МАГНИТНЫЕ ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И МАГНИТОТРАНСПОРТНЫЕ ЯВЛЕНИЯ В СОЕДИНЕНИЯХ La_{0.7}Sr_{0.3}Mn_{1-x}Co_xO₃ ТИПА ПЕРОВСКИТА

И. О. Троянчук ^{a*}, М. В. Бушинский ^a, Д. В. Карпинский ^a, В. В. Сиколенко ^{b,c}, А. Н. Чобот ^a, Н. В. Терешко ^a, О. С. Мантыцкая ^a, С. Шорр ^{c,d**}

> ^а ГО «НПЦ НАН Беларуси по материаловедению» 220072, Минск, Беларусь

^b Объединенный институт ядерных исследований 141980, Дубна, Московская обл., Россия

> ^c Helmholtz-Zentrum Berlin 12489, Berlin, Germany

^d Freie University Berlin 14195, Berlin, Germany

Поступила в редакцию 2 марта 2016 г.

Составы системы $La_{0.7}Sr_{0.3}Mn_{1-x}Co_xO_3$ (0.13 $\leq x \leq 1$) были изучены методами дифракции нейтронов, магнитометрии, измерения магнитотранспортных свойств. Показано, что замещение ионов марганца ионами кобальта ведет к падению намагниченности и понижению температуры Кюри от 270 К (x = 0.13) до 140 К (x=0.33). При увеличении содержания ионов кобальта до x=0.5 температура Кюри возрастает до 190 К, при этом намагниченность составов уменьшается, а электрическое сопротивление увеличивается. Для составов с x > 0.5 температура перехода в парамагнитное состояние уменьшается до 68 K (x=0.8) и затем вновь возрастает до 225 К для состава ${
m La}_{0.7}{
m Sr}_{0.3}{
m CoO}_3$. Магниторезистивный эффект в интервале $0.3 \le x \le 0.4$ достигает 97 % и постепенно уменьшается с ростом температуры без аномалий вблизи точки Кюри, тогда как для составов с $x \le 0.2$ и x=1 эффект усиливается вблизи температуры Кюри. Состав с x=0.6 является стехиометрическим, когерентный магнитный вклад в рассеяние нейтронов не обнаружен. Предполагается, что магнитные свойства вблизи $x\sim 0.5$ обусловлены частичным упорядочением ионов Co^{3+} и Mn^{4+} , причем ионы Co^{3+} могут находиться как в низкоспиновом, так и в высокоспиновом состоянии. Магнитное взаимодействие между ионами ${\rm Co}^{3+}$ в высокоспиновом состоянии и ${
m Mn}^{4+}$ является преимущественно ферромагнитным, при этом антиферромагнитная часть обменных взаимодействий близка по величине к ферромагнитной. На основании полученных данных построена магнитная фазовая диаграмма системы $La_{0.7}Sr_{0.3}Mn_{1-x}Co_xO_3$.

DOI: 10.7868/S0044451017080107

1. ВВЕДЕНИЕ

Внимание к магнитным свойствам манганитов и кобальтитов редкоземельных элементов со структурой перовскита связано с тем, что, несмотря на длительные исследования, до сих пор остаются невыясненными основные фундаментальные проблемы. В частности, не установлено однозначной связи между ферромагнетизмом и колоссальным магнитосопротивлением, с одной стороны, и типом обменного взаимодействия — сверхобменом или двойным обменом — с другой. Нет общепризнанного объяснения, почему критические точки антиферромагнитного диэлектрического состояния и металлического ферромагнитного близки по величине в пиироком интервале концентраций ионов-заместителей, что выражается в возможности переключения этих состояний внешним магнитным полем. Остается открытым вопрос о механизме спиновых переходов в кобальтитах.

