АНИЗОТРОПНЫЕ ОСОБЕННОСТИ ДВУМЕРНОГО АТОМА ВОДОРОДА В МАГНИТНОМ ПОЛЕ

Е. А. Коваль ^{a,b*}, О. А. Коваль ^{a**}

^а Лаборатория теоретической физики им. Н. Н. Боголюбова, Объединенный институт ядерных исследований 141980, Дубна, Московская обл., Россия

^b Кафедра фундаментальных проблем физики микромира, Государственный университет «Дубна» 141980, Дубна, Московская обл., Россия

Поступила в редакцию 7 декабря 2016 г.

Целью работы является численное исследование анизотропных особенностей двумерного атома водорода в магнитном поле. Вычислены энергия основного состояния (ЭОС) двумерного атома водорода и соответствующая волновая функция в приближении Борна – Оппенгеймера и с учетом конечной массы протона. Обнаружена нелинейная зависимость энергии основного состояния от угла α между направлением вектора индукции магнитного поля и нормалью к плоскости движения электрона в широком диапазоне величин магнитного поля. С увеличением угла α до 90° наблюдается эффект значительного (до 1.9 раза) уменьшения энергии основного состояния двумерного атома водорода. Получено согласие с экспериментальными данными и определены зависимости энергии основного состояния двумерного экситона в GaAs/Al_{0.33}Ga_{0.67}As для различных углов наклона и магнитных полей, применяемых в реальных экспериментальных установках при исследовании свойств экситонов.

DOI: 10.7868/S0044451017070045

1. ВВЕДЕНИЕ

Интерес к двумерным (2D) системам поддерживается благодаря широкому кругу возникающих в них эффектов: переход Березинского – Костерлица – Таулеса [1]; спектральные свойства спиновых волн [2] и системы двух электронов [3] в сильном магнитном поле; дробный квантовый эффект Холла в наклонном внешнем магнитном поле [4, 5]; индуцированная магнитным полем сверхпроводимость в квазидвумерных органических проводниках [6]; предсказание [7] и открытие [8] графана, представляющего собой квазидвумерный монослой графена, связанный с атомарным водородом, и др.

Первоначально модель 2D-атома водорода исследовалась из чисто теоретических соображений [9–12], но также нашла применение для описания сильноанизотропных трехмерных кристаллов [13]. С развитием экспериментальных методов создания систем пониженной размерности и новыми перспективами для разработки полупроводниковых устройств модель 2D-водорода была применена для описания эффекта заряженной примеси в 2D-системах [14–16] и эффективного взаимодействия в экситонной паре электрон-дырка, движение которых ограничено плоскостью, в полупроводниковых 2D-гетероструктурах [17]. В ряде работ исследовались внутренние симметрии модели и причины случайного вырождения, возникающего и в трехмерном (3D) случае [17–19].

Влияние внешнего магнитного поля, направленного вдоль нормали к плоскости движения электрона, на спектр 2D-водорода исследовалось с помощью двухточечной аппроксимации Падэ [20], метода асимптотических итераций [21], вариационного подхода [22, 23], а также аналитически для отдельных значений магнитного поля [24]. Исследования водорода в сильных магнитных полях [25–27] обусловлены астрофизическими приложениями: величина магнитного поля в карликовых звездах может достигать 10^2-10^5 Тл, а в нейтронных звездах — 10^7-10^9 Тл [28].

^{*} E-mail: e-cov@yandex.ru

^{**} E-mail: kov.oksana20@gmail.com

Рис. 1. Схематическое представление 2D-атома водорода во внешнем магнитном поле, направленном под углом α к нормали к плоскости движения электрона

Целью настоящей работы является численное исследование анизотропных свойств 2D-атома водорода в магнитном поле. В отличие от выполненных ранее работ [20-24,27] мы изучаем зависимости спектра и волновых функций исследуемой системы от произвольных направлений магнитного поля, составляющих угол α с нормалью к плоскости движения электрона (рис. 1). Отметим, что хотя электрон в 2D-атоме водорода движется в плоскости, электромагнитные поля, угловой момент и другие величины не ограничены расположением в плоскости. Целью работы также является исследование влияния наклона магнитного поля на энергию основного состояния (ЭОС) 2D-экситонов в $GaAs/Al_{0.33}Ga_{0.67}As$ при различных магнитных полях, доступных на современных лабораторных экспериментальных установках.

