ДВУМЕРНЫЕ АНТИФЕРРОМАГНИТНЫЕ КОРРЕЛЯЦИИ В МОНОКРИСТАЛЛЕ $La_{1.4}Sr_{1.6}(Mn_{0.9}Co_{0.1})_2O_7$

А. А. Быков^{а*}, И. А. Зобкало^{а,b}, А. А. Дубровский^с, О. П. Смирнов^а,

С. Е. Никитин^d, К. Ю. Терентьев^c, С. В. Гаврилов^a, К. А. Шайхутдинов^c

^а Петербургский институт ядерной физики им. Б. П. Константинова Российской академии наук 188300, Гатчина, Ленинградская обл., Россия

> ^b Санкт-Петербургский государственный университет 198504, Санкт-Петербург, Россия

^с Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^d Max Planck Institute for Chemical Physics of Solids 01187, Dresden, Germany

Поступила в редакцию 19 октября 2016 г.

Измерены температурные и полевые зависимости намагниченности, сопротивления и магнитострикции монокристаллов двухслойных манганитов лантана $La_{1.4}Sr_{1.6}Mn_2O_7$ и допированного кобальтом $La_{1.4}Sr_{1.6}(Mn_{0.9}Co_{0.1})_2O_7$. Обнаружено увеличение магнитострикции в допированном кобальтом соединении по сравнению с исходным составом $La_{1.4}Sr_{1.6}Mn_2O_7$, а также существенные изменения в поведении намагниченности и магнитоспротивления. В образце $La_{1.4}Sr_{1.6}(Mn_{0.9}Co_{0.1})_2O_7$ методами порошковой и монокристаллической нейтронной дифракции наблюдалось ферромагнитное упорядочение при температуре ниже $T_C \sim 45(2)$ K, сосуществующее с антиферромагнитными корреляциями, развивающимися при температурах ниже $T_C \sim 80(5)$ K

DOI: 10.7868/S0044451017050145

1. ВВЕДЕНИЕ

Двухслойные манганиты с общей формулой $R_{2-2x}Sr_{1+2x}Mn_2O_7$, так же как и манганиты $RMnO_3$ со структурой перовскита, обладают эффектом колоссального магнитосопротивления, что вызывает повышенный интерес к ним на протяжении последних десятилетий [1–4]. Однако, в отличие от соединений $RMnO_3$, практически не обладающих заметной анизотропией магнитных и транспортных свойств, в соединениях $R_{2-2x}Sr_{1+2x}Mn_2O_7$ наблюдается гигантская анизотропия магнитосопротивления, связанная со слоистой структурой данных соединений, что приводит к спин-зависимому туннелированию носителей между марганец-кислородными плоскостями вдоль кристаллографической оси *c* кристалла [1].

В соединении La_{1.4}Sr_{1.6}Mn₂O₇ (LSMO) при допировании двухвалентным стронцием трехвалентного лантана ион Sr²⁺ порождает дырочные носители в 3*d*-состояниях иона Mn³⁺, что приводит к появлению локальных областей ферромагнетизма на ближайших ионах Mn⁴⁺. Это оказывает непосредственное влияние на механизмы колоссального магнитосопротивления [1,3]. Данное соединение обладает тетрагональной симметрией (пространственная группа *I4/mmm*), в которой двойные слои кислородных октаэдров, центрированных марганцем, разделены слоями редкоземельного металла. Работы по нейтронной дифракции под давлением [5] и инфракрасной спектроскопии [6] свидетельствуют о том, что при температурах ниже 370 К в соединении существуют ферромагнитные двумерные корреляции в двойных плоскостях, обусловленные двойным обменом между ионами марганца Mn³⁺-Mn⁴⁺ через кислород в парах ближайших плоскостей [3, 7–9]. В диапазоне температур от 100 К до 60 К наблюдается трехмерный антиферромагнитный поря-

