МАГНИТНЫЕ И МАГНИТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ЗАМЕЩЕННЫХ ГЕКСАФЕРРИТОВ *М*-ТИПА SrSc_xFe_{12-x}O₁₉

В. Ю. Иванов^а, А. М. Балбашов^b, А. А. Мухин^{a*},

Л. Д. Исхакова ^с, М. Е. Ворончихина ^b

^а Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

> ^b Московский энергетический институт 105835, Москва, Россия

^с Научный центр Волоконной оптики Российской академии наук 119333, Москва, Россия

Поступила в редакцию 5 августа 2016 г.

Изучены анизотропные магнитные и магнитоэлектрические свойства монокристаллов замещенных гексаферритов M-типа системы $\mathrm{SrSc}_x\mathrm{Fe}_{12-x}\mathrm{O}_{19}$ (x=1.4–1.7) при температурах 2–800 K в магнитных полях до 50 кЭ. Обнаружен спонтанный переход из коллинеарной ферримагнитной одноосной фазы в конусную структуру во всех исследованных составах, температура которого растет с повышением концентрации Sc, в то время как температура Кюри при этом понижается. В конусных магнитных структурах обнаружена индуцированная магнитным полем электрическая поляризация (более 40 мкКл/м² при T=4 K), условия наблюдений которой указывают на то, что она обусловлена механизмом обратного взаимодействия Дзялошинского – Мория. Исследованы зависимости поляризации от величины и ориентации магнитного поля и показаны возможности контроля киральности конусной структуры, определяющей знак поляризации.

DOI: 10.7868/S0044451017040095

1. ВВЕДЕНИЕ

В последние годы большой интерес вызывают мультиферроики нового типа, в которых электрическая поляризация индуцируется при образовании неколлинеарных (нецентросимметричных) магнитных структур, а магнитоэлектрические эффекты сильнее, чем в традиционных мультиферроиках с собственным типом сегнетоэлектрического упорядочения [1-4]. Особый интерес среди них представляют гексаферриты, поскольку электрическая поляризация и магнитоэлектрические эффекты в них наблюдаются при более высоких, чем у большинства мультиферроиков, температурах, вплоть до комнатных [5–10]. Данные эффекты наблюдались в гексаферритах У-и Z-типов, составы которых способствуют возникновению конкуренции обменных взаимодействий и появлению

конусных магнитных структур. У гексаферритов М-типа конусные магнитные структуры были найдены сравнительно давно в замещенных составах BaSc_xFe_{12-x}O₁₉ [11] и BaTi_xCo_xFe_{12-2x}O₁₉ [12, 13], однако электрическая поляризация, индуцированная магнитным полем, наблюдалась только недавно для BaSc_{1.6}Mg_yFe_{10.4-y}O₁₉ [14] (небольшое количество магния $y \sim 0.05$ вводилось для повышения электросопротивления). В нашей предыдущей работе [15] было показано, что электрическая поляризация в системе BaSc_xFe_{12-x}O₁₉ наблюдается в более широком интервале концентраций скандия от x = 1.3, причем полярное состояние обладает более высокой стабильностью к магнитным полям (до 50 кЭ) и температурам (до 100 К). В этой работе сообщалось также об обнаружении электрической поляризации в соединениях $SrSc_xFe_{12-x}O_{19}$ (x = 1.6). В настоящей работе мы приводим результаты магнитных исследований Sr гексаферритов $SrSc_xFe_{12-x}O_{19}$ в диапазоне концентраций 1.4–1.7, свидетельствующие о существовании в них конусных магнитных структур, а также подробные ре-

^{*} E-mail: mukhin@ran.gpi.ru

Рис. 1. Кривые намагничивания монокристаллов $SrSc_xMg_{0.05}Fe_{11.95-x}O_{19}$ вдоль и перпендикулярно оси c при гелиевой температуре (T = 5 K) и температурах 290 K (x = 1.5, 1.6, 1.7) и 250 K (x = 1.4)

зультаты измерений электрической поляризации в данном концентрационном интервале.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Методика выращивания монокристаллов $SrSc_xMg_{0.05}Fe_{11.95-x}O_{19}$ (x = 1.4–1.7), их аттестация и полученные данные по составу и микроструктуре, а также методика измерений магнитных и магнитоэлектрических свойств подробно изложены в нашей предыдущей работе [15]. Так же, как и для Ва–Sc-гексаферритов, мы вводили 0.05 ат. % Mg для увеличения электросопротивления. Поляризация измерялась на пластинках с гексагональной осью c в плоскости образца и магнитным полем, приложенным также в этой плоскости под заданным углом к оси c.