Для дискретизации матрицы гамильтониана нами применяются разложение волновой функции на основе метода дискретной переменной [29,30], семиточечная конечно-разностная аппроксимация, а для решения задачи на собственные значения — метод обратных итераций [31], на каждой итерации которого матричное уравнение решается с помощью матричной модификации алгоритма прогонки [32].

В разд. 2 рассмотрено обобщение проблемы связанных состояний 2D-атома водорода в магнитном поле на случай магнитного поля, направленного под углом α к нормали к плоскости движения электрона, и описан алгоритм для ее численного решения. Полученные результаты и их краткий анализ представлены в разд. 3. В разд. 4 приведены основные выводы.

Таблица 1. Численно рассчитанные значения энергии 2D-атома водорода для n-го уровня E_n в отсутствие внешних полей и аналитические значения Eиз работы [12]

n	Е, ат.ед. [12]	E_n , ат. ед.
1	-2.00000000	-2.00000000
2	-0.22222222	-0.22222222
3	-0.08000000	-0.08000000
4	-0.04081632	-0.04081633
5	-0.02469136	-0.02469136
6	-0.01652892	-0.01652892
7	-0.01183432	-0.01183432
8	-0.00888889	-0.00888889
9	-0.00692042	-0.00692042
10	-0.00554017	-0.00554016

Все величины приведены в атомных единицах: $\hbar = m_e = e = 1.$

2. ПРОБЛЕМА СВЯЗАННЫХ СОСТОЯНИЙ 2D-АТОМА ВОДОРОДА ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ

Гамильтониан 2D-атома водорода в однородном магнитном поле **B** в полярных координатах $\boldsymbol{\rho} = (\rho, \phi)$ имеет вид [22]

$$\mathcal{H} = \frac{(\mathbf{P} - 2\mathbf{A}_{\rho})^2}{2(m_p + m_e)} + \frac{[\mathbf{p} - (\mu_e - \mu_p)\mathbf{A}_{\rho}]^2}{2m_r} - \frac{1}{\rho}, \quad (1)$$

где m_p — масса протона, m_e — масса электрона (соответствующие приведенные массы μ_p = $= m_p/(m_p + m_e), \ \mu_e = m_e/(m_p + m_e)), \ \mathbf{P}$ и \mathbf{p} соответственно полный и относительный импульсы системы, $m_r = m_p m_e/(m_p + m_e)$ — приведенная масса системы. Используется симметричная калибровка вектор-потенциала $\mathbf{A}_{\rho} = [\mathbf{B} \times \boldsymbol{\rho}]/2$, где $\boldsymbol{\rho}$ — относительная координата.

Систему координат выберем из соображений удобства и наличия аксиальной симметрии в 2D-атоме водорода: плоскость xy совпадает с плоскостью движения электрона, а индукция магнитного поля $\mathbf{B} = \mathbf{e}_x B \sin \alpha + \mathbf{e}_z B \cos \alpha$ лежит в плоскости xz (см. рис. 1).

Аналогично работе [22] рассмотрена система, находящаяся в покое ($\mathbf{P} = 0$): в этом случае движение центра масс в выражении (1) отделяется от относи-

Рис. 2. (В цвете онлайн) Зависимости энергии основного состояния 2D-атома водорода от величины магнитного поля в диапазонах 0–4 ат. ед. (*a*) и 1–10⁴ ат. ед. (*б*) и угла наклона *α* направления магнитного поля к оси *z* с учетом конечной массы протона. Штриховыми кривыми обозначены зависимости ЭОС для слабых (*a*, уравнение (17)) и сильных (*б*, уравнение (18)) магнитных полей [22], найденные по теории возмущений