^{*} E-mail: redi87@bk.ru

док (АF), обусловленный антиферромагнитным взаимодействием между двойными ферромагнитными плоскостями, а при температурах ниже 80 К система переходит в ферромагнитное (FM) состояние [3,4,10]. В работе [4] показано, что АF и FM сосуществуют во всем температурном диапазоне FM-упорядочения; при этом, по данным авторов работы [4], монокристалл LSMO состоял из двух одинаковых по симметрии (I4/mmm) и очень близких по параметрам решетки кристаллических фаз. Именно сосуществование различных кристаллических фаз, по мнению авторов работы [4], обусловливает, в свою очередь, сосуществование двух магнитоупорядоченных фаз в LSMO. В то же время, в работе [5] такое сосуществование не наблюдалось, а магнитные АЕ- и FM-фазы сменяли друг друга в одной кристаллической фазе. В любом случае такое поведение свидетельствует о чувствительности как кристаллической, так и магнитной систем LSMO к малейшим изменениям в составе вблизи резкой границы композиционной фазовой диаграммы, в том числе и знака обменного взаимодействия между бислоями MnO₂. Так, магнитная фазовая диаграмма соединений La_{2-2x}Sr_{1+2x}Mn₂O₇ очень чувствительна к небольшим изменениям параметра x вблизи x = 0.30. По-видимому, разброс температур упорядочения связан с некоторыми отличиями параметра замещения стронцием x от 0.30.

Известно [8, 9, 11–16], что для рассматриваемой системы также возможно замещение в позициях марганца, что было проделано для всех 3d-элементов и цинка. Это также оказывает сильное влияние на магнитотранспортные свойства данных систем. Например, в работе [15] была исследована серия поликристаллических образцов La_{1.4}Sr_{1.6}(Mn_{1-x}Co_x)₂O₇ (x = 0 - 0.2), однако данные об исследовании монокристаллических образцов данного состава и пределах растворимости кобальта в них в литературе отсутствуют. Настоящая работа нацелена на исследование макроскопических свойств и магнитной структуры в зависимости от допирования кобальтом в позиции марганца в монокристаллическом $La_{1.4}Sr_{1.6}(Mn_{1-x}Co_x)_2O_7$ (x = 0.1) (LSMCO).

2. ЭКСПЕРИМЕНТ

Монокристаллы La_{1.4}Sr_{1.6} (Mn_{1-x}Co_x)₂O₇ (x = 0, 0.1) были синтезированы методом оптической зонной плавки на установке FZ-4000 (Crystal System, Japan) в Институте физики им. Л. В. Киренского СО РАН. Скорость роста — 5 мм/ч в атмосфере кис-

лорода при нормальном давлении, относительная скорость вращения стержней — 30 об./мин. Для синтеза были приготовлены поликристаллические образцы с содержанием кобальта x = 0.1, 0.2, 0.3. Однако в процессе роста оказалось, что монокристаллы формируются только при x = 0.1. При больших концентрациях кобальта рост становится нестабильным, а полученные в ходе работы образцы разлагаются на воздухе в течение недели. Таким образом, для дальнейшей работы использовался только образец La_{1.4}Sr_{1.6}(Mn_{0.9}Co_{0.1})₂O₇, который сохраняет стабильность уже несколько лет.

Порошковая рентгеновская дифракция и рентгеновский энерго-дисперсионный микроанализ были проведены в ресурсном центре Санкт-Петербургского университета соответственно на установках Rigaku Miniflex II и Zeiss Merlin и показали соответствие заявленным составам. Кривые намагниченности и сопротивления были измерены на установке PPMS-6000 (ИФ СО РАН), магнитострикционные измерения проведены в Международной лаборатории сильных магнитных полей и низких температур, г. Вроцлав, Польша. Нейтронные дифракционные эксперименты были проведены на порошковом дифрактометре PD и дифрактометре поляризованных нейтронов DPN (каналы № 1 и № 6 реактора BBP-M, ФГБУ «ПИЯФ», Гатчина).

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Измерения при температуре жидкого гелия показали существенное увеличение относительной магнитострикции $\Delta L/L(H)$ для допированного состава LSMCO по сравнению с LSMO, что показано на рис. 1. В работах [17, 18] изменение магнитострикции при допировании в позицию лантана связывается именно с влиянием магнитной подсистемы редкоземельных металлов. Таким образом, изменение магнитострикционных свойств при допировании кобальтом в позицию внутри магнитных слоев, а не между ними, является несколько неожиданным.

