ЭНТРОПИЯ И МАГНИТОКАЛОРИЧЕСКИЙ ЭФФЕКТ В ФЕРРИМАГНЕТИКАХ RCo_2

Э. З. Валиев*

Институт физики металлов Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

Поступила в редакцию 30 января 2017 г.

В терминах обменно-стрикционной модели получены уравнения состояния для магнитной и упругой подсистем ферримагнетика. Дан вывод формул магнитной энтропии, которая представлена как сумма вкладов двух магнитных подрешеток ферримагнетика. Проведен расчет одной из основных характеристик магнитокалорического эффекта — изотермического изменения энтропии ΔS_{iso} в магнитном поле для соединений RCo_2 (R = Er, Ho, Dy), испытывающих магнитный фазовый переход первого рода и TbCo_2 с магнитным фазовым переходом второго рода. Показано, что расчет для ΔS_{iso} для этих соединений удовлетворительно количественно согласуется с экспериментом. Рассчитано изменение энтропии ферримагнетика в сильном магнитном поле при переходе от ферримагнитного к ферромагнитному упорядочению. Дан анализ особенностей зависимости магнитной энтропии двухподрешеточного ферримагнетика от магнитного поля.

DOI: 10.7868/S0044451017060141

1. ВВЕДЕНИЕ

В соединениях RCo₂ наблюдается большой магнитокалорический эффект (МКЭ). Несмотря на многочисленные теоретические и экспериментальные исследования МКЭ в этих соединениях [1–5], нет единой точки зрения, объясняющей величину и происхождение этого эффекта. В нашей статье проведен расчет магнитной части энтропии ферримагнетиков RCo₂, на основе обменно-стрикционной модели [6–8]. В этих работах дано обобщение модели Бина и Родбелла [9] для магнетиков с двумя магнитными подрешетками.

План настоящей статьи таков. В разд. 2 из условия минимума модельной свободной энергии ферримагнетика [6, 10] получены уравнения состояния для магнитной подсистемы ферримагнетика и объемных равновесных деформаций. В разд. 3 из выражения для термодинамического потенциала в состоянии равновесия выведены формулы для магнитной энтропии (МЭ) ферримагнетика. В разд. 4 после короткого обсуждения особенностей магнитного фазового перехода (МФП) первого рода в соединениях RCo₂ представлены результаты расчета температурной зависимости МЭ этих соединений с (R = Er, Но, Dy, Tb). Для них рассчитаны и сравнены с экспериментом величины $\Delta S_{iso} = S(0,T) - S(H,T)$ изотермического изменения энтропии в магнитном поле H = 0, 4, 5 Тл. Нам удалось рассчитать парциальные вклады редкоземельной и кобальтовой подрешеток в полную МЭ соединения и сравнить их величину. Показано, что подрешетка ионов кобальта дает больший вклад в ΔS_{iso} в окрестности точки Кюри. Также рассчитана зависимость МЭ ферримагнетика ErCo₂ от сильного магнитного поля, т.е. при переходе от ферримагнитного к ферромагнитному упорядочению через угловую фазу. В угловой фазе МЭ не зависит от магнитного поля и МКЭ отсутствует. Однако этот вывод действителен только в обменном приближении. При учете магнитокристаллической анизотропии он несправедлив [11].

В области температур, где угловая фаза отсутствует, энтропия кобальтовой подрешетки имеет максимальное значение при нулевом значении магнитного момента атомов кобальта. В заключение, обсуждены причины большого МКЭ в соединениях RCo_2 и изменения величины МКЭ в ряду этих соединений с R = Er, Ho, Dy, Tb.