^{*} E-mail: troyan@physics.by

^{**} S. Schorr

В некоторых аспектах кобальтиты близки к манганитам [1,2]. В частности, у них также при допировании щелочноземельными ионами диэлектрическое парамагнитное состояние переходит в ферромагнитное и вблизи этого концентрационного перехода наблюдается большой магниторезистивный эффект [3]. Как в манганитах, так и в кобальтитах антиферромагнитное состояние, как правило, диэлектрическое [1,4]. Переход между антиферромагнитным и ферромагнитным состояниями во внешнем магнитном поле может рассматриваться как спиновый переход ионов Co^{3+} из высокоспинового в промежуточное спиновое состояние, который сопровождается колоссальным магниторезистивным эффектом [5,6].

Из-за общей тенденции к появлению ферромагнитных свойств при возникновении разновалентных ионов марганца или кобальта свойства твердых растворов между этими классами соединений представляют особенный интерес. Однако необходимо отметить, что ферромагнитное состояние в манганитах и кобальтитах может возникнуть и без наличия ионов в разных окислительных состояниях [7–9]. Например, ферромагнитное состояние в системе La $Mn_{1-r}^{3+}Co_r^{3+}O_3$ наблюдалось в отсутствие ионов Mn^{4+} [10–12]. Эпитаксиальные пленки LaCo³⁺O₃, содержащие ионы кобальта в одном и том же валентном состоянии, как и монокристаллы $SrCo^{4+}O_3$, являются ферромагнитными [13–15]. Очень близкое к ферромагнитному состояние обнаружено в манганитах, легированных ионами сурьмы, находящимися в окислительном состоянии 5+, при этом гетеровалентные ионы марганца не определяют основное магнитное состояние составов [16–18]. Следует отметить, что соединения $LaMn_{1-x}Co_xO_3$, не содержащие ионов стронция, также являются ферромагнитными, как и манганиты и кобальтиты, легированные щелочноземельными ионами [11].

В литературе имеются противоречивые данные относительно свойств манганитов, легированных ионами кобальта [19–22]. Скорее всего, это обусловлено неоптимизированными условиями синтеза и химической неоднородностью составов, поэтому оптимизация условий синтеза и исследование свойств твердых растворов между манганитами и кобальтитами является актуальной задачей.

2. ЭКСПЕРИМЕНТ

Твердые растворы La_{0.7}Sr_{0.3}Mn_{1-x}Co_xO₃ (0.13 $\leq x \leq 1$) были получены методом твердофазного

синтеза. Оксиды La₂O₃, Mn₂O₃, Co₃O₄ и карбонат SrCO₃ взятые в стехиометрическом соотношении, были тщательно перемешаны в планетарной мельнице RETSCH-100 в течение 30 мин со скоростью 250 об/мин. Перед взвешиванием La₂O₃ был отожжен при температуре 1050 °C в течение 1 ч для удаления влаги. Предварительный обжиг проведен при T = 1100 °C в течение 10 ч. Окончательный синтез проводился при температурах от 1270 °C до 1500 °C в течение 8 ч. Температура синтеза уменьшалась с ростом содержания кобальта. Рентгенофазовый анализ был выполнен на дифрактометре ДРОН-3М в K_{α} -излучении Сu. Нейтронографические исследования проведены на дифрактометре высокого разрешения Е9 ($\lambda = 1.7982 \text{ Å}$) в центре коллективного доступа Helmholtz-Zentrum for Materials and Energy (Берлин, Германия). Экспериментальные данные обработаны методом Ритвельда с использованием программы FullProf [23]. Магнитные и магнитотранспортные исследования проведены на установке измерения физических свойств (Cryogenic Ltd) в полях до 14 Тл в диапазоне температур 5–315 К. Измерения электропроводности выполнены четырехконтактным методом с использованием индиевых контактов, нанесенных с помощью ультразвукового паяльника.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ренттенофазовый анализ дифрактограмм образцов $0.13 \le x \le 1$ не выявил наличия других фаз (с точностью 3%), кроме основной со структурой перовскита. Параметры элементарной ячейки всех образцов рассчитывались с использованием пространственной группы $R\bar{3}c$, в которой проиндексированы все дифракционные рефлексы. Объем элементарной ячейки уменьшается с ростом содержания кобальта, так как ионы Co^{3+} имеют меньший ионный радиус, чем ионы Mn^{3+} .