Температурные зависимости сопротивления R_c , измеренного вдоль кристаллографической оси c, намагниченности и обратной магнитной восприимчивости для исследуемых составов в магнитном поле и без него представлены на рис. 2. Видно, что для LSMCO пик сопротивления существенно размывается по сравнению с LSMO, т.е. переход металл– диэлектрик, приписываемый [1, 2] смене антиферромагнитной диэлектрической матрицы на проводящую металлическую, в допированном соединении

Рис. 1. Полевая зависимость магнитострикции исследуемых составов при температуре T = 4.2 К. Стрелками показано направление изменения магнитного поля

происходит более плавно. Кроме того, это происходит при более низких температурах. Оба состава, и LSMO, и LSMCO, демонстрируют эффект колоссального магнитного сопротивления, что выражается в существенном уменьшении сопротивления при приложении магнитного поля. Приложение магнитного поля 50 кЭ сдвигает этот переход в область более высоких температур. Обращает на себя внимание также стремительный рост сопротивления в LSMCO при понижении температуры ниже примерно 30 К, не наблюдаемый в LSMO. Наблюдаемый нами в LSMO пик сопротивления, измеренного вдоль оси c (**R** \parallel **c**) в области 110 К, по-видимому, возникает вследствие достижения радиусом ферромагнитных корреляций некоторого критического значения, обеспечивающего протекание, после чего полупроводниковое поведение температурной зависимости сопротивления сменяется на металлическое. В работах [4,5] существуют указания на существование антиферромагнитного порядка в этом соединении при температурах от 60 К до 105 К, в то время как пик сопротивления располагается в области 110 К, т.е. выше. В нашем случае на кривой сопротивления состава LSMO при $T \approx 70-80$ K заметен небольшой пик, который мы связываем с установлением максимального упорядоченного момента в антиферромагнитной фазе.

Результаты магнитных измерений также показывают и заметное различие в поведении намагниченности для LSMO и LSMCO (рис. 26). В LSMO при уменьшении температуры намагниченность демонстрирует рост, начиная с $T \sim 100$ K, что так же, как и в случае с началом падения сопротивления, можно связать с достижением ферромагнитными корреляциями критического значения. Аналогичное поведение намагниченности, но уже при более низких температурах, наблюдается в LSMCO. Понижение температуры ферромагнитного упорядочения зафиксировано в наших нейтронных измерениях. Однако, в отличие от LSMO, где при достижении максимальной величины намагниченность остается постоянной вплоть до самых низких температур, в допированном соединении характер поведения намагниченности изменился. При понижении температуры до $T \sim 30$ К наблюдается уменьшение намагниченности. Отметим, что при температурах выше 80 К наблюдается парамагнитный характер магнитной восприимчивости, при приближении температуры к $T\sim80~{\rm K}$ наблюдается отклонение от линейного хода зависимости 1/
 $\chi.$ При этой же температуре достигает максимума пик сопротивления на графике сопротивления, т.е. происходит переход металлдиэлектрик. При низких температурах (ниже примерно 30 К) восприимчивость и магнитный момент для LSMCO-соединения меняют поведение на антиферромагнитное.

На рис. 3 представлены полевые зависимости магнитосопротивления, измеренного вдоль оси с, и магнитного момента при температурах 2 К и 4.2 К. На графике магнитосопротивления для LSMO-cocтава при приложении магнитного поля вдоль плоскости ab в малых полях наблюдается положительное магнитосопротивление, которое более подробно обсуждается в работе [19]. Появление положительного магнитосопротивления приписывается уменьшению интеграла перескока при увеличении угла между магнитными моментами атомов марганца в соседних двойных слоях. При приложении больших полей этот угол начинает уменьшаться и сопротивление начинает вести себя подобно кривой для поля, приложенного вдоль легкой оси, т.е. логарифмически снижается. В то же время для состава LSMCO положительное магнитосопротивление не наблюдается, а спад — более резкий и происходит в полях выше 40 кЭ. Это связано с более магнитожесткой природой LSMCO-состава, что видно на графиках полевых зависимостей намагниченности. Это же оказывает влияние на различие поведения магнитосопротивления для LSMCO-состава, измеренного вдоль и поперек оси легкого намагничивания. Так же, как и на температурных зависимостях намагниченности LSMO (рис. 2), на полевых зависимостях LSMCO видно, что система проявляет существенную анизотропию. Большая величина коэрцитивной силы для легкой плоскости, чем вдоль легкой оси,