2. ОСНОВНЫЕ ФОРМУЛЫ

Будем исходить из выражения модельной свободной энергии ферримагнетика в виде, эквивалент-

^{*} E-mail: valiev@imp.uran.ru

ном тому, который предложен в монографии [10] и обобщим его с учетом зависимости обменного интеграла I'_{11} от относительных объемных (V) деформаций $\omega = \Delta V/V$ и упругой энергии, согласно работе [6]. В приближении ближайших соседей для ферримагнетиков RCo₂ имеем:

$$F = \frac{1}{2} N_1 z_{11} I'_{11} s^2 \sigma_1^2 + \frac{1}{2} N_2 z_{22} I_{22} (g_J - 1)^2 J^2 \sigma_2^2 + N_1 z_{12} |I_{12}| s(g_J - 1) J \sigma_1 \sigma_2 - kT N_1 \ln Z_1(x_1) - kT N_2 \ln Z_2(x_2) + \frac{1}{2} B \omega^2 + p \omega, \quad (1)$$
$$x_1 = \beta \left[z_{11} I'_{11} s^2 \sigma_1 + a z_{12} |I_{12}| s(g_J - 1) J \sigma_2 - a \mu_1 H \right],$$

$$x_2 = \beta \left[a z_{21} | I_{12} | s (g_J - 1) J \sigma_1 + z_{22} I_{22} (g_J - 1)^2 J^2 \sigma_2 + \mu_2 H \right].$$

Здесь

$$Z_1(x_1) = \operatorname{sh}[(1+(2s)^{-1})x_1]/\operatorname{sh}[(2s)^{-1}x_1],$$

$$Z_2(x_2) = \operatorname{sh}[(1+(2J)^{-1})x_2]/\operatorname{sh}[(2J)^{-1}x_2],$$

 $z_{11}I_{11}'=z_{11}I_{11}+\gamma\omega,\,\sigma_i$ — приведенная намагниченность атомов сорта *i*, z_{ij} — число ближайших соседей атомов сорта j в окружении атома i, μ_i – магнитный момент атома сорта *i*, *I*_{*ij*} — обменный интеграл между атомами i и j (в дальнейшем цифрой «1» будем обозначать подрешетку атомов Со, а цифрой «2» — атомы редкоземельных элементов — $\mathbf{R}, I_{11} > 0, I_{22} > 0, I_{12} < 0$), N_i — число атомов сорта *і* в единице объема, *В* — модуль объемного сжатия, *s* и *J* — соответственно спин атома Со и полный механический момент R-атомов, $g_J - g$ -фактор R-атомов, p — давление, γ — постоянная магнитоупругого (магнитообъемного) взаимодействия (см. ниже), $\beta = (kT)^{-1}, k$ — постоянная Больцмана, H — внешнее магнитное поле (**H** $\parallel \mu_2$), a = 1 для ферримагнитного состояния.

Из условия минимума термодинамического потенциала (1) по переменным σ_1 , σ_2 и ω получим равновесные уравнения состояния для магнитной и упругой подсистем ферримагнетика. Уравнения $\partial F/\partial \sigma_1 = 0$, $\partial F/\partial \sigma_2 = 0$ и $\partial F/\partial \omega = 0$ дают:

$$\sigma_1 = B_S(x_1); \quad \sigma_2 = B_J(x_2),$$
 (2)

$$\omega = \gamma N_1 s^2 B^{-1} \sigma_1^2 / 2 - p B^{-1}.$$
 (3)

В уравнениях (2) и (3)

$$B_S(x_1) = Z'_1(x_1)/Z_1(x_1), \quad B_J(x_2) = Z'_2(x_2)/Z_2(x_2).$$

Здесь штрих обозначает производную функции по своему аргументу, $B_S(x_1)$, $B_J(x_2)$ — функции Бриллюэна. Постоянная γ имеет размерность энергии, $\gamma \sim c(\partial I_{11}/\partial c)$ (c — постоянная решетки). В (3) первое слагаемое представляет спонтанную объемную магнитострикцию, второе слагаемое учитывает изменение объема под давлением.