На рис. 1 показаны температурные зависимости намагниченности, полученные при нагреве после охлаждения в поле (режим FC) и после охлаждения без поля (режим ZFC). Наблюдается постепенное уменьшение намагниченности и температуры Кюри с 270 К (x = 0.13) до 140 К (x = 0.33). Однако при дальнейшем увеличении содержания кобальта температура Кюри возрастает до 190 К (x = 0.5), а затем вновь снижается до T = 68 К (x = 0.8) (рис. 1). При концентрациях x > 0.8 критическая температура опять возрастает до T = 225 К для чистого кобальтита. Переход в парамагнитное состояние в

Рис. 1. Температурные зависимости намагниченности, измеренные в режимах FC (*a*) и ZFC (*b*), для образцов $La_{0.7}Sr_{0.3}Mn_{1-x}Co_xO_3$ в поле 0.02 Тл

интервале концентрации $0.36 \le x \le 0.75$ довольно резкий, а температура перехода относительно высокая, что необычно для состояния типа кластерного спинового стекла.

На рис. 2 показаны полевые зависимости намагниченности, измеренные при T = 10 К. С увеличением содержания ионов кобальта до x = 0.8 намагниченность постепенно уменьшается, причем если составы $0.13 \le x \le 0.3$ показывают магнитное состояние, близкое к ферромагнитному, то для составов $0.36 \le x \le 0.85$ полевая зависимость намагниченности более характерна для состояния типа кластерного спинового стекла, так как намагниченность в больших полях относительно большая и нет признаков насыщения в полях до 14 Тл. Магнитный момент резко возрастает в составах с $x \ge 0.9$.

На рис. 3 представлены величины намагниченности в поле 2 Тл и коэрцитивной силы при 10 К в зависимости от содержания ионов кобальта. При x > 0.3 наблюдается резкое падение намагниченности, что связано с разрушением дальнего ферромагнитного порядка, при этом коэрцитивная сила резко возрастает. В составах $0.4 \le x \le 0.65$ переориентация магнитных моментов происходит в полях 3-4 Тл, что характерно для магнетиков с незамороженным орбитальным моментом, которые содержат ионы Co^{2+} или Co^{3+} в высокоспиновом состоянии. При x > 0.8 наблюдается значительное уменьшение коэрцитивной силы, составы x = 0.9 и x = 1 являются магнитомягкими, как и манганиты, содержащие относительно небольшое количество ионов кобальта ($x \le 0.2$).

Измерение электропроводности показало, что составы $0.13 \leq x \leq 0.2$ проявляют металлическое поведение проводимости ниже температуры Кюри, при этом в составах $0.15 \leq x \leq 0.20$ при низких температурах наблюдается возвратное поведение — увеличение сопротивления с понижением температуры, что характерно для полупроводников (рис. 4). При x > 0.33 удельное сопротивление начинает рез-

Рис. 2. Полевые зависимости намагниченности составов ${\rm La}_{0.7}{\rm Sr}_{0.3}{\rm Mn}_{1-x}{\rm Co}_x{\rm O}_3$ при T=10 К

Рис. 3. Значения намагниченности в поле 2 Тл и коэрцитивной силы H_c составов ${\rm La}_{0.7}{\rm Sr}_{0.3}{\rm Mn}_{1-x}{\rm Co}_x{\rm O}_3$, измеренные при T=10 К

ко возрастать. Так, при x = 0.36 удельное сопротивление при T = 40 К составляет около 10^8 Ом·см, что находится вблизи предела измерений установки. При $x \ge 0.85$ удельное сопротивление начинает опять уменьшаться (рис. 4) и состав с x = 1 характеризуется металлическим типом проводимости как ниже, так и выше температуры ферромагнитного упорядочения. При температуре Кюри наблюдается аномалия электропроводности, обусловленная переходом в более проводящее состояние в ферромагнитной области, что указывает на связь между проводимостью и магнетизмом.