Рис. 2. Температурные зависимости сопротивления (вдоль оси *c*), магнитного момента и обратной магнитной восприимчивости для исследуемых составов

Рис. 3. Полевые зависимости магнитосопротивления и намагниченности при низких температурах вдоль и поперек оси легкого намагничивания для исследуемых составов

приводит и к более резкому спаду сопротивления в более высоких полях для кривой магнитосопротивления. Большая магнитожесткость LSMCO-состава приводит и к тому, что кривые намагниченности прямого и обратного хода для него совпадают в полях более 40 кЭ, в этих же полях совпадают прямой и обратный ход кривых магнитосопротивления. В LSMO-составе кривые для приложенного вдоль и поперек легкой оси внешнего поля совпадают уже в полях больших 10 кЭ.

Для выяснения природы такого изменения свойств допированного кобальтом состава LSMCO были проведены нейтронные исследования. Их результаты демонстрируют определенное сходство магнитных свойств LSMCO и LSMO. На порошковых и монокристальных нейтронограммах наблюдалось увеличение интенсивности ядерных пиков типа (101), (103), (105) при температуре ниже примерно 45(2) К, что следует отнести к возникновению ферромагнитного порядка. На рис. 4а вверху приведены температурные зависимости интенсивности рефлекса (105), полученной на монокристалле LSMCO, и значения магнитного момента марганца М, рассчитанные по результатам порошковой дифракции. Расчеты показывают, что магнитный момент на ионах марганца направлен вдоль оси с, так что величина и направление момента в ферромагнитной фазе LSMCO хорошо коррелируют с результатами для LSMO [4,5].

В отличие от «чистого» соединения LSMO, где наблюдалось антиферромагнитное упорядочение [4,5], в LSMCO антиферромагнитная фаза не была обнаружена. Однако важно отметить, что вблизи позиций запрещенных ядерных рефлексов при температурах ниже примерно 80(5) К наблюдалось значительное диффузное рассеяние, интенсивность которого повышалась по мере понижения температуры (рис. 4а). На рис. 4б приведена карта нейтронного рассеяния в плоскости (0kl) при температуре T = 1.5 К. Пики в запрещенных и «небрэгговских» позициях относятся соответственно к вкладу от нейтронов с длиной волны $\lambda/2$ и к рассеянию на примесях. Обращает на себя внимание наличие при этой температуре узких прерывистых «стержней» вдоль оси с* (отмечено на рисунке стрелкой). Появление таких узких «стержней» в нашем случае следует отнести к наличию двумерного магнитного упорядочения в кристаллографической плоскости ab, а слабая корреляция между ферромагнитными бислоями приводит к диффузному магнитному рассеянию такого вида. Имея в виду результаты работ [4, 5],

Рис. 4. *а*) Температурные зависимости нейтронного рассеяния для LSMCO. Вверху: зависимость интенсивности отражения (105), совмещенная с зависимостью компоненты ферромагнитного момента M_z , рассчитанной по данным порошковой нейтронографии. Внизу: температурная зависимость интенсивности диффузного рассеяния вблизи положения 001. *б*) Карта нейтронного рассеяния в плоскости (0kl) при температуре T = 1.5 К. Стрелкой отмечен «стержень» в направлении [001]

можно сделать вывод о том, что эти корреляции — предшествие трехмерного антиферромагнитного упорядочения, характерного для LSMO и не достигнутого в LSMCO (по крайней мере, вплоть до самых низких температур измерений), поэтому их можно считать антиферромагнитными корреляциями. Температурные зависимости интегральных интенсивностей «стержней» вдоль направления [00*l*], т.е. интенсивность корреляций в кристаллографической плоскости *ab*, показаны на рис. 2*a* внизу. Оценка радиуса этих двумерных ферромагнитных корреляций дает величину около 20*a* при T = 1.5 K.