Если подставить в выражение (1) равновесные значения σ_1 , σ_2 и ω , определенные из уравнений (2) и (3), как функции T, p и H, то получим равновесный термодинамический потенциал F(T, p, H). Для магнитной части энтропии ферримагнетика с двумя магнитными подрешетками $S = -\partial F/\partial T$ следует:

$$S = S_1 + S_2 = N_1 k (\ln Z_1(x_1) - \sigma_1 x_1) + N_2 k (\ln Z_2(x_2) - \sigma_2 x_2).$$
(4)

Несмотря на то что в формуле (1) для термодинамического потенциала присутствуют слагаемые упругой энергии (пропорциональные ω), в выражении (4) они сокращаются. Таким образом, МЭ зависит от магнитоупругого взаимодействия только посредством зависимости от него величин σ_1 и σ_2 .

Насколько нам известно, формула вида (4) была впервые использована для расчета МЭ антиферромагнетика в работе [12]. Затем она была применена в работе [13] при вычислении энтропии в феррии антиферромагнетиках. Последовательного вывода этой формулы в упомянутых работах не дано. Нам не удалось получить формулу (4) из выражения для свободной энергии, предложенного в работе [13], в то время как ее несложно получить из (1).

Прежде чем приступить к вычислению энтропии по формулам (2)-(4), рассмотрим некоторые особенности МФП первого рода в соединениях RCo₂ с точки зрения нашей модели. Вычислим магнитные свойства ферримагнетика ErCo₂. Результаты аналогичных вычислений можно найти в работе [8]. Для ErCo2 численные значения физических величин в формулах (1)–(4) следующие: $z_{11} = 6, z_{12} = 6, z_{21} =$ = 12, z_{22} = 4, s = 1/2, $B \approx 1.0 \cdot 10^{12}$ эрг/см³, $N_1 \approx$ $\approx 4.3 \cdot 10^{22} \text{ cm}^{-3}, N_2 = N_1/2, J = 15/2, g_J = 6/5, I_{11} = 0.93 \cdot 10^{-15}$ эрг, $I_{12} = -0.9 \cdot 10^{-15}$ эрг, $I_{22} = -0.9 \cdot 10^{-15}$ эрг, $I_{22} = -0.9 \cdot 10^{-15}$ эрг, $I_{23} = -0.9 \cdot 10^{-15}$ эрг, $I_{24} = -0.9 \cdot 10^{-15}$ эрг, $I_{25} = -0.9 \cdot 10^{-15}$ $= 2 \cdot 10^{-16}$ эрг, $\gamma = 1.67 \cdot 10^{-12}$ эрг. С этими значениями параметров температура Кюри, рассчитанная по формуле, справедливой для МФП второго рода, $T_C^0 = 33.1$ К. Значения обменных интегралов подбирались так, чтобы получить T_C , совпадающую с температурой Кюри соединений RCo₂ из работы [2]. В дальнейшем будем сравнивать результаты расчета величины ΔS с экспериментальными данными, полученными в этой работе.

Рис. 1. Температурные зависимости приведенной намагниченности подрешетки кобальта (σ_1) и редкоземельной подрешетки (σ_2) для соединения $\operatorname{ErCo}_2 - \sigma_2 = 0$ (кривая 1), $\sigma_2 = 5$ Тл (кривая 2); $\sigma_1 = 0$ (кривая 3), $\sigma_1 = 5$ Тл (кривая 4). Штрихами показана область существования двух положительных решений уравнений (2) для кривой 3

На рис. 1 приведен результат расчета температурной зависимости намагниченности подрешеток $ErCo_2$ при нулевом магнитном поле (кривые 1, 3) и H = 5 Тл (кривые 2, 4). Эти результаты получены путем численного решения системы уравнений (2) после того, как в аргумент функций Бриллюэна (x_1) подставлены равновесные значения ω из уравнения (3). Скачок намагниченности в T_C (при H == 0 (рис. 1), характерен для МФП первого рода. Штриховой линией на этом рисунке отмечена область температур (33.1 К-33.95 К), в которой система уравнений (2) имеет два ненулевых положительных решения для σ_1 и σ_2 . Точка МФП первого рода находится в этой области температур. Она получена из условия равенства термодинамических потенциалов (1) ферримагнитной $F_f(T, \sigma_1 \neq 0, \sigma_2 \neq 0)$ и парамагнитной $F_p(T, \sigma_1 = 0, \sigma_2 = 0)$ фаз (см. рис. 2). Здесь для $\sigma_1(T)$ и $\sigma_2(T)$ в ферримагнитной фазе использован результат расчета, показанный на рис. 1.