Измерение магнитосопротивления показало, что составы $x \leq 0.2$ проявляют наибольшее магнитосоп-

Рис. 4. Зависимости электропроводности ${\rm La}_{0.7}{
m Sr}_{0.3}{
m Mn}_{1-x}{
m Co}_x{
m O}_3$ от температуры и содержания кобальта

ротивление вблизи температуры Кюри (рис. 5). Начиная с состава x = 0.22 ситуация изменяется: магнитосопротивление имеет наибольшее значение при низких температурах (рис. 5). В составах $0.33 \le x \le$ ≤ 0.4 сопротивление в области низких температур в поле падает более чем на порядок. С уменьшением намагниченности $(0.5 \le x \le 0.85)$ магнитосопротивление уменьшается. Однако при увеличении содержания ионов кобальта выше $x \sim 0.9$ магнитосопротивление максимально в точке Кюри (рис. 5), где магнитное поле может стабилизировать более проводящее ферромагнитное состояние. Отметим, что магнитосопротивление при x = 1 и низких температурах практически отсутствует. Концентрационная зависимость магнитосопротивления представлена на рис. 6.

Нейтронографические дифракционные исследования составов x = 0.3 и x = 0.6 были проведены в интервале температур 4–300 К. Измеренные и рассчитанные нейтронные дифракционные спектры составов x = 0.3 и x = 0.6 приведены на рис. 7,

Рис. 5. Полевые зависимости магнитосопротивления для образцов $La_{0.7} Sr_{0.3} Mn_{1-{\it x}} Co_{{\it x}} O_3$

Рис. 6. Концентрационная зависимость магнитосопротивления образцов системы $La_{0.7}Sr_{0.3}Mn_{1-x}Co_xO_3$ в поле 14 Тл (кружками обозначены значения, измеренные вблизи температуры Кюри, квадратами — при низкой температуре)

Рис. 7. Нейтронограммы соединения $La_{0.7}Sr_{0.3}Mn_{0.7}Co_{0.3}O_3$, полученные при T = 300 К и T = 2 К (кружки — эксперимент, сплошная линия — расчет). Позиции брэгговских рефлексов обозначены вертикальными штрихами. Верхний ряд штрихов соответствует кристаллической фазе, нижний — магнитной

8. Все дифракционные пики в обоих образцах были успешно проиндексированы на основе ромбоэдрической пространственной группы $R\bar{3}c$. Это означает, что большинство ионов кобальта и марганца структурно не упорядочены в В-подрешетке перовскита. Ниже температуры 150 К в составе x = 0.3 обнаружено значительное увеличение интенсивности рефлексов на малых углах (012, 102) и (110, 014, 104), что обусловлено ферромагнитным упорядочением магнитных моментов ионов кобальта и марганца. Рассчитанный магнитный момент составляет $2.71 \mu_B$ на формульную единицу, что значительно меньше, чем можно ожидать в случае параллельного упорядочения магнитных моментов ионов. Нейтронограмма состава x = 0.6 также была уточнена в ромбоэдрической пространственной группе $R\bar{3}c$, когерентный магнитный вклад отсутствует в отли-

Рис. 8. Нейтронограммы соединения $La_{0.7}Sr_{0.3}Mn_{0.4}Co_{0.6}O_3$, полученные при T = 300 К и T = 2 К (кружки — эксперимент, сплошная линия — расчет). Вертикальными штрихами обозначены позиции брэгговских рефлексов

чие от состава x = 0.3, что указывает на отсутствие дальнего магнитного порядка в основном объеме образца. Рассчитанные кристаллоструктурные параметры представлены в таблице. Состав с x = 0.6характеризуется меньшим по сравнению с составом x = 0.3 объемом элементарной ячейки, что согласуется с меньшим ионным радиусом ионов кобальта по сравнению с ионным радиусом марганца.