Таблица 2. Сравнение дипольных матричных элементов d_{nl} , рассчитанных численно для 2D-атома водорода в отсутствие внешних полей и полученных аналитически в работе [12]

n	l	$d_{nl},$ ат. ед. [12]	d_{nl} , ат. ед.
2	1	0.34445950	0.34445950
3	1	0.14087514	0.14087514
4	1	0.08223128	0.08223128
5	1	0.05564053	0.05564053

Таблица 3. Значения ЭОС при различных величинах магнитного поля, полученные другими авторами с помощью метода асимптотических итераций [21] и вариационного подхода [22], в сравнении со значениями, вычисленные нами в приближении бесконечной массы протона

В, ат. ед.	Е, ат. ед. [21]	Е, ат. ед. [22]	<i>Е</i> , ат.е́д.
0.1	-1.999530	-1.999531	-1.999531
0.25	-1.997078	-1.997079	-1.997079
107/250	-1.991490	-1.991490	-1.991491
1	-1.955159	-1.955159	-1.955159

тельного движения. Используя представление волновой функции в виде

$$\Psi(\mathbf{R}, \boldsymbol{\rho}) = e^{i\mathbf{P}\cdot\mathbf{R}}\Psi(\boldsymbol{\rho}),\tag{2}$$

где **R** — координата центра масс, получим гамильтониан относительного движения [22]:

$$H = \frac{\mathbf{p}^2 + 2(\mu_p - \mu_e)(\mathbf{A}_{\rho} \cdot \mathbf{p}) + \mathbf{A}_{\rho}^2}{2m_r} - \frac{1}{\rho}.$$
 (3)

В выражении (3) 2D-оператор кинетической энергии

$$\frac{\mathbf{p}^2}{2m_r} = -\frac{1}{2m_r} \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} h^{(0)}(\phi) \right] \quad (4)$$

содержит угловую часть, имеющую простой вид в полярных координатах $h^{(0)}(\phi) = \partial^2/\partial \phi^2$. Линейное,

$$(\mathbf{A}_{\rho} \cdot \mathbf{p}) = \frac{1}{2} (\mathbf{B} \cdot \mathbf{L}) = \frac{1}{2} B \cos \alpha L_z, \qquad (5)$$

и квадратичное по полю,

$$\mathbf{A}_{\rho}^{2} = \frac{1}{4}B^{2}\rho^{2}\left(1 - \sin^{2}\alpha\cos^{2}\phi\right),\tag{6}$$

слагаемые учитываются в предельном переходе от 3D- к 2D-случаю (см. работу [33]). В случае $\alpha = 0$ магнитное квантовое число l определяется проекцией углового момента $L_z = l$.

Проблема связанных состояний 2D-атома водорода в магнитном поле описывается уравнением Шредингера с гамильтонианом (3) для относительного движения:

$$H\Psi(\rho,\phi) = E\Psi(\rho,\phi),\tag{7}$$

Рис. 3. (В цвете онлайн) Пространственное распределение $|\Psi(\rho)|^2$ волновой функции основного состояния 2D-атома водорода для магнитного поля $B = 10^3$ ат. ед. при $\alpha = 0$ (a), $\alpha = 45^{\circ}$ (b), $\alpha = 80^{\circ}$ (e)

где E и $\Psi(\rho, \phi)$ — искомые уровень энергии и волновая функция связанного состояния относительного движения.

Для поиска уровней энергии E и собственных функций $\Psi(\rho, \phi)$ уравнения (3) используем вариацию метода дискретной переменной, предложенную в статье [29] и примененную в работе [30] для проблемы диполь-дипольного рассеяния в двух пространственных измерениях. Для представления волновой функции на равномерной разностной сетке

$$\phi_j = \frac{2\pi j}{2M+1} \quad j = 0, 1, \dots, 2M$$

по угловой переменной ϕ используются собственные функции

$$\xi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im(\phi-\pi)} = \frac{(-1)^m}{\sqrt{2\pi}} e^{im\phi}$$
(8)