В магнитном поле H = 5 Тл фазовый переход отсутствует. Это видно на рис. 1 (кривые 3, 4). В магнитном поле МФП первого рода имеет место в интервале магнитных полей от 0 до H_{cr} [6]. При H > $> H_{cr}$ МФП отсутствует и наблюдается переход от магнитоупорядоченного состояния к «параподобному» в пределах одной фазы. В нашем случае $H_{cr} \approx$ ≈ 0.5 Тл, и кривые 3, 4 на рис. 1 демонстрируют этот переход. Температурные зависимости при H = 0 и H = 5 Тл сильно различаются. Как будет показано далее, этот факт является предпосылкой большой величины МКЭ в рассматриваемых соединениях.

Рис. 2. Температурные зависимости термодинамических потенциалов ферримагнитной (F_f) и парамагнитной (F_p) фаз, для ферримагнетика ErCo_2 , в окрестности МФП первого рода, T_C^0 — температура Кюри, рассчитанная по формуле справедливой для магнитных фазовых переходов второго рода

3. МАГНИТНАЯ ЧАСТЬ ЭНТРОПИИ СОЕДИНЕНИЙ RC02

На рис. 3 показан результат расчета изотермического изменения $\Delta S_{iso} = S(0) - S(H)$ — магнитной энтропии ферримагнетика $ErCo_2$ в зависимости от температуры. На этом рисунке тонкими сплошной и штриховой линиями указаны парциальные вклады соответственно от подрешеток ионов кобальта и эрбия. Толстая линия есть результирующая величина эффекта. Сравнение результатов расчета с экспериментальными данными работы [2] дает удовлетворительное количественное согласие, хотя наблюдается заметное расхождение в области температур ниже точки Кюри. Также эксперимент дает более широкий, чем расчет, интервал температуры, в котором наблюдается большой МКЭ.

Расчетные кривые температурной зависимости МЭ для подрешеток ионов Со и Ег приведены на рис. 4. Несмотря на то что энтропия подрешетки ионов эрбия в несколько раз больше, чем энтропия кобальтовой подрешетки, вклад этих подрешеток в ΔS_{iso} практически одинаков в окрестности T_C . Большая МЭ ионов эрбия объясняется тем, что они имеют большой момент, и их намагниченность сильно зависит от температуры (см. рис. 1). Одинаковая величина вклада подрешеток в результирующую величину ΔS_{iso} вблизи T_C связана с различием вели-

Рис. 3. Зависимость от температуры изотермического изменения магнитной энтропии ферримагнетика $ErCo_2$ при изменении магнитного поля от нуля до 5 Тл. Тонкой сплошной линией показан вклад подрешетки кобальта, штрихи — вклад подрешетки ионов эрбия. Сплошные квадраты — экспериментальные данные из [2]

Рис. 4. Зависимости энтропии подрешеток кобальта (S_1) и эрбия (S_2) соединения ErCo₂ от температуры в магнитных полях H = 0 и H = 5 Тл

чин скачков намагниченности и энтропии ионов Со и Ег при МФП первого рода при T_C (рис. 1, 4).

