quad c|_{r=R} = 0.$$
(18)

Ее решение, полученное на основе преобразования Лапласа, имеет вид

$$c(r,t) = \int_{b-i\infty}^{b+i\infty} \frac{ds}{2\pi i} c_s(r) e^{su(t)}, \quad \operatorname{Re} b > 0, \qquad (19)$$

где

$$c_s(r) = \frac{N_0}{\pi r R^2} \frac{\operatorname{sh}\left[2\sqrt{s}\left(1 - r/R\right)\right]}{\operatorname{sh}\left(2\sqrt{s}\right)}$$
(20)

— образ Лапласа концентрации как функции безразмерного времен<br/>и $u(t),\,s$ — переменная Лапласа.

Выражение для мощности источника (16) с учетом равенств (17), (19) и (20) приобретает вид

$$Q(t) = N_0 \dot{u}(t) H(u(t)).$$
(21)

Здесь  $\dot{u}(t) \equiv du/dt$ , функция H(u) определена равенством, которое вытекает из обратного преобразования Лапласа выражения (20):

$$H(u) = \int_{b-i\infty}^{b+i\infty} \frac{ds}{2\pi i} e^{su} \frac{2\sqrt{s}}{\operatorname{sh}(2\sqrt{s})}, \quad \operatorname{Re} b > 0.$$
(22)

Как следует из выражения (22), функция H(u) удовлетворяет условию нормировки

$$\int_{0}^{\infty} du H(u) = 1$$
(23)

и в предельных случаях имеет вид

$$H(u) \simeq \begin{cases} \frac{4}{\sqrt{\pi u^5}} \exp\left(-\frac{1}{u}\right), & u \ll 1, \\ \frac{\pi^2}{2} \exp\left(-\frac{\pi^2}{4}u\right), & u \gg 1. \end{cases}$$
(24)

Соответственно, для эффективной мощности источника с учетом формул (17), (21) и (24) получаем

$$Q(t) \simeq \simeq N_0 \dot{u}(t) \begin{cases} \frac{4 \exp\left[-1/u(t)\right]}{\sqrt{\pi u^5(t)}}, & u(t) \ll 1, \\ \frac{\pi^2}{2} \exp\left(-\frac{\pi^2}{4}u(t)\right), & u(t) \gg 1. \end{cases}$$
(25)

В соответствии с равенствами (21) и (23) эффективная мощность источника удовлетворяет условию нормировки

$$\int_{0}^{\infty} dt Q(t) = N_0.$$
(26)

Заметим, что функция u(t), условно говоря, определяет долю пути, которую прошла примесь по отношению к внешней границе барьера. В качестве характерного времени выхода примеси из барьера примем время  $t_0$ , определяемое условием  $u(t_0) \equiv 1$ .

#### 4. РЕЖИМЫ ПЕРЕНОСА

Режимы переноса в дальней зоне устанавливаются зависимостями N(t) и R(t), которые были определены в разд. 2. После подстановки выражения (8) в равенство (13) с учетом (9) получаем

$$N(t) = \int_{0}^{t} dt' Q(t') = N_0 \int_{0}^{u(t)} du H(u).$$
 (27)

С помощью предельных выражений (25) и равенства (27) находим число активных частиц на малых и больших временах:

$$N(t) \simeq$$

$$\simeq N_0 \begin{cases} \frac{4}{\sqrt{\pi u(t)}} \exp\left(-\frac{1}{u(t)}\right), & u(t) \ll 1, \\ 1 - 2 \exp\left(-\frac{\pi^2}{4}u(t)\right), & u(t) \gg 1. \end{cases}$$
(28)

Выражение для размера основной области локализации частиц примеси, в общем виде связывающее его с соответствующим размером для безбарьерного прототипа  $R_*(t)$  и эффективной мощностью, получаем из равенства (14) с учетом (8) и (27):

$$R^{2}(t) = N^{-1}(t) \int_{0}^{t} dt' Q(t - t') R^{2}_{*}(t').$$
 (29)

На ранних стадиях, которые соответствуют  $u(t) \ll 1$ , интеграл в (29) будет набираться в окрестности нижнего предела. Поэтому допустимо воспользоваться выражением для Q(t - t'), которое получается из (25) разложением показателя экспоненты по переменной t' до первого порядка включительно:

$$Q(t-t') \approx Q(t) \exp\left(-\frac{t'}{t_{eff}(t)}\right),$$
 (30)

$$t_{eff}(t) = \frac{u^2(t)}{\dot{u}(t)} \ll t.$$
 (31)

В результате для R(t) имеем следующую оценку:

 $R(t) \sim R_* (t_{eff}(t)), \quad u(t) \ll 1,$  (32)

согласно которой  $R(t) \ll R_*(t)$  на этих временах. Отметим, что в соответствии с выражением (30) величина  $t_{eff}(t)$  имеет смысл эффективной продолжительности действия источника, отвечающего текущему времени t.