оператора $h^{(0)}(\phi)$ в качестве фурье-базиса. Волновая функция ищется в виде разложения:

$$\Psi(\rho,\phi) = \frac{1}{\sqrt{\rho}} \sum_{m=-M}^{M} \sum_{j=0}^{2M} \xi_m(\phi) \xi_{mj}^{-1} \psi_j(\rho), \qquad (9)$$

где

$$\xi_{mj}^{-1} = \frac{2\pi}{2M+1} \xi_{jm}^* = \frac{\sqrt{2\pi}}{2M+1} \exp\left[-im(\phi_j - \pi)\right]$$

— обратная матрица к квадратной $(2M+1) \times (2M+1)$ -матрице $\xi_{jm} = \xi_m(\phi_j)$, определенной на разностной сетке по угловой переменной. Радиальные функции $\psi_j(\rho)$ задаются значениями волновой функции на разностной сетке ϕ_j :

$$\psi_j(\rho) = \sqrt{\rho} \,\Psi(\rho, \phi_j). \tag{10}$$

В представлении (9) уравнение Шредингера (7) преобразуется в систему 2M + 1 связанных дифференциальных уравнений второго порядка:

$$\frac{1}{2m_r} \left(-\frac{\partial^2}{\partial \rho^2} \psi_j(\rho) - \frac{1}{4\rho^2} \psi_j(\rho) + \sum_{j'=0}^{2M} V_{jj'} \psi_{j'}(\rho) - \frac{1}{\rho^2} \sum_{j'=0}^{2M} h_{jj'}^{(0)} \psi_{j'}(\rho) \right) = E \psi_j(\rho), \quad (11)$$

где матрица потенциала имеет вид

$$V_{jj'}(\rho) = -\frac{2m_r}{\rho} \delta_{jj'} + (\mu_p - \mu_e) B \cos \alpha h_{jj'}^{(1)} + \frac{1}{4} B^2 \rho^2 \left(1 - \sin^2 \alpha \cos^2 \phi_j\right) \delta_{jj'}, \quad (12)$$

а недиагональные матрицы операторов $h^{(0)}$ и $h^{(1)}\equiv\equiv L_z$ задаются соотношениями

$$h_{jj'}^{(0)} = -\sum_{j''=-M}^{M} j''^2 \xi_{jj''} \xi_{j''j'}^{-1}, \qquad (13)$$

$$h_{jj'}^{(1)} = \sum_{j''=-M}^{M} j'' \xi_{jj''} \xi_{j''j'}^{-1}.$$
 (14)

n	В, ат.ед.	<i>Е</i> _{<i>n</i>} , ат. ед. [24]	<i>Е</i> _{<i>n</i>} , ат. ед. [21]	E_n , ат. ед.
2	4	4.000000	4.0000000	4.0000000
3	0.66666666	1.000000	1.0000000	1.0000000
4	0.2157031	0.431406	0.4314064	0.4314064
3	2.7472602	5.494520	5.4945207	5.4945207
5	0.0947113	0.236778	0.2367785	0.2367785
4	0.5150444	1.287610	1.2876109	1.2876109
6	0.0496114	0.148834	0.1488343	0.1488343
5	0.1776672	0.533000	0.5330020	0.5330021
4	2.1513889	6.454170	6.4541668	6.4541668
10	0.0088435	0.0442176	0.0442177	0.0442177

Таблица 4. Сравнение вычисленных нами значений уровней энергии в пределе $m_p \to \infty$ и результатов работ [21,24] для магнитного квантового числа l=0

Таблица 5. То же, что и в табл. 4, для магнитного квантового числа l = 1

n	В, ат.ед.	E_n , ат. ед. [24]	E_n , ат. ед. [21]	E_n , ат. ед.
2	1.3333333	2.6666700	2.6666667	2.6666667
3	0.2857142	0.7142860	0.7142857	0.7142857
4	0.1102572	0.3307720	0.3307717	0.3307717
3	1.0749278	3.2247800	3.2247835	3.2247835
5	0.0545241	0.1909910	0.1907883	0.1907883
4	0.2395487	0.8384210	0.8384207	0.8384207
6	0.0311049	0.1244200	0.1244197	0.1244197
5	0.0951651	0.3806600	0.3806606	0.3806606
4	0.9151684	3.6606800	3.6606737	3.6606737
7	0.0194448	0.0875018	0.0875018	0.0875018
10	0.0066281	0.0397691	0.0397691	0.0397691