Сравнение результатов расчета с экспериментальными данными работы [2] для изотермического изменения энтропии в соединениях RCo₂ представлено на рис. 5. Как видно, результаты расчета удовлетворительно согласуются с экспериментом. Отметим также, что наш расчет для HoCo₂ согласуется с экспериментальной оценкой максимального значения (ΔS_{iso})^{max} ≈ 6.4 Дж/моль·К (H = 6 Тл, T = 82 К). Эта величина получена при измерении

Рис. 5. Изотермическое изменение энтропии в магнитном поле для соединений RCo₂. Сплошные линии — расчет по формулам (2) и (4). Символы — экспериментальные данные работы [2]

 $(\Delta T_{ad})^{max} = 5.1 \text{ K}$ в работе [14] и известного из [15] значения теплоемкости соединения НоСо₂. У нас для НоСо₂ при H = 6 Тл получается $(\Delta S_{iso})^{max} =$ $= 29 \cdot 10^5 \text{ эрг/см}^3 \cdot \text{K} = 28.3 \text{Дж/кг} \cdot \text{K} \approx 8 \text{Дж/моль} \cdot \text{K},$ т. е. согласие удовлетворительное.

Постепенное уменьшение максимальной величины ΔS_{iso} в ряду соединений от Er до Tb происходит, потому что МФП первого рода становится менее ярко выраженным (в этом ряду уменьшается величина скачка намагниченности при T_C). При расчетах температурной зависимости намагниченности подрешеток, величин T_C и ΔS_{iso} выбраны следующие численные значения обменных интегралов и констант γ : $I_{11} = 4.93 \cdot 10^{-15}$ эрг, $I_{12} = -1.0 \cdot 10^{-15}$ эрг, $I_{22} =$ $= 2.0 \cdot 10^{-16}$ эрг, $\gamma = 1.9 \cdot 10^{-12}$ эрг для HoCo₂; $I_{11} = 8.6 \cdot 10^{-15}$ эрг, $I_{12} = -1.6 \cdot 10^{-15}$ эрг, $I_{22} =$ $= 2.5 \cdot 10^{-16}$ эрг, $\gamma = 2.2 \cdot 10^{-12}$ эрг для DyCo₂; $I_{11} = 12.3 \cdot 10^{-15}$ эрг, $I_{12} = -2.4 \cdot 10^{-15}$ эрг, $I_{22} =$ $= 3.17 \cdot 10^{-16}$ эрг, $\gamma = 2.5 \cdot 10^{-12}$ эрг для TbCo₂. Почти такие же значения этих переменных использовались в работе [8] при расчете различных магнитных свойств рассматриваемых соединений. С указанными выше численными значениями физических величин уравнения (2) предсказывают МФП первого рода для соединений RCo_2 с R = Er, Ho, Dy и $M\Phi\Pi$ второго рода для R = Tb.

Также как в ErCo₂ редкоземельная (P3) подрешетка дает наибольший вклад в МКЭ соединений с Но, Dy и Tb почти во всем интервале температур от 0 K до $T > T_C$. Исключение составляет область температур вблизи T_C , где для ΔS_{iso} наблюдаются максимальные значения. Здесь вклады подрешеток Со и РЗ-подрешеток сравниваются для ErCo₂, а для соединений с Но, Dy и Tb подрешетка кобальта дает приблизительно в 1.5 раза больший вклад, чем РЗ-подрешетка. Этот факт связан с разным характером температурной и полевой (H) зависимостей намагниченности подрешеток при $T \approx T_C$.

Таким образом, наши результаты показывают, что МФП первого рода, который имеет место в соединениях RCo₂, является одной из основных причин большой величины МКЭ этих соединений.

4. ЗАВИСИМОСТИ ЭНТРОПИИ ОТ МАГНИТНОГО ПОЛЯ В ФЕРРИМАГНИТНОЙ, УГЛОВОЙ И ФЕРРОМАГНИТНОЙ ФАЗАХ СОЕДИНЕНИЙ RC02

В магнитном поле ферримагнетик может существовать в одной из трех фаз, которые перечислены выше. Уравнения состояния для ферримагнитной фазы имеют вид (2), с x_1 , x_2 из (1) и a = 1. В ферромагнитной фазе справедливы эти же уравнения, a = -1.