На поздних стадиях, когда  $u(t) \gg 1$ , согласно (28) имеем  $N(t) \simeq N_0$ . На этих временах интеграл в (29), как следует из асимптотического выражения для величины Q(t), сходится в интервале  $t - t' \sim t_0$ . Поэтому с учетом выражений (12) и (25) для величины R(t) получаем следующую оценку:

$$R(t) \sim R_*(t), \quad u(t) \gg 1.$$
 (33)

Таким образом, на поздних стадиях, когда  $u(t) \gg 1$ , число активных частиц и размер основной области локализации соответствуют задаче без барьера (безбарьерному прототипу).

## 5. ВЛИЯНИЕ СКОРОСТИ ДЕГРАДАЦИИ БАРЬЕРА НА РЕЖИМЫ ПЕРЕНОСА

С практической точки зрения вероятны два крайних сценария разрушения барьера: быстрый и медленный. Первый будем описывать экспоненциальной зависимостью коэффициента диффузии от времени:

13 ЖЭТФ, вып. 2(8)

$$D(t) = D_0 \left[ 1 + \exp\left(\frac{t - t_*}{t_d}\right) \right], \qquad (34)$$

а второй — степенной зависимостью:

$$D(t) = D_0 \left[ 1 + \left(\frac{t}{t_*}\right)^{\alpha} \right].$$
 (35)

Здесь  $t_d \ll t_*, \alpha > 0, t_*$  — характерное время начала процесса деградации,  $t_d$  — характерная продолжительность быстрой деградации.

Систематика режимов переноса зависит от соотношения между временем  $t_*$  и временем  $t_0$  выхода примеси из барьера, введенным в разд. 3 при помощи соотношения  $u(t_0) \equiv 1$ .

При условии  $t_0 \ll t_*$  вся примесь выходит за пределы барьера до того, как он начал разрушаться, и коэффициент диффузии в процессе вычислений характеристик переноса можно считать постоянным,  $D(t) \simeq D_0$ . Тогда все результаты сводятся к задаче о стационарном барьере, решенной в работе [4]. Естественно, что здесь скорость деградации не имеет значения.

Рассмотрим теперь случай обратного соотношения между характерными временами, который мы определим неравенством

$$u_* \ll 1,$$
$$u_* \equiv \frac{t_*}{\tilde{t}_0}, \quad \tilde{t}_0 = \frac{R^2}{4D_0}$$

На сверхмалых временах, когда  $t \ll t_*$ , или  $u \ll u_*$ , число активных частиц определяется первой из формул (28), в которую следует подставить

$$u(t) = \frac{t}{\tilde{t}_0}, \quad t \ll t_*.$$
(36)

Размер основной области локализации дается выражением (32) с

$$t_{eff}(t) = \frac{t^2}{\tilde{t}_0}.$$
(37)

Обе характеристики режима переноса, N(t) и R(t), на временах  $t \ll t_*$ , таким образом, формально совпадают с теми, которые были получены в работе [4] для стационарного барьера. Однако в случае деградирующего барьера, в отличие от [4], не происходит плавного перехода непосредственно в режим безбарьерного прототипа при  $t \sim t_*$ .

Существенные отличия от результатов работы [4] при  $u_* \ll 1$  возникают во временном интервале  $u_* \ll \ll u \ll 1$ . С учетом выражений (17), (34) и (35) безразмерное время u(t) и эффективное время (31) в этом интервале связаны с реальным временем t соотношениями

$$u(t) \simeq u_* \frac{t_d}{t_*} \exp\left(\frac{t - t_*}{t_d}\right),$$
  
$$t_{eff}(t) \simeq u_* \frac{t_d^2}{t_*} \exp\left(\frac{t - t_*}{t_d}\right)$$
(38)

для быстрого процесса деградации и

$$u(t) \simeq \frac{u_*}{\alpha + 1} \left(\frac{t}{t_*}\right)^{\alpha + 1},$$
  
$$t_{eff}(t) \simeq \frac{u_* t_*}{(\alpha + 1)^2} \left(\frac{t}{t_*}\right)^{\alpha + 2}$$
(39)

для медленного.