На рис. 9 изображена магнитная фазовая диаграмма системы $La_{0.7}Sr_{0.3}Mn_{1-x}Co_xO_3$. По мере увеличения содержания кобальта ферромагнитное металлическое состояние сменяется на диэлектрическое ферромагнитное состояние, которое разрушается для составов с $x \sim 0.33$. При x > 0.33 критическая температура перехода в парамагнитное состояние возрастает, тогда как для составов с x > 0.5уменьшается и достигает минимума при x = 0.8. Составы $0.4 \le x \le 0.8$ характеризуются полупроводниковым характером проводимости, максимум со-

Рис. 9. Магнитная фазовая диаграмма для системы $La_{0.7}Sr_{0.3}Mn_{1-x}Co_xO_3$ (Р — парамагнитная фаза, FMM — металлическая ферромагнитная фаза, FMI — диэлектрическая ферромагнитная фаза, AFC+FMC — ионноупорядоченная фаза, состоящая из антиферромагнитных и ферромагнитных кластеров, SG — спиновое стекло)

противления наблюдается для состава с x = 0.5. В интервале концентраций $0.9 < x \le 1$ металлическое ферромагнитное состояние вновь становится доминирующим. Необходимо отметить, что как в манганитах $0.15 \le x \le 0.2$, так и в кобальтите при x = 0.9 наблюдается увеличение сопротивления при низких температурах.

Для объяснения магнитных и транспортных свойств необходимо знать изменение окислительного состояния ионов по мере замещения ионов марганца на кобальт. Данные рентгеновской спектроскопии, полученные для составов с концентрацией x < 0.2 свидетельствуют о двухвалентном состоянии ионов кобальта [24]. Учитывая, что в составе $LaCo_{0.5}Mn_{0.5}O_3$ кобальт находится в двухвалентном состоянии, а марганец — в четырехвалентном [11, 12], можно заключить, что марганец в стехиометрическом составе x = 0.6 (таблица) находится преимущественно в четырехвалентном состоянии, а кобальт — в трехвалентном. Следует отметить, что коэрцитивная сила составов, содержащих ионы кобальта преимущественно в окислительных состояниях 2+ или 4+, составляет менее 0.1 Тл, при этом в составах с ионами кобальта преимущественно в состоянии 3+ коэрцитивная сила достигает значений 2.5-3.6 Тл (рис. 3).

В ферромагнитных твердых растворах $La_{1-x}Sr_xCoO_3$ и $La_{1-x}Ba_xCoO_3$ ионы кобальта находятся преимущественно в промежуточном спи-

Таблица. Результаты уточнения кристаллической структуры при T=2 К и T=300 К образцов $La_{0.7}Sr_{0.3}Mn_{0.7}Co_{0.3}O_3$ и $La_{0.7}Sr_{0.3}Mn_{0.4}Co_{0.6}O_3$ (пространственная группа $R\bar{3}c$)