В угловой фазе (см., например, [8,11]):

$$\sigma_1 = B_s \left(\beta \mu_1 (\lambda + \lambda_{11}) M_1\right), \sigma_2 = B_J \left(\beta \mu_2 (\lambda + \lambda_{22}) M_2\right),$$
(5)

где

$$\begin{split} \lambda &= 2z_{12}|I_{12}|(g_J-1)/gg_J\mu_B^2N_1,\\ \lambda_{11} &= z_{11}I_{11}/(g\mu_B)^2N_1 + s^2B^{-1}\gamma^2\sigma_1^2/2(g\mu_B)^2,\\ \lambda_{22} &= 2z_{22}(g_J-1)^2I_{22}/(g_J\mu_B)^2N_1. \end{split}$$

Здесь $M_1 = \mu_1 N_1 \sigma_1 = g \mu_B s N_1 \sigma_1$ и $M_2 = \mu_2 N_2 \sigma_2 =$ $= g_J \mu_B J N_2 \sigma_2$ — намагниченности подрешеток кобальта и редкоземельного элемента, g = 2 - g-фактор атомов кобальта, λ , λ_{11} , λ_{22} — коэффициенты молекулярного поля, μ_B — магнетон Бора, остальные обозначения те же, что и в (1).

В угловой фазе σ_1 и σ_2 (5) являются функциями только температуры и не зависят от внешнего магнитного поля. Эти уравнения решаются независимо друг от друга. Угловая фаза существует в ограниченном интервале температуры и магнитного поля. Она возникает в магнитном поле H_1 и исчезает в поле Н₂. Эти критические магнитные поля определяются из уравнений (у нас $M_2 > M_1$):

$$H_1 = \lambda (M_2 - M_1), \quad H_2 = \lambda (M_1 + M_2).$$
 (6)

Здесь при заданной температуре значения M_1 и M_2 определяются из уравнений (5). Таким образом,

30

0

0

10

20

Рис. 6. Зависимость энтропии ErCo_2 от магнитного поля при T = 10 К. Тонкие линии представляют зависимость энтропии подрешеток. Толстая линия — полная магнитная энтропия

40

50

ферримагнитная фаза существует при $H < H_1$, ферромагнитная при $H > H_2$. Границы между фазами (6) есть линии фазовых переходов второго рода.

На рис. 6, в качестве примера, показан результат расчета зависимости энтропии от магнитного поля для соединения $ErCo_2$ (T = 10 K). При расчете использованы формулы (1)-(6) с численными значениями параметров, указанными для этого соединения выше. Формулы (6) дают для этого случая $H_1 \approx$ ≈ 33 Тл, $H_2 \approx 57$ Тл. Мы видим, что в ферримагнитной фазе МЭ редкоземельной подрешетки уменьшается с увеличением *H*, в то время как МЭ подрешетки ионов Со растет. Этот факт связан с различным поведением намагниченности подрешеток ионов Er и Со в магнитном поле для ферримагнитной фазы (см. рис. 7). В угловой фазе σ_1 и σ_2 не зависят от магнитного поля и энтропия не изменяется при постоянной температуре. Угловая фаза существует в ограниченном интервале температур [8, 11, 16]. Для рассматриваемого нами соединения ErCo₂ это интервал от 0 К до примерно 20 К. При T > 20 К в магнитном поле имеет место непрерывный переход из ферримагнитной фазы в ферромагнитную.

Зависимости намагниченности подрешеток для $ErCo_2$ от магнитного поля при T = 25 К показаны на рис. 8. В ферримагнитной фазе σ_1 убывает с ростом поля и обращается в нуль при $H \approx 42$ Тл. Объясняется этот факт тем, что в этом интервале магнитного поля направления векторов магнитного момента μ_1 и магнитного поля противоположны. При $H \gtrsim$ $\gtrsim 42$ Тл намагниченности σ_1 и σ_2 увеличиваются

Рис. 7. Зависимости приведенной намагниченности подрешеток m Co и m Er соединения $m Er
m Co_2$ от магнитного поля при T=10~
m K