Рассмотрим характеристики режима переноса при  $u_* \ll u \ll 1$  сначала для быстрого сценария деградации барьера. Из системы (28) и выражения (38) для числа активных частиц имеем

$$N(t) \propto N_0 \exp\left[-u_*^{-1} \frac{t_*}{t_d} \exp\left(-\frac{t-t_*}{t_d}\right)\right], \quad (40)$$
$$u_* \ll u \ll 1.$$

Размер основной области локализации активных частиц при быстром сценарии, как следует из соотношений (32) и (38), имеет оценку

$$R(t) \propto \left[ u_* \frac{t_d^2}{t_*} \exp\left(\frac{t - t_*}{t_d}\right) \right]^{\gamma}, \qquad (41)$$
$$u_* \ll u \ll 1.$$

Отметим, что, в соответствии с определением  $u(t_0) = 1$ , продолжительность интервала между началом деградации и характерным временем выхода примеси из барьера при быстром сценарии деградации равна

$$t_0 - t_* = t_d \ln\left(\frac{t_*}{u_* t_d}\right) \tag{42}$$

и, в силу неравенства  $t_d \ll t_*$ , оказывается значительно меньше продолжительности действия барьера в стационарном состоянии (до начала процесса деградации),  $t_0 - t_* \ll t_*$ .

При медленном сценарии деградации выражения для числа активных частиц и размера основной области их локализации с учетом соотношений (28), (32) и (39) принимают вид

$$N(t) \propto N_0 \exp\left[-\frac{\alpha+1}{u_*} \left(\frac{t_*}{t}\right)^{\alpha+1}\right], \qquad (43)$$
$$t_* \ll t \ll t_0,$$



Рис. 2. (В цвете онлайн) Размер основной области локализации в зависимости от времени в случаях быстрой (a) и медленной (b) деградаций (схематически): 1 — стационарный барьер со временем диффузии  $t_0^{(s)} \simeq R^2/4D_0$ ; 2 — барьер с быстрой деградацией,  $t_* \approx t_0$ ; 3 — барьер с медленной деградацией,  $t_0 \simeq t_*[(\alpha + 1)/u_*]^{1/(\alpha+1)} \gg t_*$  — выход частиц из барьера

$$R(t) \propto \left[\frac{u_* t_*}{(\alpha+1)^2} \left(\frac{t}{t_*}\right)^{\alpha+2}\right]^{\gamma}, \qquad (44)$$

Подводя итог, отметим, что для быстрого сценария деградации, в силу экспоненциального роста коэффициента диффузии, временной интервал  $t_* < < t < t_0$  оказывается очень узким. Поэтому формулы (40), (41) на самом деле демонстрируют быстрый (почти скачкообразный) переход от квазистационарного режима при  $t < t_*$  к режиму при  $t > t_0$ , в котором влияние барьера отсутствует. Напротив, для медленного сценария интервал  $t_* \ll t \ll t_0$  оказывается продолжительным:

$$t_0 - t_* \simeq t_* \left(\frac{\alpha+1}{u_*}\right)^{1/(\alpha+1)} \gg t_*.$$

В промежутке  $t_* \ll t \ll t_0$ , при медленном сценарии деградации, рост со временем числа активных частиц и размера области локализации происходит, естественно, быстрее, чем в случае стационарного барьера, в силу присутствия дополнительного множителя  $(t/t_*)^{\alpha}$ .

Смена режимов переноса примеси во времени с учетом скорости деградации схематически представлена на рис. 2.

## 6. АСИМПТОТИЧЕСКИЕ ПРОФИЛИ КОНЦЕНТРАЦИИ

На ранних стадиях, когда  $t \ll t_0$ , оба сомножителя в подынтегральном выражении (8) при подстановке в него соотношений (10) и (25) являются быстрыми функциями, причем первый из них, Q(t - t'), убывает с приближением переменной t' к верхнему пределу интегрирования t' = t в (8), а второй, G(r, t'), — к нижнему пределу t' = 0. Поэтому подынтегральное выражение имеет резкий максимум, присутствие которого дает возможность воспользоваться методом перевала. Результат вычислений зависит от соотношения между производными по времени от величин 1/u(t) и  $\Phi_*(r, t)$ . Если первая из них будет больше второй, то перевальная точка по t' в (8) будет много меньше t, и для показателя экспоненты асимптотического выражения концентрации приходим к следующему выражению:

$$\Phi(r,t) \simeq \frac{1}{u(t)} + \left(\frac{\gamma}{1-\gamma}\right)^{\gamma/(1-\gamma)} \frac{r}{R_*(t_{eff}(t))},$$

$$\Phi_*(r,t) \frac{t_{eff}(t)}{t} \ll 1.$$
(45)

В противоположном случае, когда вторая из производных по времени от величин 1/u(t) и  $\Phi_*(r,t)$ становится больше, перевальная точка по t' в (8) будет близка к t и асимптотический профиль принимает вид

$$\Phi(r,t) \simeq \Phi_*(r,t), \quad \Phi_*(r,t) \frac{t_{eff}(t)}{t} \gg 1.$$
 (46)

Напомним, что функция  $\Phi_*(r,t)$ , определенная равенством (11), отвечает за асимптотический профиль концентрации на больших расстояниях в задаче о безбарьерном прототипе.