Главным ограничением для магнитоэлектрических исследований так же, как и в случае бариевых составов, является довольно низкое электросопротивление кристаллов в районе комнатных температур. Однако, поскольку переход в конусное состояние в стронциевой системе происходит при более низкой температуре, чем в бариевой системе, нам в ряде случаев удалось приложить более высокое электрическое напряжение и получить большее значение поляризации.

3. МАГНИТНЫЕ СВОЙСТВА

На рис. 1 приведены кривые намагничивания $\sigma(H)$ кристаллов системы $SrSc_xMg_{0.05}Fe_{11.95-x}O_{19}$ (x = 1.4, 1.5, 1.6, 1.7), измеренные при гелиевой и комнатной (для кристалла с x = 1.4 при T = 250 K) температурах вдоль и перпендикулярно оси c. Данные свидетельствуют об анизотропном характере намагничивания: насыщение быстрее достигается вдоль гексагональной оси c, причем с ростом x анизотропия уменьшается. Обращает на себя внимание возрастание наклона кривых намагничивания как вдоль, так и перпендикулярно оси c при низких температурах, что свидетельствует о возникновении конусной структуры, обладающей дополнительной восприимчивостью. Это подтвержда-

Рис. 2. Температурные зависимости намагниченности, измеренные в поле $10 \ \kappa \Im$ вдоль (\circ) и перпендикулярно (\bullet) оси c. Стрелками на зависимостях $\sigma(T)$ отмечены максимумы, соответствующие спонтанным переходам между конусной и коллинеарной ферримагнитной структурами

ется наличием максимумов на температурных зависимостях намагниченности, измеренной при фиксированном магнитном поле 10 кЭ (рис. 2), которые можно связать с температурами перехода T^* из коллинеарной ферримагнитной в конусную структуру. Температура T^* понижается с уменьшением x от $T \approx 190$ К для x = 1.7 до $T \approx 105$ К для x = 1.4. На рис. 3 приведены зависимости $\sigma(H)$ для $H \perp c$ при разных температурах от 5 К до 300 К, которые позволяют более наглядно проследить за изменением наклона кривых при прохождении через T^* .

В простейшем приближении, считая, что уменьшение намагниченности при низких температурах обусловлено отклонением результирующих моментов элементарной ячейки от направления магнитного поля после достижения насыщения из-за образования конусной структуры, мы оценили угол раствора конуса при гелиевой температуре $\cos \Theta_{con} =$ $= \sigma_{con}/\sigma_{ferri}$, где σ_{con} — значения намагниченности в конусной фазе, а σ_{ferri} — проэкстраполированное к $T \approx 5$ К значение намагниченности коллинеарной ферримагнитной фазы, определенное из экстраполяции линейных высокополевых участков кривых $\sigma(H)$ к H = 0 при $T > T^*$. Такие оценки дают $\Theta_{con} \approx 32^\circ$ для x = 1.4 и $\Theta_{con} \approx 47^\circ$ для x = 1.5. Для x = 1.6 и x = 1.7 угол Θ_{con} составляет $50^\circ - 60^\circ$ (точность оценки существенно уменьшается из-за увеличения температуры перехода T^*).

Что касается причины наблюдаемого перехода из коллинеарного в конусное состояние, то она, видимо, связана с изменением температурной зависимости намагниченности различных магнитных подрешеток и их конкурирующих вкладов в обменную энергию системы, которое происходит из-за неравномерного заполнения диамагнитными ионами Sc²⁺ ионов железа в пяти типах разных катионных кристаллографических позиций. Об этом, в частности, свидетельствуют нейтронографические исследования поликристаллов $BaSc_{1.6}Fe_{10.4}O_{19}$ [16], согласно которым заселенности некоторых позиций различаются в несколько раз.