Рис. 8. Зависимости намагниченности подрешеток (σ_1) и (σ_2) соединения ErCo_2 от магнитного поля при T=25 К. Отрицательные значения намагниченности подрешетки атомов Co указывают на противоположные направления намагниченности подрешеток в интервале изменения магнитного поля от нуля до примерно 42 Тл

с ростом H как и должно быть в ферромагнитной фазе. При этом МЭ подрешетки эрбия уменьшается с увеличением магнитного поля. МЭ кобальтовой подрешетки растет в том интервале магнитных полей, где намагниченность этой подрешетки уменьшается (см. рис. 8, 9). В ферромагнитной фазе МЭ обеих подрешеток уменьшаются, а намагниченность растет, когда напряженность магнитного поля увеличивается.

По-видимому, совпадение знаков величин $\partial S_i/\partial H$ и $-\partial M_i/\partial H$ для ферримагнетиков и

Рис. 9. Магнитная энтропия соединения $ErCo_2$ как функция магнитного поля при T = 25 К. Показан вклад подрешеток Er и Co и их сумма

антиферромагнетиков является общим явлением. Из термодинамических соотношений следует равенство:

$$(\partial M/\partial H)_T = (\partial S/\partial H)_T/(\partial S/\partial M)_T.$$

Поскольку $(\partial S/\partial M)_T$ отрицательна, энтропия убывает с увеличением намагниченности, упомянутые выше величины имеют разные знаки, что и подтверждает наш расчет (см. рис. 4, 5). С этим фактом связаны и приведенные в обзоре [17] соотношения, которые можно переписать так:

$$\Delta S_1 \approx (\partial \mathbf{M}_1 / \partial T)_H \cdot \Delta \mathbf{H},$$

$$\Delta S_2 \approx (\partial \mathbf{M}_2 / \partial T)_H \cdot \Delta \mathbf{H}.$$
 (7)

В этих соотношениях \mathbf{M}_1 , \mathbf{M}_2 и \mathbf{H} фигурируют как векторные величины. Из формул (7) также можно сделать вывод, что ΔS_1 и ΔS_2 меняют знак при изменении взаимного направления векторов \mathbf{M}_i и \mathbf{H} , также, по-видимому, должны выполняться соотношения

$$\Delta M_1 \approx (\partial \mathbf{M}_1 / \partial H)_T \cdot \Delta \mathbf{H},$$

$$\Delta M_2 \approx (\partial \mathbf{M}_2 / \partial H)_T \cdot \Delta \mathbf{H}.$$
(8)

Вероятно, в формулах (7), (8) знаки равенства выполняются лишь приблизительно потому, что M_1 , M_2 и их производные по температуре и магнитному полю не являются независимыми величинами. Они зависят друг от друга согласно формулам (2). По крайней мере, нам не удалось доказать выполнения соотношения Максвелла

$(\partial S/\partial H)_T = (\partial M/\partial T)_H,$

исходя из формул (2) и (4), в то время как в случае ферромагнетика с одной магнитной подрешеткой для уравнений аналогичных (2) и (4) это соотношение выполняется точно.

5. ВЫВОДЫ

В настоящей работе предложен явный вид термодинамического потенциала ферримагнетика в приближении теории эффективного поля. С использованием этого термодинамического потенциала получена точная в рассматриваемом приближении формула для магнитной части энтропии ферримагнетика. Проведен расчет изотермического изменения энтропии ферримагнетиков RCo₂ в магнитном поле. Показано, что редкоземельная подрешетка и подрешетка атомов кобальта дают сравнимый вклад в максимальную величину ΔS_{iso} этих соединений, причем вклад кобальтовой подрешетки превалирует, несмотря на то, что $S_1 \ll S_2$ во всем интервале температур. Причиной больших величин МКЭ в RCo₂ является сильная зависимость намагниченности от температуры и магнитного поля в окрестности МФП первого рода, который имеет место в этих соединениях. Постепенное уменьшение величины МКЭ в ряду соединений с R = Er, Ho, Dy, Ть связано с ослаблением резкости МФП первого рода в этом ряду и его исчезновением для TbCo₂. Этот факт является следствием увеличения температуры Кюри примерно от 30 К для ErCo₂ до 270 К для $TbCo_2$ (по этому поводу см. [6, 8]).