Анализ показывает, что формула (46) справедлива и на самых поздних стадиях, когда  $t \gg t_0$ :

$$\Phi(r,t) \simeq \Phi_*(r,t), \quad t \gg t_0. \tag{47}$$

 $13^{*}$ 

Подводя итог, отметим, что на временах, меньших характерного времени выхода примеси из барьера,  $t < t_0$ , асимптотика концентрации имеет двухступенчатую структуру. Ближняя ступень определяется формулой (45), а дальняя — (46). При этом дальняя ступень (46) совпадает с асимптотикой для безбарьерного прототипа. С ней также совпадает и одноступенчатая асимптотика концентрации на самых поздних стадиях  $t > t_0$  (формула (47)).

Показатель экспоненты для ближней ступени асимптотики при  $t < t_0$  находится в линейной зависимости от расстояния от источника r. Коэффициент при r, порядка  $R_*^{-1}(t_{eff}(t))$ , определяется режимом переноса, отвечающим текущему времени. Соответственно, указанный коэффициент зависит от того, в какой интервал времени попадает текущее время при  $t < t_0$ :  $t \ll t_*$  или  $t_* < t < t_0$ .

## 7. ЗАКЛЮЧЕНИЕ

Основные результаты работы заключаются в следующем.

Проанализированы закономерности переноса примеси во фрактальной случайно-неоднородной среде при условии, что источник примеси окружен слабопроницаемым диффузионным барьером, испытывающим процесс деградации.

Систематика режимов переноса и асимптотика концентрации на больших расстояниях от источника зависят от соотношения между характерными временами  $t_*$  и  $t_0$ , где  $t_*$  — время начала деградации,  $t_0$  — время выхода примеси из барьера. При  $t_0 < t_*$ указанные характеристики сводятся к уже известным результатам, полученным для стационарного барьера [4].

Различия возникают при обратном соотношении времен,  $t_* < t_0$ . На временах  $t \ll t_*$  и режимы, и асимптотики с точностью до переобозначений сводятся, но только формально, к результатам на малых временах в задаче со стационарным барьером [4]. Поведение характеристик на временах  $t > t_*$  зависит от сценария, по которому происходит деградация барьера. При быстром (экспоненциальном) разрушении интервал времени разрушения  $t_* < t < t_0$ оказывается очень узким, и с ростом времени режим переноса, имеющий место при  $t < t_*$ , практически скачкообразно переходит в режим, свойственный безбарьерному прототипу (в задаче без барьера). При медленном (степенном) разрушении барьера интервал  $t_* < t < t_0$  оказывается продолжительным, и здесь устанавливается режим переноса, медленный в сравнении с безбарьерным прототипом, но более быстрый в сравнении со случаем стационарного барьера.

На временах до выхода примеси из барьера,  $t < t_0$ , экспоненциально убывающая асимптотика концентрации в зависимости от расстояния от источника имеет двухступенчатую структуру. Ближняя ступень (умеренно большие расстояния) отвечает простой экспоненте. Коэффициент в показателе экспоненты обратно пропорционален размеру основной области локализации примеси на данный момент времени. Дальняя ступень асимптотики совпадает с той, которая имеет место в задаче без барьера. На поздних стадиях, когда  $t > t_0$ , асимптотика становится одноступенчатой и также совпадает с асимптотикой в задаче о безбарьерном прототипе.

Работа выполнена при поддержке РФФИ (грант № 15-08-05241-а).

# ЛИТЕРАТУРА

- 1. M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).
- L. Bolshov, P. Kondratenko, K. Pruess, and V. Semenov, Vadose Zone J. 7, 1181 (2008).
- P. S. Kondratenko and L. V. Matveev, Phys. Rev. E 83, 021106 (2011).
- О. А. Дворецкая, П. С. Кондратенко, ЖЭТФ 143, 799 (2013).
- M. Dykhne, I. L. Dranikov, P. S. Kondratenko, and L. V. Matveev, Phys. Rev. E 72, 061104 (2005).