Образец	$La_{0.7}Sr_{0.3}Mn_{0.7}Co_{0.3}O_3$		$La_{0.7}Sr_{0.3}Mn_{0.4}Co_{0.6}O_3$	
T, K	2	300	2	300
$a, b, \mathrm{\AA}$	5.484(1)	5.490(3)	5.453(6)	5.458(6)
$c, \mathrm{\AA}$	13.269(4)	13.310(5)	13.198(2)	13.242(4)
$V, \mathrm{\AA}^3$	345.61(4)	347.61(7)	339.95(4)	341.72(4)
Координаты атомов				
m La/Sr	0, 0, 0.25			
$B_{iso}, \mathrm{\AA}^2$	0.040(1)	0.122(3)	0.340(1)	0.670(1)
m Co/Mn	0, 0, 0			
$B_{iso}, \mathrm{\AA}^2$	0.720(1)	0.584(1)	0.515(3)	0.922(8)
О	0.543(1), 0, 0.25	0.542(1), 0, 0.25	0.541(2), 0, 0.25	0.538(1), 0, 0.25
$B_{iso}, \mathrm{\AA}^2$	0.279(2)	0.726(2)	0.600(1)	1.050(1)
Содержание кислорода	3	3	3	3
Длины и углы связей				
$ m Co/Mn-O, m \AA$	1.945(4)	1.948(5)	1.933(5)	1.935(1)
Co/Mn–O– –Co/Mn	$166.07^{\circ}(5)$	$166.40^{\circ}(2)$	$166.66^{\circ}(7)$	$167.65^{\circ}(1)$
Факторы достоверности				
$R_p/R_{wp}, \%$	3.09/4.27	3.66/4.81	3.09/4.05	2.91/3.79
$R_{Bragg}, \%$	1.88	4.03	2.85	2.94
χ^2	2.71	2.08	1.64	1.54

Примечание. *В*_{iso} — фактор Дебая – Уоллера.

новом состоянии, тогда как уменьшение содержания кислорода приводит к переходу в высокоспиновое состояние с очень большой коэрцитивной силой [1, 25, 26], поэтому можно предположить, что необычно большая коэрцитивная сила составов вблизи концентрации x = 0.5 обусловлена наличием существенной части ионов Co³⁺ в высокоспиновом состоянии. Это предположение согласуется с тем, что в высокоспиновом состоянии ионы Co³⁺ имеют незамороженный орбитальный момент, тогда как ионы Co³⁺(Co⁴⁺) в промежуточном спиновом состоянии имеют магнитный момент, который определяется неспаренными спинами, потому что орбитальный момент очень мал [27, 28]. Исходя из спинового и валентного состояний ионов кобальта, можно выделить три концентрационных интервала, для которых магнитные свойства определяются разными механизмами обменных взаимодействий. В интервале $0.13 \leq x \leq 0.33$ ферромагнетизм обусловлен обменными взаимодействиями между ионами марганца ($Mn^{3+}-O-Mn^{3+}$ и $Mn^{3+}-O-Mn^{4+}$) и между ионами марганца и кобальта ($Mn^{4+}-O-Co^{2+}$). Это следует из того, что диамагнитно-разбавленные составы La_{0.7}Sr_{0.3}Mn_{0.85}Mg²⁺_{0.15}O₃ и La_{0.7}Sr_{0.3}Mn_{0.7}Ga³⁺_{0.3}O₃ с доминирующим содержанием ионов Mn^{4+} являются преимущественно антиферромагнитными диэлектриками [8, 29], тогда как соединения, легированные ионами кобальта, преимущественно ферромагнитны.

С повышением концентрации ионов кобальта (x > 0.33) температура Кюри начинает существенно повышаться, тогда как намагниченность уменьшается (рис. 1, 2). Это обусловлено образованием ионов Co^{3+} , которые могут находиться в низкоспиновом или высокоспиновом состоянии. В зависимости от спинового состояния ионов кобальта и его локального окружения ионами ${\rm Mn^{4+}}$ возникают либо ферромагнитные (в случае высокоспинового состояния ионов Co³⁺ преимущественно окруженных ионами четырехвалентного марганца), либо антиферромагнитные кластеры (в случае низкоспинового состояния ионов Co³⁺). Высокоспиновое состояние иона Co^{3+} характеризуется наличием $2e_q$ -электронов в 3*d*-оболочке, как и в случае иона Co²⁺, когда обменное взаимодействие Co²⁺-O-Mn⁴⁺ является положительным, поэтому обменные взаимодействия Co²⁺-O-Mn⁴⁺ и Co³⁺-O-Mn⁴⁺ должны быть близки по величине. Обменные взаимодействия Co³⁺-O-Co³⁺ и Mn⁴⁺-O-Mn⁴⁺ всегда антиферромагнитны, поэтому структурный беспорядок ведет к подавлению антиферромагнитной компоненты.