По результатам нашей работы, а также из анализа результатов работ [13, 17] и др., можно сделать выводы по характеру зависимости энтропии многоподрешеточных ферримагнетиков от магнитного поля. Наши расчеты показывают, что если вектор намагниченности подрешетки ферримагнетика направлен вдоль направления магнитного поля ($\mathbf{M}_i \uparrow \uparrow \mathbf{H}$), то намагниченность подрешетки $|\mathbf{M}_i|$ увеличится при включении магнитного поля $(T \neq 0)$, энтропия при этом уменьшится. Если же ($\mathbf{M}_i \uparrow \downarrow \mathbf{H}$), то намагниченность уменьшится, а энтропия возрастет, но такое поведение наблюдается в ограниченном интервале температур [13]. Этот факт говорит о том, что источником обратного МКЭ ($\Delta S_{iso} < 0$) будет подрешетка с направлением намагниченности противоположным направлению магнитного поля. Каким будет МКЭ всего соединения: прямым ($\Delta S_{iso} > 0$) или обратным ($\Delta S_{iso} < 0$), зависит от величины вкладов подрешеток. Нужно сказать, что впервые упомянутый выше вывод был сделан в обзоре [17] (см. цитированные там работы). Заключение о применимости соотношения Максвелла в случае ферримагнетиков с двумя магнитными подрешетками требует дополнительного исследования.

Работа выполнена с использованием УНУ «НМК ИФМ» в рамках государственного задания ФАНО России (тема «Поток», № 01201463334) при частичной поддержке гранта № 15-8-2-2 программы фундаментальных исследований УрО РАН.

ЛИТЕРАТУРА

- A. Giguere, M. Foldeaki, W. Schnelle and et al., J. Phys.: Condens. Matter 11, 6969 (1999).
- N. H. Duc, D. T. Kim, and P. E. Brommer, Physica B 319, 1 (2002).
- N. A. de Oliveira, P. J. von Ranke, M. V. Tovar Costa et al., Phys. Rev. B 66, 094402 (2002).
- N. K. Singh, K. G. Suresh, A. K. Nigam et al., J. Magn. Magn. Mater. **317**, 68 (2007).
- J.-D. Zou, B.-G. Shen, and J.-R. Sun, Chin. Phys. Soc. 16(7), 1817 (2007).
- **6**. Э. З. Валиев, ФММ **96**, 5 (2003).
- Э. З. Валиев, А. Е. Теплых, Кристаллография 61(1), 89 (2016).
- Э. З. Валиев, А. Е. Теплых, ФММ 118(1), 23 (2017).
- C. P. Bean and D. S. Rodbell, Phys. Rev. B 12, 104 (1962).
- С. В. Тябликов, Методы квантовой теории магнетизма, Наука, Москва (1975).
- К. П. Белов, А. К. Звездин, А. М. Кадомцева, Р. З. Левитин, Ориентационные фазовые переходы в редкоземельных магнетиках, Наука, Москва (1979).
- **12**. Э. З. Валиев, ФММ **104**(1), 12 (2007).
- P. J. von Ranke, N. A. de Oliveira, B. P. Alho et al., J. Phys.: Condens. Matter 21, 056004 (2009).
- 14. S. A. Nikitin and A. M. Tishin, Gryogenics 31, 166 (1991).
- J. Voiron, A. Berton, and I. Chaussy, Phys. Lett. 50A(1), 17 (1974).
- 16. A. E. Clark and E. Callen, J. Appl. Phys. 39(13), 5972 (1968).
- А. С. Андреенко, К. П. Белов, С. А. Никитин, А. М. Тишин, УФН 158(4), 553 (1989).