Граничные условия для радиальных функций $\psi_j(\rho)$ определяются из условий конечности волновой функции в нуле ($\Psi(\rho, \phi_j) = \psi_j(\rho)/\sqrt{\rho} \to \text{const}$),

$$\psi_j(\rho \to 0) \to \text{const} \times \sqrt{\rho} \quad (j = 0, 1, \dots, 2M), \quad (15)$$

и убывания на бесконечности,

$$\psi_j(\rho \to \infty) \to 0 \quad (j = 0, 1, \dots, 2M).$$
 (16)

Для решения задачи на собственные значения (11), (15), (16) вводится неравномерная сетка (по аналогии с квазиравномерными сетками [34]) по радиальной переменной ρ : $\rho_j = \rho_N t_j^2$, $j = 1, 2, \ldots, N$, узлы на которой определяются отображением $\rho_j \in [0, \rho_N \to \infty]$ на равномерную сетку $t_j \in [0, 1]$.

Для дискретизации используется конечно-разностная аппроксимация шестого порядка точности. Собственные значения получаемой матрицы гамильтониана определяются численно с помощью метода обратных итераций со сдвигом. Возникающая на каждой итерации алгебраическая задача решается с помощью матричной модификации алгоритма прогонки [32] для диагональной блок-матрицы.

3. РЕЗУЛЬТАТЫ

3.1. Приближение Борна-Оппенгеймера

Первоначально для решения поставленной задачи мы применили приближение Борна – Оппенгей-

4 ЖЭТФ, вып. 1 (7)

Таблица 6. Численно рассчитанные значения ЭОС для различных величин магнитного поля и углов наклона α в приближении $m_p \to \infty$ и с учетом конечной массы протона

<i>В</i> , ат. ед.	α	$E(m_p \to \infty),$ ат. ед.	Е, ат. ед.
0	0°	-2.00000000	-1.99891136
1	0°	-1.95515969	-1.95400154
1	45°	-1.96609353	-1.96495184
1	90°	-1.97736937	-1.97624499
1.5	0°	-1.90335296	-1.90212093
1.5	45°	-1.92643285	-1.92523340
1.5	90°	-1.95085064	-1.94968360
4	0°	-1.45958714	-1.45782964
4	45°	-1.57808514	-1.57646979
4	90°	-1.71786453	-1.71556932

мера, использованное в работах [9–12, 14–16, 20, 21], которое предполагает, что электрон движется в поле положительно заряженного неподвижного центра.

С целью верификации применяемого численного алгоритма проведено исследование задачи связанных состояний двумерного атома водорода в отсутствие внешних полей в приближении $m_p \rightarrow \infty$, имеющей аналитическое решение [9–12]. В табл. 1 продемонстрировано полное согласие первых десяти уровней энергии 2D-атома водорода, рассчитанных численно с помощью приведенного выше алгоритма, с аналитическими значениями [12]. В табл. 2 представлено сравнение вычисленных дипольных матричных элементов с полученными аналитически в работе [12].

Приведенный в разд. 2 алгоритм применен для расчетов энергии основного состояния 2D-атома водорода в магнитном поле, направленном перпендикулярно к плоскости движения электрона. Полученные в ходе численных расчетов значения ЭОС, вычисленные нами в приближении бесконечной массы протона и полученные другими авторами с помощью метода асимптотических итераций [21] и вариационного подхода [22] при различных величинах магнитного поля, представлены в табл. 3. Полученные результаты находятся в соответствии с результатами других авторов [21, 22]. Сравнение со значениями уровней энергии для двух проекций углового момента из работ [21, 24] при различных величинах магнитных полей представлено в табл. 4 для магнитного квантового числа l = 0 и в табл. 5 для l = 1.