Наряду с микроструктурным и рентгенофазовым анализами, хорошей проверкой однофазности образцов является высокотемпературное поведение намагниченности, поскольку наличие примесных фаз, либо не прореагировавшего Fe₂O₃ проявляется в неодноступенчатом характере перехода в парамагнитное состояние и наличии «хвостов» выше температуры Кюри. Как видно на рис. 4а, исследованные образцы обладают достаточно резким одноступенчатым переходом, а при температуре выше точки Кюри на 20-30 К (области ближнего магнитного порядка) кривые намагничивания строго линейны (не показано на рисунке). На рис. 46 приведена Т-х-фазовая диаграмма системы SrSc_xMg_{0.05}Fe_{11.95-x}O₁₉. Для сравнения приведены данные и для системы $BaSc_xMg_{0.05}Fe_{11.95-x}O_{19}$.

4. ЭЛЕКТРИЧЕСКИЕ И МАГНИТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА

Получить поляризованные состояния посредством охлаждения образцов в электрическом E и магнитном H полях ($E \perp H \perp c$) ниже температуры перехода в конусную магнитную структуру T^* удалось во всем исследованном интервале концентраций скандия (x = 1.4–1.7), однако величина поляризации существенно зависит как от состава, так и от условий такой термоэлектромагнитной обработки. Прежде всего, на величину поляризации влияет значение электрического поля. Так, для состава с x = 1.5 при охлаждении в поле U = 150 В ($E \sim 1.4$ кВ/см) поляризация при

Рис. 3. Зависимости $\sigma(H)$ монокристаллов $\mathrm{SrSc}_x\mathrm{Mg}_{0.05}\mathrm{Fe}_{11.95-x}\mathrm{O}_{19}$ (x=1.4,~1.5) для $\mathbf{H}\perp\mathbf{c}$ при разных температурах

T = 4.2 К достигала 18 мкКл/м², а при U = 50 В $(E \sim 0.45 \ {
m kB/cm})$ поляризация составляла всего 2.5 мкКл/м². Как уже говорилось, приложить достаточно большое электрическое напряжение не всегда удается из-за проводимости образцов, поэтому мы не можем говорить о максимально возможных значениях поляризации в изучаемой системе. Нам удалось получить наибольшее значение поляризации 45 мкКл/м² в составе с x = 1.6 после охлаждения в поле U = 240 В ($E \sim 1.5$ кВ/см). Довольно низкое значение поляризации (менее 2 мкКл/м²), полученное для образца с x = 1.4, может свидетельствовать о малом угле раствора конусной структуры при уменьшении концентрации скандия, а уменьшение поляризации примерно до 6 мкKл/м^2 при $x = 1.7 \ (E \sim 0.8 \text{ кB/см})$ скорее всего

связано с невозможностью приложения больших электрических полей из-за наиболее высокой температуры перехода в конусное состояние. Несмотря на существенное различие величины поляризации, качественный ход зависимостей P(H) оставался одинаковым. На рис. 5 приведены примеры таких зависимостей при T = 4.2 К для случаев $\mathbf{H} \perp \mathbf{c}$ (быстрый рост поляризации в слабых полях, достижение максимального значения в поле около 10 кЭ и медленное уменьшение при дальнейшем росте магнитного поля) и в поле, направленном под углом 45° к оси *c* (постепенное уменьшение наклона кривых). При Н || с поляризация отсутствует. Наблюдаемые нами угловые зависимости поляризации на линейном участке ее полевой зависимости хорошо соответствуют механизму

Рис. 4. *a*) Температурные зависимости намагниченности монокристаллов $SrSc_xMg_{0.05}Fe_{11.95-x}O_{19}$ для x = 1.4, 1.5, 1.7 в интервале от 300 до 650 К при $H \parallel c$; *b*) *T*-*x*-фазовая диаграмма легированных Sc стронциевых и бариевых гексаферритов, отражающая переходы из парамагнитного состояния (PM) в ферримагнитную (FIM) и затем в конусную (Conical) фазы. Данные для x = 0 взяты из литературы [10]

обратного взаимодействия Дзялошинского-Мория или спинового тока [17–19] $\mathbf{P} \approx \mathbf{k} \times \mathbf{n}$, где $\mathbf{k} \parallel \mathbf{c}$ волновой вектор конусной магнитной структуры, а $\mathbf{n} \approx \sum \mathbf{S}_i \times \mathbf{S}_{i+1}$ — ее киральность, т. е. вектор вдоль оси конусной структуры, который характеризует направление вращения спинов \mathbf{S}_i в ней.