Таким образом, наши нейтронные эксперименты показывают, что для LSMCO при температуре ниже $T_C \sim 45(2)$ К появляется ферромагнитный порядок, а ниже температуры $T_{2D} \sim 80(5)$ К развиваются антиферромагнитные корреляции между ферромагнитными бислоями, которые достигают максимума при температуре около 30 К. Именно достижение максимума в развитии АF-корреляций является причиной аномального поведения сопротивления и намагниченности в LSMCO.

4. ВЫВОДЫ

Магнитные корреляции в двухслойных манганитах играют важную роль при формировании магнитных и транспортных свойств [1, 3, 7–9, 16, 20]. Обнаруженное в этой работе существенное изменение макроскопических свойств при гелиевых температурах мы связываем именно с появлением антиферромагнитных корреляций, направленных вдоль оси с и экспериментально наблюдаемых в виде диффузного рассеяния вблизи отражения 001. Причиной изменения взаимодействия пар магнитных плоскостей, по нашему мнению, является химическое сжатие, так же, как и в работах [17–19]. Наши магнитострикционные измерения свидетельствуют в пользу этого заключения, так как подобные изменения происходят при допировании кобальтом марганец-кислородных плоскостей. Дополнительное влияние может оказывать эффект понижения двойного обмена в бислоях CuO₂, связанный с допированием La_{1.4}Sr_{1.6}Mn₂O₇ кобальтом, имеющим на два электрона больше, чем марганец [13,15]. Однако, на наш взгляд, это может привести лишь к снижению температуры магнитного упорядочения и, соответственно, к сдвигу температуры перехода металл-диэлектрик в LSMCO-системе в область более низких температур.

Авторы выражают благодарность И. В. Голосовскому за помощь в обработке нейтронных данных. Рентгенодифракционные эксперименты выполнены в ресурсном центре «Рентгенодифракционные методы исследования» Санкт-Петербургского государственного университета. Работа выполнена при финансовой поддержке РФФИ (гранты № 16-02-00545, 16-32-00163).

ЛИТЕРАТУРА

- T. Kimura and Y. Tokura, Ann. Rev. Mater. Sci. 30, 451 (2000).
- **2**. М. Ю. Каган, К. И. Кугель, УФН **171**, 577 (2001).
- J. F. Mitchell et al., J. Phys. Chem. B 105, 10731 (2001).
- 4. D. N. Argyriou et al., Phys. Rev. B 59, 8695 (1999).
- K. V. Kamenev et al., Phys. Rev. Lett. 87, 167203 (2001).
- M. H. Ehsani et al., J. Supercond. Nov. Magn. 26, 3151 (2013).
- 7. Z. Sun et al., Nat. Phys. 3, 248 (2007).
- 8. H. Zhu et al., Phys. Rev. B 62, 6754 (2000).
- 9. H. Zhu et al., Phys. Rev. B 65, 104424 (2002).
- 10. H. Sonomura et al., Phys. Rev. B 87, 184419 (2013).
- R. Gundakaram et al., J. Phys.: Condens. Matter 11, 5187 (1999).
- M. P. Sharma, A. Krishnamurthy, and B. K. Srivastava, Hyperfine Interact. 184, 201 (2008).
- 13. J. Zhang et al., J. Phys.: Condens. Matter 12, 1981 (2000).
- 14. G. Q. Yu et al., Sol. St. Comm. 141, 136 (2007).
- 15. R. L. Zhang et al., Phys. Rev. B 70, 224418 (2004).
- 16. S. Nair and A. Banerjee, Phys. Rev. B 70, 104428 (2004).
- 17. Y. Moritomo and M. Itoh, Phys. Rev. B 59, 8789 (1999).
- Y. Moritomo, K. Ohoyama, and M. Ohashi, Phys. Rev. B 59, 157 (1999).
- 19. K. A. Shaykhutdinov et al., J. Appl. Phys. 117, 163918 (2015).
- S. Chattopadhyay, S. Giri, and S. Majumdar, J. Appl. Phys. 112, 083915 (2012).

⁹ ЖЭТФ, вып. 5