При концентрациях x > 0.5 ионный порядок между Со³⁺ и Мп⁴⁺ постепенно разрушается и температура Кюри понижается вследствие роста вклада от антиферромагнитных взаимодействий. Это ведет к тому, что вблизи $x \sim 0.8$ стабилизируется состояние типа спинового стекла с температурой замерзания магнитных моментов около 70 К (рис. 9). При $x \ge 0.8$ высокоспиновое состояние ионов Со³⁺ постепенно меняется на промежуточное спиновое, коэрцитивная сила резко уменьшается, а ферромагнитная составляющая резко возрастает. В составе La_{0.7}Sr_{0.3}CoO₃, по-видимому, реализуется также неоднородное ферромагнитное состояние, так как вычисленный ферромагнитный момент $1.6\mu_B$ на формульную единицу существенно меньше ожидаемого 2µ_B в случае ионной модели химической связи и промежуточного спинового состояния ионов кобальта.

Исходя из того факта, что ферромагнетизм способствует проводящему состоянию, и учитывая концентрационную и температурные зависимости намагниченности, можно объяснить концентрационное поведение магнитосопротивления вблизи T_c и в области низких температур. При x = 0.13 ферромагнитное упорядочение практически однородное, переход в металлическое состояние резкий и при низких температурах сопротивление не увеличивается. Поэтому эффект при T_c намного больше, чем при низких температурах, где магнитное поле слабо влияет на намагниченность и электропроводность. С повышением содержания кобальта идет постепенный переход в состояние, близкое к спиновому стеклу, с ярко выраженным полупроводниковым поведением. Здесь магнитное поле наиболее сильно влияет на намагниченность и электропроводность в области низких температур. Аналогичный эффект наблюдается и с противоположной стороны фазовой диаграммы, где кобальтиты легированы ионами марганца. В составах, где намагниченность наименьшая ($0.5 \le x \le 0.75$), магниторезистивный эффект небольшой, несмотря на сравнительно высокую T_c (рис. 9).

4. ЗАКЛЮЧЕНИЕ

Проведено комплексное исследование магнитных и магнитотранспортных свойств твердых растворов между составами La_{0.7}Sr_{0.3}MnO₃ и La_{0.7}Sr_{0.3}CoO₃. Показано, что существуют три концентрационные области, в которых магнитное состояние определяется разными типами обменных взаимодействий. При $x \leq 0.33$ ферромагнитное состояние обусловлено обменными взаимодействиями между ионами марганца и Co²⁺-O-Mn⁴⁺. При $0.4\,\leq\,x\,\leq\,$ 0.75 ферромагнитная компонента обусловлена положительной частью сверхобменных взаимодействий Co³⁺-O-Mn⁴⁺ с максимальной температурой Кюри при x = 0.5, где ионное упорядочение Co³⁺ и Mn⁴⁺ является наибольшим. В составах с $x \ge 0.8$ начинает доминировать положительное обменное взаимодействие между ионами кобальта в промежуточном спиновом состоянии, которое ведет к появлению дальнего ферромагнитного порядка и резкому уменьшению коэрцитивной силы, которая максимальна в составе с x = 0.5 вследствие наличия ионов Co³⁺ в высокоспиновом состоянии. Магниторезистивный эффект максимален вблизи T_c в составах $x \leq 0.2$ и x = 1. В промежуточных составах магниторезистивный эффект уменьшается с ростом температуры вследствие существенного или полного разрушения дальнего ферромагнитного порядка в основном объеме образца. Магниторезистивный эффект при низких температурах наиболее существенен в составах x = 0.36 и x = 0.85, которые характеризуются изменением магнитной структуры от дальнего к ближнему магнитному порядку.