При увеличении температуры начальный наклон на участке линейного роста P(H) при $\mathbf{H} \perp \mathbf{c}$ даже немного увеличивается, однако максимум поляризации достигается в меньших полях, выше которых поляризация начинает заметно уменьшаться, а при выведении поля появляется гистерезис. При достижении некоторых, уменьшающихся с ростом температуры, значений магнитного поля поляризация резко уменьшается и практически не восстанавливается при выводе поля (вставка на рис. 5). Если магнитное поле ограничить величиной 2–3 кЭ, то поляризация наблюдалась вплоть до $T \approx 100$ К.

Так же, как и в бариевых составах [15], при намагничивании стронциевых образцов под углом около 45° к оси *c* при повышении температуры появляются характерные особенности поведения поперечной поляризации, позволяющие управлять киральностью конусной магнитной структуры образцов. Рассмотрим эти особенности на примере состава с x = 1.6 (рис. 6). Номерами на рисунке помечена последовательность измерений кривых P(H) при намагничивании перпендикулярно оси *c* и под углом

Рис. 5. Полевые зависимости поляризации кристаллов $SrSc_xMg_{0.05}Fe_{11.95-x}O_{19}$ (x = 1.5, 1.7) при T = 4.2 К при намагничивании перпендикулярно и под углом 45° к оси c. На вставке: зависимость P(H) при $\mathbf{H} \perp \mathbf{c}$ и T = 55 К

45° к ней, т.е. образец поворачивался от одного измерения к другому на ±45°. После предварительного охлаждения в электрическом поле $E \sim 1.5 \text{ kB/cm}$ и магнитном H = 1 кЭ перпендикулярно оси c до T = 4.2 К и проведения измерений в двух указанных направлениях при гелиевой температуре образец нагревался до T = 42 К и при этой температуре проводились измерения в $\mathbf{H} \perp \mathbf{c}$ и под углом 45° к оси с (кривые 1 и 2). Как видно, на кривой 2 сохраняется нечетное поведение поляризации ($P(H) \approx$ $\approx -P(-H)$), в то время как в бариевом гексаферрите с x = 1.5 поляризация, измеренная под углом, при этой температуре становилась четной функцией поля (знаки ветвей P(H) и P(-H) одинаковы) [15]. Заметим, что на кривых 1 и 2 гистерезисные явления практически не наблюдаются. Однако при увеличении температуры до $T \approx 64$ K (все дальнейшие измерения проводились при этой температуре) P(H) при намагничивании под углом к оси c становится четной (кривая 3). Знак поляризации теперь зависит от предыстории. В рассматриваемом случае кривая 2 закончилась в нулевом поле после его выведения от положительных значений. А на кривой 3 сначала вводилось положительное *H*, затем поле

выводилось до нуля и вводилось отрицательное поле. Закончив этот цикл в поле -3.25 кЭ и повернув образец к $\mathbf{H} \perp \mathbf{c}$, мы получаем кривую 4 с отрицательным наклоном, т.е. с киральностью, противоположной начальной. Данный цикл мы закончили в поле +1 кЭ с отрицательной поляризацией. Повернув образец к H под углом 45° , мы теперь получаем кривую 5 с противоположным знаком изменения поляризации по сравнению с кривой 3 (для наглядности, начало отсчета для кривых 5 и 7 сдвинуто по оси ординат соответственно на 5 и 10 мкKл/м²). Данный цикл мы закончили при положительном поле около 3 кЭ и после поворота поля на 45° обратно в базисную плоскость мы получили кривую 6 с тем же знаком изменения поляризации, что и на кривой 4. Далее, повернув образец в поле -3 кЭ к направлению под углом 45° к оси c, мы вновь меняем знак изменения поляризации соответствующей кривой 7. Наконец, повернув образец в H = +3 кЭ к $H \perp c$, мы получаем кривую 8, т. е. восстанавливаем начальную киральность.