3.2. 2D-атом водорода в магнитном поле с учетом конечной массы протона

Для более точного анализа влияния величины и направления магнитного поля на спектр исследуемой системы нами рассчитана зависимость ЭОС 2Dатома водорода от угла наклона α направления магнитного поля к оси z и от величины магнитного поля с учетом конечной массы протона. На рис. 2а найденная зависимость иллюстрируется для диапазона полей от 0 до 4 ат. ед. (1 ат. ед.
 $= 2.35~\cdot~10^5~{\rm Tr})$ и на рис. 2δ — для диапазона полей от 1 до 10^4 ат. ед. Рисунок 2 иллюстрирует обнаруженный эффект нелинейного уменьшения ЭОС: при малых магнитных полях изменение слабое, в области больших полей ЭОС уменьшается почти вдвое с изменением угла α от 0 до 90°. Заметим, что найденная нелинейная зависимость не сводится к влиянию только лишь проекции B_z магнитного поля на нормаль к плоскости движения электрона, так как в этом случае для угла $\alpha = 90^{\circ}$, при котором $B_z = 0$, энергия основного состояния строго равнялась бы ЭОС 2D-атома водорода в отсутствие магнитного поля, что опровергается представленными на рис. 2а результатами численного анализа.

С целью оценки влияния конечной массы протона на изменение ЭОС численно рассчитанные значения ЭОС для различных величин магнитного поля и углов наклона α в приближении $m_p \rightarrow \infty$ и с учетом конечной массы протона приведены в табл. 6. Отметим, что данные, посчитанные в обоих приближениях, различаются в третьем знаке после запятой в широком диапазоне входных расчетных данных.

Анализ приведенных на рис. 2 зависимостей показывает, что для ненулевых углов α наблюдается более медленный рост значения ЭОС с увеличением магнитного поля, хотя квадратичная для слабых полей и линейная для сильных полей зависимости ЭОС от величины магнитного поля сохраняются. Значения ЭОС по теории возмущений для слабых,

$$E = -2m_r + \frac{3}{64m_r^3}B^2 + \dots, \qquad (17)$$

и сильных,

$$E = \frac{B}{2m_r} - \sqrt{\frac{\pi}{2}B} + \dots, \qquad (18)$$

магнитных полей, найденные Турбинером [22], представлены штриховыми кривыми в плоскости $\alpha = 0$ соответственно на рис. 2a и 2δ .

Рис. 4. (В цвете онлайн) Зависимости потенциала $U(\rho) = -1/\rho + B^2 \rho^2 (1 - \sin^2 \alpha \cos^2 \phi)$ от угла α между направлением вектора индукции магнитного поля и осью z для случая отсутствия магнитного поля (a), для магнитного поля B = 0.5 ат. ед. при $\alpha = 0$ (δ), $\alpha = 45^{\circ}$ (e), $\alpha = 90^{\circ}$ (z). Все величины на рисунке приведены в атомных единицах

Пространственное распределение волновой функции основного состояния с увеличением угла α становится сильноанизотропным. В частности, наблюдается вытянутость атомного состояния вдоль оси х при его одновременном сжатии вдоль оси у, что проиллюстрировано на рис. 3. Наряду с убыванием ЭОС с увеличением угла а подобное поведение волновой функции может быть объяснено постепенным ослаблением «гармонического» вклада магнитного поля (6) вдоль оси x при $\alpha \to 90^{\circ}$, полностью исчезающим в случае $\alpha = 90^{\circ}$. Соответствующее изменение потенциальной поверхности кулоновского и анизотропного квадратичного по полю (6) слагаемых проиллюстрировано на рис. 4.