ЛИТЕРАТУРА

- M. A. Señarís-Rodríguez, and J. B. Goodenough, J. Sol. St. Chem. 118, 323 (1995).
- H.-F. Li, Y. Su, Y. G. Xiao et al., Eur. Phys. J. B 67, 149 (2009).
- T. Saitoh, D. S. Dessau, Y. Moritomo et al., Phys. Rev. B 62, 1039 (2000).
- D. Samal and P. S. A. Kumar, J. Phys.: Condens. Matter 23, 016001 (2011).
- M. Sanchez-Andujar, J. Mira, J. Rivas et al., Progr. Sol. St. Chem. 35, 407 (2007).
- I. O. Troyanchuk, M. V. Bushinsky, and L. S. Lobanovsky, J. Appl. Phys. **114**, 213910 (2013).
- K. De, R. Ray, R. Narayan Panda et al., J. Magn. Magn. Mater. 288, 339 (2005).
- I. O. Troyanchuk, D. V. Karpinsky, L. S. Lobanovsky et al., Mater. Res. Express 3, 016101 (2016).
- C. Yin, Q. Liu, R. Decourt et al., J. Sol. St. Chem. 184, 3228 (2011).
- I. O. Troyanchuk, D. D. Khalyavin, J. W. Lynn et al., J. Appl. Phys. 88, 360 (2000).
- T. Burnus, Z. Hu, H. H. Hsieh et al., Phys. Rev. B 77, 125124 (2008).
- A. J. Barón-González, C. Frontera, J. L. García-Muñoz et al., J. Phys. Conf. Ser. **325**, 012007 (2011).
- F. Rivadulla, Z. Bi, E. Bauer et al., Chem. Mater. 25, 55s (2013).

- J.-Q. Yan, J.-S. Zhou, and J. B. Goodenough, Phys. Rev. B 70, 014402 (2004).
- J.-H. Kwon, W. S. Choi, Y.-K. Kwon et al., Chem. Mater. 26, 2496 (2014).
- **16**. И. О. Троянчук, М. В. Бушинский, Д. В. Карпинский и др., ФТТ **57**, 1112 (2015).
- **17**. Д. В. Карпинский, И. О. Троянчук, М. В. Силибин, ФНТ **41**, 1289 (2015).
- D. V. Karpinsky, I. O. Troyanchuk, M. V. Silibin et al., Physica B 489, 45 (2016).
- 19. A. Kumar, H. Sharma, C. V. Tomy et al., AIP Conf. Proc. 1731, 130045 (2016).
- 20. X. P. Nguyen and V. B. Le, Sol. St. Phenom. 111, 7 (2006).
- 21. T. D. Thanh, D. C. Linh, T. V. Manh et al., J. Appl. Phys. 117, 17C101 (2015).
- 22. B. C. Zhao, W. H. Song, and Y. Q. Ma, Phys. Stat. Sol. (b) 242, 1719 (2005).
- J. R.-C. T. Roisnel, Mater. Sci. Forum 378–381, 118 (2001).
- 24. O. Toulemonde, F. Studer, and B. Raveau, Sol. St. Comm. 118, 107 (2001).
- 25. A. P. Sazonov, I. O. Troyanchuk, H. Gamari-Seale et al., J. Phys.: Condens. Matter 21, 156004 (2009).
- 26. I. O. Troyanchuk, D. V. Karpinsky, M. V. Bushinsky et al., Письма в ЖЭТФ 93, 154 (2011).
- 27. G. Vankó, J.-P. Rueff, and A. Mattila, Phys. Rev. B 73, 024424 (2006).
- 28. P. G. Radaelli and S. W. Cheong, Phys. Rev. B 66, 094408 (2002).
- 29. I. O. Troyanchuk, M. V. Bushinsky, D. V. Karpinsky et al., J. Magn. Magn. Mater. 394, 212 (2015).