Эта возможность управления киральностью основана на разном характере поведения кривых P(H) в **H** \perp **c** (нечетное) и под углом примерно 45° к оси *c* (четное). Последнее обстоятельство связано, по мнению авторов работы [14], с различным характером поведения конусной структуры в доменных стенках, разделяющих состояния с намагниченностью $\pm \sigma$.

Проиллюстрируем сказанное выше на рис. 7. Здесь схематически изображена конусная структура гексаферрита, на которой результирующие моменты ионов железа соседних вдоль оси с элементарных ячеек (повернутых на некоторый угол, определяемый волновым вектором) приведены к одной ячейке. Стрелки на основаниях конусов указывают направление вращения поперечных компонентов результирующих моментов в соседних ячейках, если смотреть со стороны положительного направления оси $z \equiv c$. При проходе внешнего магнитного поля через нуль образец разбивается на домены с намагниченностью вдоль и противоположно оси с. Переход между этими доменами осуществляется через доменные стенки, которые могут быть разных типов. Внутри доменной стенки первого типа (рис. 7*a*) конус разворачивается на 180° (вокруг оси, перпендикулярной плоскости рисунка), в результате чего направление вращения результирующих моментов меняется на противоположное, т.е. киральность $[\mathbf{S}_i \times \mathbf{S}_{i+1}]_c$ меняет знак. А внутри доменной стенки второго типа (рис. 76) конус сначала «схлопывается» и затем «выворачивается наизнанку», в резуль-

Рис. 6. Управление киральностью (знаком изменения поляризации) кристаллов $SrSc_{1.6}Mg_{0.05}Fe_{10.35}O_{19}$ при попеременном намагничивании под углом 45° (*a*) и перпендикулярно (*б*) к оси *c*. Номерами у кривых обозначена последовательность измерений от 1 к 8. Кривые 1 и 2 получены при T = 42 K, а затем остальные — при $T \approx 64$ K. Изображения конусов с указанием знаков киральности иллюстрируют спиновые структуры, соответствующие разным типам зависимостей поляризации от магнитного поля

тате чего направление вращения моментов, т. е. знак киральности не меняются.

Таким образом, в зависимости от типа доменных границ поведение поляризации при смене знака магнитного поля может носить либо нечетный (первый тип), либо четный (второй тип) характер. Для различных кривых на рис. 6 приведены условные изображения магнитных структур в виде конусов, наклоненных под углом либо 45°, либо 90° в зависимости от направления магнитного поля с указанием знака киральности. При ориентации поля под углом примерно 45° при низких температурах реализуются доменные стенки первого типа, а при более высоких температурах — второго типа. В случае $\mathbf{H} \perp \mathbf{c}$ наблюдаемые нами нечетные зависимости поляризации P(H) указывают на сохранение доменных стенок первого типа для всей области существования конусной магнитной структуры.

Эти иллюстрации хорошо качественно поясняют разный тип поведения электрической поляризации и управление киральностью магнитной структуры, хотя причины такого разного поведения доменных стенок в зависимости от ориентации магнитного поля и температуры требуют дополнительного исследования, учитывающего тонкий баланс различных конкурирующих вкладов в обменное взаимодействие и магнитную анизотропию, которое выходит за рамки данной работы.

Заметим, что в результате процессов циклирования по полю и поворотов образца от одного положения к другому происходит постепенная потеря когерентности конусной структуры по объему всего кристалла, в результате чего поляризация уменьшается, что хорошо видно на рис. 6.

Более детальные исследования полевых зависимостей поляризации при различных температурах и

Рис. 7. Два типа доменных стенок, разделяющих области с противоположно направленными результирующими намагниченностями при перемагничивании кристалла: *a*) разворот конусной структуры, приводящий к смене знака киральности; *б*) выворачивание конусной структуры,

Рис. 8. Полевые зависимости поляризации кристалла $\mathrm{SrSc}_{1.7}\mathrm{Mg}_{0.05}\mathrm{Fe}_{10.25}\mathrm{O}_{19}$ в магнитном поле, направленном под разными углами к оси c при $T\approx42$ K, иллюстрирующие гистерезисные процессы, связанные с переходами между состояниями с различной киральностью конусной структуры. Для наглядности каждая следующая кривая сдвинута вниз по оси ординат