3.3. 2D-экситон в магнитном поле

Следует отметить, что предложенный в настоящей работе подход применим для анализа спектра системы противоположно заряженных частиц, движущихся в плоскости в магнитном поле. Примером таких систем является экситон в двумерной квантовой яме GaAs/Al_{0.33}Ga_{0.67}As. Для описания подобной системы в гамильтониане (3) мы изменили массы частиц на эффективные массы электрона $m_e^* = 0.067m_e$ и тяжелой дырки $m_h = 0.18m_e$ [35], добавив фактор $1/\epsilon$ (где $\epsilon = 12.1$ — константа диэлектрической проницаемости) в слагаемое кулоновского взаимодействия частиц:

Рис. 5. Зависимость энергии основного состояния экситона в $GaAs/Al_{0.33}Ga_{0.67}As$ от угла наклона α для величины магнитного поля B от 2 до 10 Тл

$$H = \frac{\mathbf{p}^2 + 2(\mu_h - \mu_e)(\mathbf{A}_{\rho} \cdot \mathbf{p}) + \mathbf{A}_{\rho}^2}{2m_r} - \frac{1}{\epsilon\rho}, \qquad (19)$$

где

$$\mu_h = \frac{m_h}{m_h + m_e^*}, \quad \mu_e = \frac{m_e^*}{m_h + m_e^*}; \quad m_r = \frac{m_h m_e^*}{m_h + m_e^*}.$$

Вычисленные при различных величинах магнитного поля (от 2 до 10 Тл) зависимости энергии основного состояния экситона от угла наклона α , приведенные на рис. 5, аналогичны по виду зависимостям для 2D-атома водорода. Значения ЭОС для рассматриваемого в настоящей работе случая P = 0для $\alpha = 0$ находятся в прекрасном согласии со значениями из работ [23, 36]. Благодаря уменьшению энергии основного состояния с увеличением угла наклона α , изменение направления магнитного поля может использоваться для изменения энергии связи 2D-экситона в полупроводниковых гетероструктурах с эффективным движением электрона и дырки в плоскости.

Отметим, что в случае равенства эффективных масс электрона и дырки 2D-экситона, $m_h = m_e^*$, исследуемом в работе [3], линейное по полю слагаемое исчезает и гамильтониан имеет вид

$$H = \frac{1}{2m_r} \left[-\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} + \frac{1}{4} B^2 \left[x^2 (1 - \sin^2 \alpha) + y^2 \right] \right] - \frac{1}{\epsilon \sqrt{x^2 + y^2}}.$$
 (20)

Свойства гамильтониана (20) исследовались в рамках изучения спектров анизотропных двумерных квантовых точек в работе [37], где было обнаружено, что для определенных значений параметра анизотропии $1 - \sin^2 \alpha$ имеется дополнительный интеграл движения. Существование дополнительной сохраняющейся величины приводит к значительным изменениям в структуре спектра, в частности, к восстановлению оболочечной структуры уровней, исчезающей при других значениях параметра анизотропии $1-\sin^2 \alpha$. Таким образом, определенные углы наклона магнитного поля могут сильно менять спектральные характеристики 2D-экситонов в материалах с близкими эффективными массами $m_h \approx m_e^*$.

4. ЗАКЛЮЧЕНИЕ

Проблема 2D-атома водорода в магнитном поле расширена на случай произвольной направленности магнитного поля. Предложенный для ее решения алгоритм верифицирован на задачах 2D-атома водорода в отсутствие внешних полей и 2D-атома водорода в магнитном поле, направленном перпендикулярно плоскости движения электрона. Для обобщения на случай произвольной направленности магнитного поля численно рассчитана зависимость энергии основного состояния (ЭОС) 2D-атома водорода от величины магнитного поля и от угла α между направлением магнитного поля и нормалью к плоскости движения электрона. Вычислена зависимость ЭОС 2D-экситона в GaAs/Al_{0.33}Ga_{0.67}As от угла наклона α для магнитных полей от 2 до 10 Тл. В ходе численных расчетов показано, что при увеличении α от 0 до 90° ЭОС в случае как 2D-атома водорода, так и 2D-экситона уменьшается нелинейным образом. Обнаруженная зависимость ЭОС 2D-экситонов от угла наклона магнитного поля свидетельствует о явной возможности влиять на энергию связи и спектральные характеристики экситонов направлением магнитного поля.