ориентациях поля в разных составах выявили, что показанные выше четные и нечетные зависимости P(H) в поле, направленном соответственно под углами 45° и 90° к оси c, являются на самом деле предельными случаями более сложного поведения поляризации, включающего и гистерезисные переходы между этими режимами. Наиболее отчетливо нам удалось проследить это для кристаллов с x = 1.7при измерениях P(H) в различных ориентациях поля (рис. 8). В данном составе на кривой P(H) уже в поле, направленном под углом 45° к оси с, отчетливо наблюдается гистерезис поляризации при прохождении нулевых значений поля. После измерений под углом 45° мы отклоняли образец от оси c и через каждые 10° измеряли петли P(H). Как видно на рис. 8, гистерезис возрастает с увеличением угла между направлением Н и осью с. Поляризация P(H) стремится сохранить нечетный характер своего поведения при изменении направления Н, однако затем происходит срыв с одной нечетной ветви на другую, который соответствует разной киральности конусной структуры. В случае малой величины гистерезиса результирующая зависимость P(H) выглядит как четная функция поля. Отметим также, что при каждом циклировании по полю происходит частичная деполяризация.

5. ЗАКЛЮЧЕНИЕ

Таким образом, на выращенных нами качественных монокристаллах замещенных гексаферритов M-типа системы $SrSc_xFe_{12-x}O_{19}$ (x = 1.4-1.7) изучены анизотропные магнитные и магнитоэлектрические свойства. При понижении температуры обнаружены спонтанные переходы из коллинеарной ферримагнитной структуры в конусную, в которой обнаружена индуцированная магнитным полем электрическая поляризация (более 40 мкКл/м² при T = 4.2 K), сохраняющаяся вплоть до температур $T \approx 100$ К. Продемонстрированы различные возможности управления киральностью конусной магнитной структуры, определяющей знак поляризации. Сравнение изученных в данной работе стронциевых ($SrSc_xFe_{12-x}O_{19}$) и ранее исследованных бариевых (Ва
Sc_xFe_{12-x}O_{19}) [15] гексаферритов показывает, что характер магнитных структур и, соответственно, магнитные и магнитоэлектрические свойства обеих систем качественно сходны, но имеются количественные различия в температурах переходов и величинах электрической поляризации. Последнее может быть связано с некоторым различием ионных радиусов Ва и Sr, влияющим

на параметры элементарной ячейки и обменные взаимодействия.

Работа выполнена при финансовой поддержке РНФ (проект № 16-12-10531).

ЛИТЕРАТУРА

- T. Kimura, T. Goto, H. Shintani et al., Nature 426, 55 (2003).
- 2. Y. Tokura and S. Seki, Adv. Mater. 22, 1554 (2010).
- 3. T. Arima, J. Phys. Soc. Jpn. 80, 052001 (2011).
- Y. Tokura, S. Seki, and N. Nagaosa, Rep. Progr. Phys. 77, 076501 (2014).
- T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2004).
- S. Ishiwata, Y. Taguchi, H. Murakawa et al., Science 319, 1643 (2008).
- Y. Kitagawa, Y. Hiraoka, T. Honda et al., Nature Mater. 9, 797 (2010).
- M. Soda, T. Ishikura, H. Nakamura et al., Phys. Rev. Lett. 106, 087201 (2011).

- S. H. Chun, Y. S. Chai, B.-G. Jeon et al., Phys. Rev. Lett. 108, 177201 (2012).
- 10. R. C. Pullar, Progr. Mater. Sci. 57, 1191 (2012).
- О. П. Алешко-Ожевский, Р. А. Сизов, И. И. Ямзин, В. А. Любимцев, ЖЭТФ 55, 820 (1968).
- Р. А. Садыков, О. П. Алешко-Ожевский, Н. А. Артемьев, ФТТ 23, 1865 (1981).
- J. Kreisel, H. Vincent, F. Tasset et al., J. Magn. Magn. Mater. 224, 17 (2001).
- 14. Y. Tokunaga, Y. Kaneko, D. Okuyama et al., Phys. Rev. Lett. 105, 257201 (2010).
- А. М. Балбашов, В. Ю. Иванов, А. А. Мухин и др., Письма в ЖЭТФ 101, 542 (2015).
- Z. Somogyvary, E. Svab, K. Krezhov et al., J. Magn. Magn. Mater. 304, e775 (2006).
- H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
- I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
- 19. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).