Авторы выражают благодарность В. С. Мележику и В. В. Пупышеву за плодотворные обсуждения данной статьи. Работа выполнена при финансовой поддержке РФФИ (грант № 16-32-00865).

ЛИТЕРАТУРА

- J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
- Ю. А. Бычков, С. В. Иорданский, Г. М. Элиашберг, Письма в ЖЭТФ 33, 152 (1981).

- C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).
- L. W. Engel, S. W. Hwang, T. Sajoto et al., Phys. Rev. B 45, 3418 (1992).
- J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer et al., Phys. Rev. Lett. 68, 1383 (1992).
- S. Uji, H. Shinagawa, T. Terashima et al., Nature 410, 908 (2001).
- J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).
- D. C. Elias, R. R. Nair, T. M. G. Mohiuddin et al., Science 323, 610 (2009).
- B. Zaslow and M. E. Zandler, Amer. J. Phys. 35, 1118 (1967).
- J. W.-K. Huang and A. Kozycki, Amer. J. Phys. 47, 1005 (1979).
- 11. G. Q. Hassoun, Amer. J. Phys 49, 143 (1981).
- 12. X. Yang, S. Guo, F. Chan et al., Phys. Rev. A 43, 1186 (1991).
- 13. W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
- 14. R. Chen, J. P. Cheng, D. L. Lin et al., Phys. Rev. B 44, 8315 (1991).
- V. M. Villalba and R. Pino, J. Phys.: Condens. Matter 8, 8067 (1996).
- 16. A. Soylu and I. Boztosun, Physica B 396, 150 (2007).
- D. G. W. Parfitt and M. E. Portnoi, J. Math. Phys. 43, 4681 (2002).
- 18. A. Cisneros, J. Math. Phys. 10, 277 (1969).
- 19. M. Robnik, J. Phys. A 14, 3195 (1981).
- A. H. MacDonald and D. S. Ritchie, Phys. Rev. B 33, 8336 (1986).

- A. Soylu, O. Bayrak, and I. Boztosun, Int. J. Mod. Phys. E 15, 1263 (2006).
- M. A. Escobar-Ruiz and A. V. Turbiner, Ann. Phys. (N. Y.) 340, 37 (2014).
- M. A. Escobar-Ruiz and A. V. Turbiner, Ann. Phys. (N. Y.) 359, 405 (2015).
- 24. M. Taut, J. Phys. A 28, 2081 (1995).
- 25. M. G. Dimova, M. S. Kaschiev, and S. I. Vinitsky, J. Phys. B 38, 2337 (2005).
- 26. O. Chuluunbaatar, A. A. Gusev, V. L. Derbov et al., J. Phys. A 40, 11485 (2007).
- 27. M. Robnik and V. G. Romanovski, J. Phys. A 36, 7923 (2003).
- H. Ruder, G. Wunner, H. Herold et al., Atoms in Strong Magnetic Fields, Springer Science & Business Media (2012).
- 29. V. S. Melezhik, J. Comput. Phys. 92, 67 (1991).
- 30. E. A. Koval, O. A. Koval, and V. S. Melezhik, Phys. Rev. A 89, 052710 (2014).
- Н. Н. Калиткин, Численные методы, БХВ-Петербург (2011).
- I. M. Gelfand and S. V. Fomin, Calculus of Variations, Dover Publ., New York (2000).
- 33. T. Frostad, J. P. Hansen, C. J. Wesslén et al., Eur. Phys. J. B 86, 430 (2013).
- 34. Н. Н. Калиткин, А. Б. Альшин, Е. А. Альшина и др., Вычисления на квазиравномерных сетках, Физматлит, Москва (2005).
- 35. L. V. Butov, C. W. Lai, D. S. Chemla et al., Phys. Rev. Lett. 87, 216804 (2001).
- 36. Yu. E. Lozovik, I. V. Ovchinnikov, S. Yu. Volkov et al., Phys. Rev. B 65, 235304 (2002).
- 37. P. S. Drouvelis, P. Schmelcher, and F. K. Diakonos, Phys. Rev. B 69, 035333 (2004).